0% found this document useful (0 votes)
51 views20 pages

Pcs Mod4@Azdocuments - in

Uploaded by

neeraj prajwal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
51 views20 pages

Pcs Mod4@Azdocuments - in

Uploaded by

neeraj prajwal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

Principles of Communication Systems SVIT 18EC53

MODULE-4: SAMPLINNG
&
QUANTIZATIONN
4 1 INTRODUCTlON:

8yglem, botk are sed to trangmiYt


Digita) s well B Analog
-

bignas fom Dne place fo ano


Her
he t r a k n i s s i o n ot fnformati i done
Communi@tion
a
Analog
J
nanalog form. [ontiouous signa)
Conttauous signas, vepTesenkd
Analog Bignak ase

Sne waves
ConHnuous
Ex: Human Voice, Natuagl So uad anga
Digital Communiouhon thetraas mission f mformd hôn
oone n Digila form.[ Díscrel signa ToJe L1|
Digita Signak are, Discoeti 8ignag,TEpreBenRa by
S u a e wave
has Disconhnuous
Compujexs, opHcal dai ver
alues
The eppect of Distootien, Noise and Ink»fesence is much Jess
o
digital &igna 3 . Discre Circusa ae move Teliabk, eaty
deßign ad cheafes lhan analog ciscui
The F? TSE stp m digital Cemmuniafion &ystam î_ he Converien

analog 6iqnal b a Digfta o?8cetaRme ignal.

|A
|Analog
SAMPLIN 6 QUANTIZATION ENcODING
6lo lo lo
TUU
Digita
ignas FeSteps Analog la pigitaCowersionn Signa
The Key 8 t p s nvolved m he Convession ot ftnalog signal t

Digital Signal a r 4.SAMPLING


2.UANTIZATION
3. ENCODI NG
The complete delails Sampling Quanhzatentechniques, Entoding
TehnigUe3 are_presenkd m this Module and Cestnued fn Medule-5
Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53
=

. Why digitize Analog Sources VTUMODEL RP*


ave:
DIGITAL SIGNALLS Dver ANALOGG
The advantagez of U8ing
he eprec of Distortion, Noise and Iotev fexence much
less n digital ignal
DBcrek cîrcui ase mose elable, egier o design & cheapey
than a0alog Ciscui
3 i ligita) Kysems, 1t k egier b tn*q7e dYPPeen
Services.
Ex: Video +Soundtrack
e t e r1 0

4 Digtal signalg are sampler 5 characeri3e and tyPICa


Go not have tke Same anpiude Tange and vasidbility
Analog Bignalg.
. Digital circuig ase ess Serl tve to physical ePpeg such
a3 Vibraien & Emperature.
6
Digfta) 8 skmg ase ess SeniH ve b Nolse tha) analog
7. The tTasmission Scheame TS Telatively îndependent of he

ousce
8. Mulhpexing trchniques, ase moe eoily împlemen ed sitf
drgftalbasmisSion Stoalease.
9. There asetchniques For semoving Tedundancy | Addng-
edundancy to ad97laltranamission. Such lhat the euos
TFat Occud dusing-trasmission may be Corecd at ie
eciever
lo. High Secuit
I. Tn Dii tal &ysems he eTor owechion Dekcian ehnig-
-ues Can be mplem ened easly.
Techniues Such 8 EqUALIZATION, eSpetialy Adaptive Ved5ien3,a3e Easier.
Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in
Principles of Communication SystemsS SVIT 18EC53 3
=

4 d1 COMPARISON BETWEEN ANALO G & DIG TAL CM¥IUNICATION


W

PARA ME TE R ANALO G DI6 TAL


Ys TEM
TAAALZALAVAALA
SysTE
Tmmunity to NoIsE LESS MORE

. System Complexit MOREE LESS


TMplemenkahon
3. Systm Cos+ MORE
LESS

4. ErTos Detetion
& Not possi ble possible
COrecHon
5. TnfoT rna Hon less High
Seustt (suitable Fr
Military appiahons)
6 MuHpRxin
FDM
Technigue used TDM1

7. Bandwidth Requikme Less xDue o higher


n
bt raes, highez
Channel Bandwidt5
is Tequired.
I t is not possi ble l6
8. REpEATE RS age separai NoISE &
|REPEATERS Can be
|S|ANAL. 75er* pot sed.
REPEATERS Cannot be|
sed.

|9 ProTammingCocina. Not possi ble possi ble.

10 Modulation Techniues. AM,FM, phase-Mad. ASK FSK. PSK<


PPM pWM PAM
I1. SyNCHRoNIZATI ON not De Guire d
reircd
12.
ualty f REcoN STRUCTON C0OD . E xcellent
Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT
venkatesha.m@saividya.ac.inn
Principles of Communication Systems SVIT 18EC53 4
43 SAMPLING PROCESS
VTU MODE L ®P
Stat SAmPLIN6-THEORE M and explain the same wi
Sketches and equation8. 7Mars

SHalemen: SAMPLING THEDRE M, States tiat Any Coninu oLA time


i5 Sampes
base band Signa) can be completely ve preSenkd by
and Tecovesed from i Sampks ¥ he Sanplingt Preguegc
s Greaker han o equa to twice The highegtre9uenu present|
n he bose band Bigna
e., SamplingFaequeny

Whese,
Where, W= Maximun frequeny pveaend in base band 54
Max( ( ns tn, ng .-)
pToof-
Consider an orbitrany fgna xt).4 4nik energ,.
which s Spedfied for all fme ins-anl.

A seament ot he Signa zt) 6


shown n Figue 1a)

L e r S(t) represenR he pesiodic mpulse train and


6iven by Sct)= 2 St-nt), showa hm Figue.
nE-00

whese , tekez all possi ble Valuez of integers.


TsSamplng period =

TFe vecdpovcao Sampng period CT) ts Called sam plng


Ta ,f
L The ananeous Sampling of siqna xtt) is mdioed
n Figur 1¢).

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT


venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53 3

Xt)

Figu 1 (a); Analog


PoThion of X(4) sI

St )
FiguR.1(b):
Tbahn Impulses
3 23 31s 4 5Ts 6T 1
T,
gt)
Figu1C) Discoe/
Sdmpled signa Sanpled
nal.
Ts 2Ts 3Ts

|L Let ( t ) denotes the signal obtained by Muiplying


a(t) ot evey s second
ScA) and stantaoeous Value of
7he Sanped Aignal: ct) t8 given by,
zct)= «(ct). Sgt

t)= gt)
St)= S(tnTs)

Dr. Venkatesha M, Associate Professor, Department of ECE, sVIT venkatesha.m@saividya.ac.in


Principles of Communication Systems SVIT 18EC53 6

substituli S4) 2 St-nT, Toain f Inpulse


n- o

t)= z t). S(-nTs)= 2ztt).S(t-E)


0-00 n3-00

using Bhi Pting pvoper h tanpuee funchon


W.K. T.
Xt).8(t-nTs)= Z(nTs). S (t-n+s)
Sampled
sct)= -00
(nT).S(t-nT) vedsion o X(¢

(3)
Ia Fre uency dormai),
Coside, t ) = C). SCE)
Taking Fourier tras-fosm n bothsides We get
Muliplicahn
hme Domaio is eta
xCF) = x(P)*S,CP) to CONVOLUTION (*)
>(4) to FoeUeny
domain
Whese,
S 4)=f. Z S(f-nfs)
Usna tn (4).

sCF)= xCP) * fsz n-0


s(f-nfs)

sC*)= fsx(F) *Z S(P-nfs)}


Foem ConvoluHon pppesty f iompue funtien,
WK.T xP)* S (P- nfs)= X(f- nfs)
.'6) g F) =
Psi 0-DoxCF)* &Cf-nFs)

x(F) Fs (F-nfs)(
Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53
EUation (7) Can be Te- WsiHeo

) = fs X(F) + Fs 2 xCf-nfs)
When e
&petrum XGP) 15 passed though an LP
tBen he Second esm n RHS o equaion(e) is elinioa td
Tesu m,
gCF)= Fs XF)
Band lm:}ed.
x (P) =X") ) ziqnad & be
RECOVE RED fon
Whese f.=aH= 3 [Max (im,fns, )) Sampled versim"

A XCP)
Xo)

-P
(a)
XsCR)

fsaw (
ig ) ) Spetno tshidly band n ted Bignal 1t)
(b Spechm f a Sampled version of xt) far T -

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT


venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53

We map now s l a the Samplna keorem, n two euivalent

Pa
I. A Bage band 8igna of Pini energt, ompelely descabed
Specying e buez of he 8ignal at 8tant me
b
Sepavaid by Ts= L seconds

A band limited Bignal f Finit enes3y, may be Conplel

ecovered foom a knowledge of ig Sampes te Ken at the Tale


op Fsaw" Sampes pes second
NyQUIST RATE
A Sampling qali of Ws ampes pes setond, f r a 89na
bandwsd w'Hext is Called Nyguist *at

Le, Nyquist Ra = aw It B+e mininum Samplig


reueocy deguired.
NyquiST NTERVAL,-
TFe dedpocal of Nyquist Ta is called Nyquist Ioderyal.
is mea3ured m Seconcg

Nyuist Intertal= Seronds


Nyuist a a QW

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in


Principles of Communication Systems SVIT 18EC53

4.3.1 TRe Cenceptt of UNDERSAMPLING & OVER SAMPLING


m

when Samplng Preg uene fs=aw. then he tupe


Sampln i4 Called critial FamplingJNyguist ui Senplog.
Resul m No-A liagkng- ejhect& No-GUARDBAND
Xg CP)

N=Ps
M s 2Ps
&1: Nhen fs= aN CNyQoIST RATE)

ii)
Ku Whern
ts &N-[UNDER SAMPLING)
When
fs <aW, jt rezulg fn undeo Sampl9 & Here
i be
aliasing ePpec [oves lapphngJ.The Spetun is Shoun
nFig.2. fathis Coße ft is tmpossi bleto oe coves (he Signd.
RsCF)

Fig2 when fs <aN GAiasig


When s aW:-[oveR sAMpLIN6)
When Ps W, ?t vesulG oer Samplin 8 there will be
Cuard band Hu he adjacent Spehun 2Ct). It is esy To tCovexr
gC) the Siga.
qUARP
BAND

A
:fo Recovytouthionf signa) t ) :Sampling fieuenu f22w
Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT
venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53 1o
o IMPP
Numeica) Prob lems on NyQUIST RATE &NyQUIST INTERVAL;-

Foulade
Nyyist da =a t ' samples per Second HZ
whest W= Max ( , n , . .)) present n given base band
8ignalxtt).
.Nyguist IokrVal= Secondg
NyUist Tdh W

VTu OLOp
1 Deksnine he Ny9uist rat acd Nyuist fkrval for: JynelJuly
2011
( m(t)=-Sin (50omt)(i) 2t) =Sioca00t)
Tt
Ai m(t):-[sinc5ont))J
a50 HZ =W
w 500N aTf500 >P
Nyuist Tah=QWe a fm500 HZ Sanples|sec

Nyuist Jokaval= setend3


Nyuist daa 500

i> 2(4) = Sinc (At)


HkT Sioc (*) = Sin (Ta)
ct) = Sin c loot=- sin (aont)

200x A7in -00 fm200W= loD Hz


W
' . Nyuis Tat= aw: a f ax10D =a50 H2

Nyuist Joerva| Secomdg


Nyuist Ta 0d

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in


Principles of Communication Systems SVIT 18EC53

a A n ana log 6igna) 8 ex pse Ssed by e evuati on

= 3 cos(s0nt)+ 1osin (300nt) +Cos (1607t. calcula


e Nyuist raü and Nyuist Inkrval.
|L Given: R H)= 3Cos (50Tt)+ 10 Sin(3007t)cos((udA*)

Comparing equathion(1) 9 h stonclad equatim


xCt) 3 cos(w,t) +
=
10gig(,t)+cos t )
We 8e

w 507
W30D

5 150 5o
ms

W= Max G Tmn=Max (A5, 150, 5o)


2

= 150 HZ

Nyuist Kat aW= axi50 300 H Samplssa

3:333ms
NyUst Inkrval = .

NyoistTo(3)

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in


Principles of Communication Systems SVIT 18EC53 12

KAn analeg gigna) is exp>eszed by the l a ion


)= cos (40Ont)-Cos (1o00ñ)
Calcula the Nyuist a l and Ne9ust Jokrva.
|L Ct)= cos (4000Rt). Cos
(1poont)
Wk-T CoSA CosB = cos(A-B)4 tos (A+E)

t)= COs (300o Tt)+coS(S o00Rt}|


A-B AtB

.rA)=-cos (3000 t) + cos (5oo0x t)


4T 4
D
-(2)
Com pesing iI5 standard euahon, e ge
w>3000T 500
2 5000

1500 m250o

W Mx(tm, n = M-x (50o, 2500)= 2500 Hz

Nyquist Ra 2W= K5u7 =5000o Hz O Sanplesse

Nyuist Ioterval= = 0-amS


Nyuist Ra 5000

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in


Principles of Communication Systems SVIT 18EC53 13

44PULSE AMPLITUDE MDDULATION **


VTUMODEL QP
PAM)
FLAT Top SA MPLIN6.
Explaim the generation and vecovemy pAMCFlat-To p) Signa)
Ji necess qy equations and 8pechum didqram

Definihon- T+ 1s an-Analog pulke Madulahion Scheme n which

te ampliudes a train o Tecangular Carnier


Pul ses ase Varied n acoTdance wik the sqmple
Values modulatina aigna.
I n PAM, the top op each mnodulake d vectengu laa pul ses
maintained f lat. Heno pulseAapli tucle Modulaim CPA M)
is also (alled os FLAT Top SAMPLIN
2()=mt)

Message sign
at)=mt)|
Sgt)
Tran Jnpus
Ts Sg4)
S
gt)
Sampled 8ir)
st)
Pt)
Train pulse
"pt)

PAM Signa
Pulse duahin (t) s()
Fia.1: PULSE AMpLITUDE MoDU LATIoN
L A T I O N t

M,
Dr. Venkatesha Associate Professor, Department of ECE, sVIT venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53 1y

The Wavefrmá § a PA 6ignal is îil usated Fig-1.

L e t S(t) denotes he PAM 8ignal Flat top Sampled 8ignal


I+ is expC 8ed GR

S)= 2 z (nTs). P(L-nTs)


0)
wheaf,
nTs) : e Sample álue t ) obtained at time
nTs
Ts: Sampliag pesiod
PC4)tandard eclangulas pulse train of dusatan t '

Dee chim ot PAM Signal

PAM Signal RECONSTRUCTION MesSage


S t )=
EqUALIzER
FILTER siGml

Fig.2: QecosButian of messageSigna fom pAM sJt.


The Original messaqe SIgnal, met) = 2lt) is dbBained
fflter followe
passing PAM 81gnalrough the econstucionm
byeualizers Zhoun s Figue.2.

Advantages pAMM:
L T i8 a baxe fe all the dgitel modulahan technigues
lo
L TsarBmi Her & Receiver circurtj fs Simple and eay ConRbuH

Dis Advantages of PAM


BANDWIDTH tog transmissitn
L It Requirs high

Varyin9 sotere iz a
Noise
Signal, amplitude keeps
,
T o PM
CBOLiakd i h t
L sNR is Less.
Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53 5

45:T IME DIVISION MULTIPLEXING TDM):


VTUMODEL Qp Man
WTth a neat diaqram explain the Cencept ofTDM.

Time Dvision Multiplex ing is a mehod o tranmHHng dod

Teceiving ndependent 8ignak over a coman channel b


means ot &ynchronied gwitdhes at each end of tsan8missio
ine such that each Signal appears on he fne bnly a frach on
Z
of me t an aHena ive pattern.

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT


venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53 16

Figure 1, 8how he block diaam ¢ TDM 48l+m


h e Concept ot TDM 6 Tllshtted fn Figux.1

A t Message inpu, the low pass P7Iks ax u ed 6 oemove


high treuenuy coempenenß Present he message ignal
The ouhput of e PRE-ALIAS Files f6
ae hen fed a Cemmute tor,|
hich is TAually mplemented aing elecoonic toitehing Ciocti
VFunGh oo oeoMMUTA TOR
V

T
Too Cole a naaDw AAmple in each of the N-message igra3
at a ra of fs>aW.
T o $equeatia)ly lesleave (MULTIPLEX), N-^amples fob
each o he
message S?gral imidea Samplhna inesval TsP
The MulHplexed &ignal lsthen applied lb a AulBe Amplitude maduki

.The pulke Ampli tude Modulatur ,transferms the nulHplexed Eignal


inb a fon Sui table fa trasmissim dver a Conanun ica Hin channel

At Ie eetving end, te polke anp'tude dernodul ata pes fosms


the Tevesse opesaHn of pAM.

Decoownutatx dizibulez the 6ignals he aPpPopriat


Low pass reconstutionPi1lesg at a Da o fs 2N.

The Decommulats 6pesara nyncha


chapni3aHim i e
Connnuta tusr
The econButron f+Hes gves lFe e3Hmaed message

Sgna.

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in


Principles of Communication Systems SVIT 18EC53

46 PULSE PoSITION MoDULATIDN*VTUMoDEL QP


mMmmm {PPM) 5Masks
H i t oneat block diaqrama explan the GeneraHon and
Deechom of PpM- INaves
L

i
essage SAMPLE ut) vt) THRESHOLD
PULSE PPM
&
HoLD ADDER SHAPN 6
Signa DETECTOR FILTER $3
mct) | cicuit St

PULSE SAN
ToOTH
eENERATOR | GENERATDbR
Fi9 1 GeneratHon of PPM Waves.

Generaton of PPM Waves,-


Waves i3 zhown fa F91.
TRe Blocx diaqram fo generating ppM
Ta puke potion Modulation <PPM), tke posiHon a pule
relaHve ts i unmodulated -tme oOccu anta is Varied fm
aecordance k the message ignal 8 shown n Fi9 2 (
Amlt)
a) Modulatiog lmessage
siqna)
AP4)

( Puse Caiea

stt)

Dr. Venkatesha M, Associate


nJUL
Fi3.2 PPM WaVe
Professor, Department of ECE, SVIT
C PPM have

venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53 18
F e Message 8ignal m(4), is Piost Converted fnb a PAM Signa)

by uslng SAMPLE HoLD Circuit


S 8houn
Sample & Hold elotuit, gives a 8taisCoße Wavefor n ut)
lo Figu 3 ( fox the message 8gna) n t ) ghon in Pig 3 (a).

in he
TFe 8tgnad ut), îs added tb a Sawtoth wave, Resul
Combine d 6ignal vct),as ghouon fn Plg 3d)
naaow
|L V) i8 applied lo a tiaeshol d deecus hat pwdxes a Veay
Pule at each Hme v ) C0Sse s ew mthe Negative g»nadrehen

TFe7Fe Pe3uthng- sequere of mpulses , fct) is shoun » ffa 3e).

Final, he PPM ignal st) fa generated b siog Reaente


fmpulses, ic+)
tt) is passed hough puke Bhaptg fi Her. fo pooduke
PPM Waves SqW oih
Ne

An(t)
(a)

>t
Mess age &ign

Auct)

(b) ict) e

Sfair g
61gna Fig:3 Generdtin dPPM wave
(a) Message &ignal S4eiaGBe igna) Cawtuth tave
d) vct) : (b)+ ce)
Ce) ppM 8igna
Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT
venkatesha.m@saividya.ac.in
Principles of Communication Systems SVIT 18EC53

DETECTION OF PPM WaveR-


Consider a PPM ave S(#) Lit5 uaifo%an Samplng.
LIMIED.
ASS ue hat the message gignal met) ig aticy BAND

The Fundion PPM vecelves Tz o follolS;

Con vest the vecBfved pPM wave fnld a puße-duaha


Modulaed (PDM) wave wik the Same modulaion
tTateqrat PD M ave vsia a device toilß a Psni
inHegrtien tFme, there by compuHog the area nder each
Puke f re PDM wave.
np a n ple ke outpur he ttegratr at a TmifvamTa
to poDduce a pM W a e , zohoZR pulze amplikud e d*

propoaHonad 6 e 4ig nal Aamples m(nTs) of h


O7fginal PPM 0ae Stt)
fv Demodula he p4M a 3fcoer he signal ignal

PPMWave

PDM Wae
Tnkgratu
Sample (Ps aw)
PAM Wave (m(Ts)

Pulge-Amplitude"
Delt Ctuo

m+) RetovPred sgna


met) From»

Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT venkatesha.m@saividya.ac.in


Principles of Communication Systems SVIT 20
18EC53

46-1 NOISE IN PULSE pasITIDN MODULA TION-* VTUMODELRP"|


DegcTibe the ePPect of NoIse on a pulge pos? han Modulahon
Hem 5 Mar
Ia a
5pkm, the-rasmi ted tmformaion 18 Cenlaine d
PPM
in the e
lotfve pORitenB P he modwakd pulses.
Tke presence op addve Noize affe cg Ihe peoformanca
uch a &skm

e 9utput ignal s noise Tato, agsuming a full-load


nusoidal modulation is gen by

(SNR) TBA
32 No
TRe
Average noise poder m a messa ge bndwidth enw° iz
ewal wN.
The chaanel Signal Noise Ratio (SNR), ts ;
3A
(SNR) 4T BN -(
IG

- BT BT SBT
Ff Ampli hude Kpecm oqa
Raised GRne pula
The
the Frgux Merft f a ppM Bptn i a ai'sed (osine
Puk as 8honn tn tig
Frgue ot MeoitSNR -AB A4 Ts BTWN
SNR) 3 No 3
(FoM)=(
PPM
)B tw END MoDULE-4
Dr. Venkatesha M, Associate Professor, Department of ECE, SVIT
venkatesha.m@saividya.ac.in

You might also like