Mathematics in Kaleidoscopes
Jennifer Li
Department of Mathematics
University of Massachusetts
Amherst, MA
A Tessellation
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 2 / 63
Spaces of constant curvature
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 3 / 63
Spaces of constant curvature
There are three d-dimensional spaces of constant curvature (d ≥ 2):
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 3 / 63
Spaces of constant curvature
There are three d-dimensional spaces of constant curvature (d ≥ 2):
1. Euclidean space Ed
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 3 / 63
Spaces of constant curvature
There are three d-dimensional spaces of constant curvature (d ≥ 2):
1. Euclidean space Ed
2. The d-dimensional sphere Sd
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 3 / 63
Spaces of constant curvature
There are three d-dimensional spaces of constant curvature (d ≥ 2):
1. Euclidean space Ed
2. The d-dimensional sphere Sd
3. Hyperbolic (or Lobachevskian) space Ld
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 3 / 63
Spaces of constant curvature
There are three d-dimensional spaces of constant curvature (d ≥ 2):
1. Euclidean space Ed
2. The d-dimensional sphere Sd
3. Hyperbolic (or Lobachevskian) space Ld
Our focus: dimension d = 2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 3 / 63
Spaces of constant curvature
There are three d-dimensional spaces of constant curvature (d ≥ 2):
1. Euclidean space Ed
2. The d-dimensional sphere Sd
3. Hyperbolic (or Lobachevskian) space Ld
Our focus: dimension d = 2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 3 / 63
Reflection in E2
Reflection across one mirror in E2 (think of R2 ):
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 4 / 63
Reflection in E2
Reflection across one mirror in E2 (think of R2 ):
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 4 / 63
Reflection in E2
Reflection across one mirror in E2 (think of R2 ):
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 5 / 63
Reflection in E2
Reflection across one mirror in E2 (think of R2 ):
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 6 / 63
Reflection in E2
Reflection across two mirrors A and B in E2 :
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 7 / 63
Reflection in E2
Reflection across two mirrors A and B in E2 :
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 8 / 63
Reflection in E2
Reflection across two mirrors A and B in E2 :
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 9 / 63
Reflection in E2
Reflection across two mirrors A and B in E2 :
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 10 / 63
Reflection in E2
Reflection across two mirrors A and B in E2 :
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 11 / 63
This is how a kaleidoscope works!
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 12 / 63
Reflection in E2
Reflection across two mirrors A and B in E2 :
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 13 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 14 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
Elements of G are motions of the plane E2 .
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 14 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
Elements of G are motions of the plane E2 .
“motion”: one or more reflections across the two mirrors.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 14 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 15 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
The set G is an example of a group. This means:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 15 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
The set G is an example of a group. This means:
Any two motions from G results in another motion from G.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 15 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
The set G is an example of a group. This means:
Any two motions from G results in another motion from G.
There is an “neutral” motion in G, denoted by 1, which does not
change anything.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 15 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
The set G is an example of a group. This means:
Any two motions from G results in another motion from G.
There is an “neutral” motion in G, denoted by 1, which does not
change anything.
Each motion can be “undone” by an inverse motion.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 15 / 63
Groups
G = {1, a, b, ab, ba, aba, bab, abab}
The set G is an example of a group. This means:
Any two motions from G results in another motion from G.
There is an “neutral” motion in G, denoted by 1, which does not
change anything.
Each motion can be “undone” by an inverse motion.
Notice: G has eight elements and they have relations:
a2 = b2 = 1 and (abab)2 = (ab)4 = 1.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 15 / 63
Dihedral Groups
The group G from our example is called a (finite) reflection group.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 16 / 63
Dihedral Groups
The group G from our example is called a (finite) reflection group.
G has a special name: it is called a dihedral group.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 16 / 63
Fundamental domain
Back to our kaleidoscope:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 17 / 63
Fundamental domain
Back to our kaleidoscope:
There are eight regions, called fundamental domains.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 17 / 63
Fundamental domain
Back to our kaleidoscope:
There are eight regions, called fundamental domains.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 17 / 63
Fundamental domain
Back to our kaleidoscope:
There are eight regions, called fundamental domains.
Notice: the fundamental domains
do not intersect, except at boundaries
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 17 / 63
Fundamental domain
Back to our kaleidoscope:
There are eight regions, called fundamental domains.
Notice: the fundamental domains
do not intersect, except at boundaries
union to give all of E2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 17 / 63
Fundamental domains
Examples.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 18 / 63
Fundamental domains
Examples.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 18 / 63
Fundamental domains
Examples.
Notice: These fundamental domains have infinite areas
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 18 / 63
Fundamental polygons
Example. Let F be an equilateral triangle in E2 .
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 19 / 63
Fundamental polygons
Example. Let F be an equilateral triangle in E2 .
Suppose each side of F is a mirror.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 19 / 63
Fundamental polygons
Reflection of F across each mirror results in the following:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 20 / 63
Fundamental polygons
Reflection of F across each mirror results in the following:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 21 / 63
Fundamental polygons
Reflection of F across each mirror results in the following:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 22 / 63
Fundamental polygons
Reflection of F across each mirror results in the following:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 23 / 63
Tessellation!
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 24 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
its vertex angles are of degree π/k for any k = 2, 3, 4, . . . , and
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
its vertex angles are of degree π/k for any k = 2, 3, 4, . . . , and
the regions formed by reflections across the sides of F do not overlap.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
its vertex angles are of degree π/k for any k = 2, 3, 4, . . . , and
the regions formed by reflections across the sides of F do not overlap.
Any Coxeter polygon is a fundamental domain of a reflection group
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
its vertex angles are of degree π/k for any k = 2, 3, 4, . . . , and
the regions formed by reflections across the sides of F do not overlap.
Any Coxeter polygon is a fundamental domain of a reflection group
Fact. The only Coxeter polygons in E2 are the following:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
its vertex angles are of degree π/k for any k = 2, 3, 4, . . . , and
the regions formed by reflections across the sides of F do not overlap.
Any Coxeter polygon is a fundamental domain of a reflection group
Fact. The only Coxeter polygons in E2 are the following:
(i) rectangles
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
its vertex angles are of degree π/k for any k = 2, 3, 4, . . . , and
the regions formed by reflections across the sides of F do not overlap.
Any Coxeter polygon is a fundamental domain of a reflection group
Fact. The only Coxeter polygons in E2 are the following:
(i) rectangles
(ii) the equilateral triangle
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
its vertex angles are of degree π/k for any k = 2, 3, 4, . . . , and
the regions formed by reflections across the sides of F do not overlap.
Any Coxeter polygon is a fundamental domain of a reflection group
Fact. The only Coxeter polygons in E2 are the following:
(i) rectangles
(ii) the equilateral triangle
(iii) the isosceles right triangle
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter Polygons
A convex polygon F is called a Coxeter polygon if
its vertex angles are of degree π/k for any k = 2, 3, 4, . . . , and
the regions formed by reflections across the sides of F do not overlap.
Any Coxeter polygon is a fundamental domain of a reflection group
Fact. The only Coxeter polygons in E2 are the following:
(i) rectangles
(ii) the equilateral triangle
(iii) the isosceles right triangle
(iv) the right triangle with angles π/3 and π/6
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 25 / 63
Coxeter polygons in the Euclidean plane
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 26 / 63
Coxeter polygons in the Euclidean plane
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 26 / 63
Coxeter Polygons
Fact. The only Coxeter polygons in E2 are the following:
(i) rectangles
(ii) the equilateral triangle
(iii) the isosceles right triangle
(iv) the right triangle with angles π/3 and π/6
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 27 / 63
Coxeter Polygons
Fact. The only Coxeter polygons in E2 are the following:
(i) rectangles
(ii) the equilateral triangle
(iii) the isosceles right triangle
(iv) the right triangle with angles π/3 and π/6
Why?
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 27 / 63
Gauss-Bonnet Theorem
Gauss-Bonnet Theorem.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 28 / 63
Gauss-Bonnet Theorem
Gauss-Bonnet Theorem.
Xd : a d-dimensional space of constant curvature
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 28 / 63
Gauss-Bonnet Theorem
Gauss-Bonnet Theorem.
Xd : a d-dimensional space of constant curvature
P : a polygon in Xd
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 28 / 63
Gauss-Bonnet Theorem
Gauss-Bonnet Theorem.
Xd : a d-dimensional space of constant curvature
P : a polygon in Xd
αi : interior angles of P
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 28 / 63
Gauss-Bonnet Theorem
Gauss-Bonnet Theorem.
Xd : a d-dimensional space of constant curvature
P : a polygon in Xd
αi : interior angles of P
Xn
· Area(P ) + (π − αi ) = 2π
i=1
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 28 / 63
Gauss-Bonnet Theorem
Gauss-Bonnet Theorem.
Xd : a d-dimensional space of constant curvature
P : a polygon in Xd
αi : interior angles of P
Xn
· Area(P ) + (π − αi ) = 2π
i=1
Our focus: d = 2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 28 / 63
Gauss-Bonnet Theorem
Our focus: d = 2
Fact. The sum of the angles inside of an n-sided convex polygon P
equals π(n − 2).
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 29 / 63
Gauss-Bonnet Theorem
Our focus: d = 2
Fact. The sum of the angles inside of an n-sided convex polygon P
equals π(n − 2).
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 29 / 63
Coxeter polygons in the Euclidean plane
F : Coxeter polygon with n sides.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 30 / 63
Coxeter polygons in the Euclidean plane
F : Coxeter polygon with n sides.
Gauss-Bonnet:
Xm
· Area(P ) + (π − αi ) = 2π
i=1
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 30 / 63
Coxeter polygons in the Euclidean plane
F : Coxeter polygon with n sides.
Gauss-Bonnet:
Xm
· Area(P ) + (π − αi ) = 2π
i=1
Ed : constant curvature = 0.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 30 / 63
Coxeter polygons in the Euclidean plane
F : Coxeter polygon with n sides.
Gauss-Bonnet:
Xm
· Area(P ) + (π − αi ) = 2π
i=1
Ed : constant curvature = 0.
Then the sum of the angles is
Xm
αi = π(n − 2)
i=1
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 30 / 63
Coxeter polygons in the Euclidean plane
F : Coxeter polygon with n sides.
Gauss-Bonnet:
Xm
· Area(P ) + (π − αi ) = 2π
i=1
Ed : constant curvature = 0.
Then the sum of the angles is
Xm
αi = π(n − 2)
i=1
Average value of the angles:
π(n − 2) 2
=π 1−
n n
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 30 / 63
Coxeter polygons in the Euclidean plane
If Coxeter polygon F has n > 4 sides:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 31 / 63
Coxeter polygons in the Euclidean plane
If Coxeter polygon F has n > 4 sides:
2 2
<
n 4
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 31 / 63
Coxeter polygons in the Euclidean plane
If Coxeter polygon F has n > 4 sides:
2 2
<
n 4
2 2
1− >1−
n 4
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 31 / 63
Coxeter polygons in the Euclidean plane
If Coxeter polygon F has n > 4 sides:
2 2
<
n 4
2 2
1− >1−
n 4
2 2 π
Then π 1 − >π 1− = .
n 4 2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 31 / 63
Coxeter polygons in the Euclidean plane
If Coxeter polygon F has n > 4 sides:
2 2
<
n 4
2 2
1− >1−
n 4
2 2 π
Then π 1 − >π 1− = .
n 4 2
⇒ F has an obtuse angle
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 31 / 63
Coxeter polygons in the Euclidean plane
If Coxeter polygon F has n > 4 sides:
2 2
<
n 4
2 2
1− >1−
n 4
2 2 π
Then π 1 − >π 1− = .
n 4 2
⇒ F has an obtuse angle
But this contradicts definition of Coxeter polygon!
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 31 / 63
Coxeter polygons in the Euclidean plane
If Coxeter polygon F has n > 4 sides:
2 2
<
n 4
2 2
1− >1−
n 4
2 2 π
Then π 1 − >π 1− = .
n 4 2
⇒ F has an obtuse angle
But this contradicts definition of Coxeter polygon!
Thus n ≤ 4.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 31 / 63
Coxeter polygons in the Euclidean plane
If F has n = 4 sides:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 32 / 63
Coxeter polygons in the Euclidean plane
If F has n = 4 sides:
2 π
π 1− = .
4 2
⇒ F is a rectangle.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 32 / 63
Coxeter polygons in the Euclidean plane
If F has n = 3 sides, then F is a triangle.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 33 / 63
Coxeter polygons in the Euclidean plane
If F has n = 3 sides, then F is a triangle.
π π π
Suppose interior angles of F are , , .
k l m
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 33 / 63
Coxeter polygons in the Euclidean plane
If F has n = 3 sides, then F is a triangle.
π π π
Suppose interior angles of F are , , .
k l m
π π π
+ + =π
k l m
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 33 / 63
Coxeter polygons in the Euclidean plane
If F has n = 3 sides, then F is a triangle.
π π π
Suppose interior angles of F are , , .
k l m
π π π
+ + =π
k l m
1 1 1
⇒ + + =1
k l m
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 33 / 63
Coxeter polygons in the Euclidean plane
If F has n = 3 sides, then F is a triangle.
π π π
Suppose interior angles of F are , , .
k l m
π π π
+ + =π
k l m
1 1 1
⇒ + + =1
k l m
⇒ (k, l, m) = (3, 3, 3), (2, 4, 4), or (2, 3, 6).
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 33 / 63
The Coxeter Scheme
A Coxeter scheme is a graph with vertices representing the edge of a
Coxeter polygon, which follows the rules:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 34 / 63
The Coxeter Scheme
A Coxeter scheme is a graph with vertices representing the edge of a
Coxeter polygon, which follows the rules:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 34 / 63
The Coxeter Scheme
A Coxeter scheme is a graph with vertices representing the edge of a
Coxeter polygon, which follows the rules:
These descriptions are useful when working in higher dimensions.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 34 / 63
The Sphere S2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 35 / 63
The Sphere S2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 36 / 63
The Sphere S2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 37 / 63
The Sphere S2
Spherical angles:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 38 / 63
The Sphere S2
Spherical angles:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 39 / 63
The Sphere S2
Spherical angles:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 40 / 63
The Sphere S2
Spherical angles:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 41 / 63
The Sphere S2
Spherical angles:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 42 / 63
The Sphere S2
Gauss-Bonnet:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 43 / 63
The Sphere S2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 43 / 63
The Sphere S2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
Sd : constant curvature = 1.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 43 / 63
The Sphere S2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
Sd : constant curvature = 1.
Xn
⇒ αi = π(n − 2) + Area(P )
i=1
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 43 / 63
The Sphere S2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
Sd : constant curvature = 1.
Xn
⇒ αi = π(n − 2) + Area(P )
i=1
⇒ sum of interior angles of P > π(n − 2)
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 43 / 63
The Sphere S2
For P a triangle: n = 3
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 44 / 63
The Sphere S2
For P a triangle: n = 3
π
Suppose the interior angles of P are αi = . Then,
ki
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 44 / 63
The Sphere S2
For P a triangle: n = 3
π
Suppose the interior angles of P are αi = . Then,
ki
1 1 1
+ + > π(3 − 2)
k1 k2 k3
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 44 / 63
The Sphere S2
For P a triangle: n = 3
π
Suppose the interior angles of P are αi = . Then,
ki
1 1 1
+ + > π(3 − 2)
k1 k2 k3
1 1 1
⇒ + + > 1.
k1 k2 k3
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 44 / 63
The Sphere S2
For P a triangle: n = 3
π
Suppose the interior angles of P are αi = . Then,
ki
1 1 1
+ + > π(3 − 2)
k1 k2 k3
1 1 1
⇒ + + > 1.
k1 k2 k3
⇒ (k1 , k2 , k3 ) = (2, 3, 3), (2, 3, 4), (2, 3, 5), or (2, 2, k) for any k ≥ 2.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 44 / 63
The Sphere S2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 45 / 63
Relation to Platonic Solids
There are five platonic solids:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 46 / 63
Relation to Platonic Solids
There are five platonic solids:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 46 / 63
Relation to Platonic Solids
There are five platonic solids:
Convex polyhedron
All faces are convex regular polygons
Same number of faces are joined at each vertex
Faces only intersect at edges
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 46 / 63
The Hyperbolic (Lobachevskian) plane L2
A pseudo-Euclidean space V 2,1 is a 3-dimensional vector space over R,
with scalar product
(x, x) = −x21 + x22 + x23
for any x = (x1 , x2 , x3 ).
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 47 / 63
The Hyperbolic (Lobachevskian) plane L2
A pseudo-Euclidean space V 2,1 is a 3-dimensional vector space over R,
with scalar product
(x, x) = −x21 + x22 + x23
for any x = (x1 , x2 , x3 ).
Consider set C = {x ∈ V 2,1 |(x, x) < 0}. Then C = C + ∪ C − , union of
two cones:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 47 / 63
The Hyperbolic (Lobachevskian) plane L2
A pseudo-Euclidean space V 2,1 is a 3-dimensional vector space over R,
with scalar product
(x, x) = −x21 + x22 + x23
for any x = (x1 , x2 , x3 ).
Consider set C = {x ∈ V 2,1 |(x, x) < 0}. Then C = C + ∪ C − , union of
two cones:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 47 / 63
The Hyperbolic (Lobachevskian) plane L2
A pseudo-Euclidean space V 2,1 is a 3-dimensional vector space over R,
with scalar product
(x, x) = −x21 + x22 + x23
for any x = (x1 , x2 , x3 ).
Consider set C = {x ∈ V 2,1 |(x, x) < 0}. Then C = C + ∪ C − , union of
two cones:
All rays in C + form hyperbolic plane L2 .
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 47 / 63
The Klein model
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 48 / 63
The Klein model
Take a cross section (slice) of C + at x1 = 1 and obtain a unit disk.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 48 / 63
The Klein model
Take a cross section (slice) of C + at x1 = 1 and obtain a unit disk.
Unit disk
Boundary of C +: infinite points of L2
Chord: straight line in unit disk that comes from rays in V 2,1 which
extend from the origin and into C +
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 48 / 63
The Klein model
Lines on the Klein model:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 49 / 63
The Klein model
Lines on the Klein model:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 49 / 63
The Klein model
Lines on the Klein model:
Boundary of unit circle: the circle at infinity
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 49 / 63
Convex polygons in L2
A convex polygon P in L2 is the intersection of lines in L2 .
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 50 / 63
Convex polygons in L2
A convex polygon P in L2 is the intersection of lines in L2 .
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 50 / 63
Convex polygons in L2
A convex polygon P in L2 is the intersection of lines in L2 .
Klein model: angles are distorted! (circles too)
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 50 / 63
The Poincaré disk model
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 51 / 63
The Poincaré disk model
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 52 / 63
The Poincaré disk model
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 53 / 63
The Poincaré disk model
Some properties:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 53 / 63
The Poincaré disk model
Some properties:
Ends of arcs and diameters are perpendicular to the boundary of the
unit disk.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 53 / 63
The Poincaré disk model
Some properties:
Ends of arcs and diameters are perpendicular to the boundary of the
unit disk.
If two arcs do not meet, then they are parallel.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 53 / 63
The Poincaré disk model
Some properties:
Ends of arcs and diameters are perpendicular to the boundary of the
unit disk.
If two arcs do not meet, then they are parallel.
If two arcs that meet orthogonally represent perpendicular lines.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 53 / 63
The Poincaré disk model
Some properties:
Ends of arcs and diameters are perpendicular to the boundary of the
unit disk.
If two arcs do not meet, then they are parallel.
If two arcs that meet orthogonally represent perpendicular lines.
Objects close to boundary seem smaller, but in H2 they are the same
size.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 53 / 63
Klein and Poincaré models
Relation with Klein model:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 54 / 63
Klein and Poincaré models
Relation with Klein model:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 54 / 63
Klein and Poincaré models
Relation with Klein model:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 55 / 63
Klein and Poincaré models
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 56 / 63
The hyperbolic plane L2
Gauss-Bonnet:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 57 / 63
The hyperbolic plane L2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 57 / 63
The hyperbolic plane L2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
For L2 we have = −1.
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 57 / 63
The hyperbolic plane L2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
For L2 we have = −1.
Xn
⇒ αi = π(n − 2) − Area(P )
i=1
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 57 / 63
The hyperbolic plane L2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
For L2 we have = −1.
Xn
⇒ αi = π(n − 2) − Area(P )
i=1
⇒ sum of interior angles of P < π(n − 2)
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 57 / 63
The hyperbolic plane L2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
For L2 we have = −1.
Xn
⇒ αi = π(n − 2) − Area(P )
i=1
⇒ sum of interior angles of P < π(n − 2)
π π π
⇒ + + ··· + < π(n − 2)
k1 k2 kn
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 57 / 63
The hyperbolic plane L2
Gauss-Bonnet:
Xn
· Area(P ) + (π − αi ) = 2π
i=1
For L2 we have = −1.
Xn
⇒ αi = π(n − 2) − Area(P )
i=1
⇒ sum of interior angles of P < π(n − 2)
π π π
⇒ + + ··· + < π(n − 2)
k1 k2 kn
1 1 1
⇒ + + ··· + <n−2
k1 k2 kn
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 57 / 63
The hyperbolic plane L2
If P is a triangle in L2 , then we need:
1 1 1
+ + <1
k1 k2 k3
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 58 / 63
The hyperbolic plane L2
There are infinitely many possibilities!
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 59 / 63
The hyperbolic plane L2
There are infinitely many possibilities!
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 59 / 63
The hyperbolic plane L2
Other polygons may tessellate L2 :
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 60 / 63
The hyperbolic plane L2
Other polygons may tessellate L2 :
Which regular hyperbolic n-gons tessellate L2 , with k polygons joining
at each vertex? This happens if and only if the following holds:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 60 / 63
The hyperbolic plane L2
Other polygons may tessellate L2 :
Which regular hyperbolic n-gons tessellate L2 , with k polygons joining
at each vertex? This happens if and only if the following holds:
1 1 1
+ <
n k 2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 60 / 63
The hyperbolic plane L2
Other polygons may tessellate L2 :
Which regular hyperbolic n-gons tessellate L2 , with k polygons joining
at each vertex? This happens if and only if the following holds:
1 1 1
+ <
n k 2
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 60 / 63
The hyperbolic plane L2
More examples:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 61 / 63
The hyperbolic plane L2
More examples:
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 61 / 63
Acknowledgements
Thanks to Paul Hacking, Tetsuya Nakamura, and Luca Schaffler!
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 62 / 63
References
Introduction to Geometry by Harold (H.S.M.) Coxeter
Visual Geometry and Topology by Anatolij Fomenko
Reflection groups in Algebraic geometry by Igor Dolgachev
Alice through looking glass after looking glass: the mathematics of
mirrors and kaleidoscopes by Roe Goodman
Hyperbolic Geometries and Coxeter Groups by Marilee Murray
Geometries by Alexei Sossinsky
Software used to create some hyperbolic tessellations (Klein vs.
Poincaré models) is from the website:
https://dmitrybrant.com/2007/01/24/hyperbolic-tessellations
All photos, platonic solid images, and other computer generated
hyperbolic tessellations are from Wikipedia
Jennifer Li (UMass Amherst) Mathematics in Kaleidoscopes 63 / 63