0% found this document useful (0 votes)
454 views50 pages

Cosm Unit 4

Uploaded by

gopal krishna
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
454 views50 pages

Cosm Unit 4

Uploaded by

gopal krishna
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 50
bel Unit - \V ae Estimation 2 Tests_of Hypothesis fanametesys : The population measurmonds oP observations Ge cabled parameters. Tt is doroted by OC. Eat a, oN Statistics + The statistiza) measurements op observations ina Sample ane Gllled Statstics. Tt is Aonotes by eB. x. £, Sy Estimate : H BA Staterout moadets Bad Unknown Population parametey using sample. Stat sks . estimator: The Rotedure of Velo to dotermine Linke Populotinny paramates. Using gample Statiaticg, is Called an estimator. eu cee) = 2) €@) =o 1%, rane Estimates , Bro ap estimations : fone ane 2 tape OF estimations 1) Point Estimation) 9) Tukevva) éstimakivn ) Point Estimation: Tp an estimate apa Population is en by a Single Valua Hon it that estimate i Called Penk estimetion of Reramatey. x: The mean hide of a Stadout th a college x 165cm. Unbiased Ectimaton : A Samp Statatic © 5 Said to be Unbiaredl estimator af population ganametcy ©. Tp E[E)=O Boe) CCX) ea ce Biased estimator : A sample siataic Bs kaid tole biered estimator of Population pananeter ©, IP e(6) +e. Theorem + Boo that cample inca) H i, UW Populativn cath bean co. irc mor eae Nace a Random Brmple 7 Rom a prpullaten toda moan 40 een x, n Vv e@ = &(4 2%) re arise eae Xa Wi nbiared estimotoY oF ECT) 2 ke Lor vat ree -----t¥) 2% [EG)+e Go) +-- - + EG) aa [ut Up = == ut | et fou] = Je 6 Gomeaen “Teovem : a Shoo that S$” is an Unbiased eytimaboy af the Parametey o-* whe i _t Ge yi o.. ai Wl Tey / VrooP + Considoy ee (tea by ee se = [oy oH) aCe wi ee cee a ee ae ree 22 G41) Csi) He (ent) i a ; 1) 9 C5) B61) +h (Z— 00 2; 07-0 esp [Accor - _ afl ee EO, cui) 2 Ot-—4) |¢ fone) + (%)-0) 4-4 4 (Ta) Aire ihe Ts s pHY — 20% if) 14444 44,04) = +n i) Ty Cl eee Act ne ey y me = MAM 4IG+ ety » oe Q = o OF UY — 9 ( w Houevey ee Per 4 Chaka ea came) Be rg ew) ane [no?ne2| _ 4 7 @) ge YL ade eset’ ae Most efficient Estimator ¢ iiss 2, 6), 8, ave tivo unbiared estenatray op dua Same Populatin pancioter 6". Tp W6)2V (6) then 6, iS most efficient estimator ae ©' than (or) All possible unbiaked ostinatosy ap pananuter ©, the one with the Sialllest Vaniante (4 Called most egeictert estimatoyY @. Gee Esti « A Good eatimatd a the one cohich is as clore to the Aus Value op parametey as possible. (or) Ropestes of Good slater: a D censistingy + estmaby ©, conergs 0 6, #30 then é 8 @ consistant . 2) Unbiagednes + The estimator & {3 callct unbiareet i Efe)zo 2) EAfiCheuty ; A Stectistic 6 43 Gaid to be Amore afficient “hhiaxed eatmetor ofthe pararctoy © thanthe 3¥ stataic @, if @ & w B are both unbiared estimahs oF © ®) vc) whee PS LS Cyr)” Narkinun) ec of extunake ) re rth orate “Glimaks & with Chot\ probobitik, for astimating population mean wig f = = an 4 Gre op Large Kmples . Sinibrly € = on {2 Pov astinaking population Proportion ‘Tn Gre OF Small Bmpls , EC hy, Se Ay estivekirns, da Bample Size Ne (Men y” The Cnfidente Limit ana G2 4R) - (rae, G Fre ) The Confidence = Co) 100 —5 Tp p & kaw unknown then sample’ Sige “ate aes ect) 5 Je Pu population Proakion fran fample Sac m= (S)" (PA) PF TF Confidence 1390 % then Confidente lawib ase H+41.46Y ‘] tas, then TH1-46 qa7. then ZEDS8 99.734. then HED. Problems » SS D what is dhe Sige of He Small’ Bamph sequiied to catinaté an unknown propastion to Within G& maim ery? Of 0666 with athart GS, Conkidence . go Marimum Enoy & =6.06 coniauncoP th = 4s, = Ui-d)¥90=95% [he 6.95 = b= 6.05 S =0.015 wet Confidon(e ts 457. thon Bay = 1.46 Pa 16) net 4 0 2: 4 e987". 26618 £261 nN = 267 ‘ 2) Tr we Gn asest With aS % that the marimam JF qc l-@so8, By, =, 96 Chor 95 4.) Mantimam EVN E = eu), - (ee) 0,05 a1 GG | O2%O% ‘ oo B.2 0.8 K CAG) (6.05) MV So my Y= 246 mae i eee Len 3 |Suming that o-=20,0 , hoa lange a random Sarnple ke a" “taken te conert weit protelab ty ots that the Sarple moan tall nat differ fon the tua maan by more than 3.0 pola ? i) F won. SL GNer watinum Eyvoy B= 3.0, gr = 20.05 Za, ae lt n= (#4, ne aay (061) = (146 <22) = ety nem te Mahe om 4) tohat Js the marcimam error one Can expeck Probability ¢.40 when Using dhe mean OP @ nando gemple Biae ney to estimate fra mean oF ppulation with o7 2256. gl nay, The preobabtlily -0.40 om oanse BD oz (28 ahé Grbidena Linck =0% Buty = 1.64UF [aor 64) Maximum ornon € = ey, q 2 eg x bebe = 0327 ey 5) The mean 9 the $.0 aa Popdation an Il,195 # 14osy sepectisely 1p n=50, find 957. Gofidance intevual fer the mean, Sa_ Mean af population 4 = N195- 3.) of Population o = hesy Gaus n=50 Morin enag= Ey «= Ex for 95% Confidene = 196 21.96 x HOSE joata4 A \G eonfidente wshowia) = (Bh, K+ a) = (ISH agqq, mas +3847) Se = “ Pay” fF 6) Find 97. Gonfitlence Limits fem dhe mean ap @ normality dibibuted Population Prom thir ho Pollaoing Semple Gas taken 15, 17,10, 18, 16,9, 7) 1113 1Y Bh og Sar tOt HIGHT A THIF _ Ig = aS aye ae nA oh [Gs-2% (it-t9)% Clo43) +--+ cues) . = [yt lb +S 425444 164 HUF OF 1) ale Ce > aE ee Me = I-46 3 yy : e s-\e tap = Ns WOT i ae Fe MMe Foyt $2 ie Confidence. tunity ave T+ %S. = BE 9.26 = (10.14, 15:26) 4) Aciindom Sample ap loo teachers in a longe metropoltan anca sertcaled a mean \w2rkly galavy of eS.487 with a 5.0 Aad, Wrth. what clegter of Gontidente, Gn we oere thak the auercge Weekly salany ofall Bachers in the wakvopelitan aaa is Hus 472 to $022 SBE Giog t= ts>, ras, n=loo ee SRT Th "Wo U8 mp €2u7d then 2 WHIT 3.25 any Uk $e K =Gor then 2 =e = 3.5 (xr) P(-Be0 42) = Ata 4 AC) Bara novtnal ablep plur22 25m) = ACZIas) +A@.05) ea = 0,494) + GU) relent Bech Confidence = 6,992 Kt % = 19-82 7. Bind 952 Confdonce intorual fry mean of- Noval distibutin tt Varian 0.25 using a Mrple af n=100 Valuoy wih mean 212-3. Salt Geen n= l00 mean op sanple Hi) = 212.3 SD So = (ans 20.5) (1-0) =95 7 ZB eas ? te Max Eoaay CE) = 2a, 2 Con¥ idence iwlavua) fay Nas a Pau, Za = eras ea en ot cet sa Ge ala. 3 — 0048 2ML AZ+ 0.098 pee) eee t e) lhe21 Oh aA aandom Sample aes onl en ercienc| dowiation of S. Ghat (Me Gan you say about ha eons oth IS% Confidence. Sample site (n= 100 $25 Calais < hy, = 196 Marueneery gd’ “Giuon pers e ey, % Ke " MAX. €9n09, N Cree) eee ) Fe 20,98 automobile frsenance @ sandom y costs hada mean Of dowiatinn of R38. 62-35. to tho oud querdze ana. (se Can awent Ps. to 2 1) Ina Stady oF an sample ae $0 body mopai Rs.472-36 anda slaudard Te w -& used as Point estima. tohak ) Type een: (accept Hy iohon it 8 false ) a the Null Cypotats 15 Hy is False but it i accepted by fast procedera, thon the e707 J Colled . vil Type 2 Ay (oO) P-€9H0n. Tt 1 also Called -—— as Consurorns Pak. cviti@l_ Reston : ; A vegon Convuyponding to Statiatic ‘tin the Sample sprce 1g’ which leads 42 the mcjection oP Hp 13 Gllled a3 caitica) Region 1) Rejection Region. A cuxicr cakich Loads to the accoptance Of to 4% called ACtopheince zag. ] +5 oh topo eS fied Regi / “ui | Vir zy, Oo 2, Teno -tailed Test One-tailed Test < 2F tho alternative hypothoris op the form Hy. 2 LLU, (i Zp OF) Me ste) in @ test ap hegpottosis then dhe tat proces (4 Colled 2 of The tailed last. a cs ~ a Qo ao 2) kg — Tailed Test : TE the higjpblker’ Alternctie. Mypotess OF the. ei form Hy 2 Lally tna fst of hypothesis PA , hen the bt 4s Callao Piglet Tailed Test. Oo & 9) Let Tailed Test: De tho Alternatixe hypothasis oP uf | tho dwm Hy) t Ate Ly in A aoe task of Aypottasis then at is Called Loft eae catia Pecans of Testy oF Hypothesis. Stop At Nall Hypothesis :- Hp + tt = Ho A Hypothesis wrth no digfetence 1s Collad Null. Hypothesis ctap 2: Alternative Hyputhasis sy $e7 S=— st is dofnad ax one eta Follooing D Hy eto (urtte cdo) 2D Ws: ws Lo yd Wi p< tr step :- horse OF Sighifiance memes tales ees i/o OF s7. ov lov Table value ey, OY Th Sop y+ Te Tat statistic ‘ee eG) 3. ect) (A Sheps Conclusion « ae Tp lel < 2a, then ty is trua (or) Hoe accopled Te Il 72, ‘ton to + folee Gy) Hy we sejected ae So, We tho fy 8 true 7 Cota valoty 2 ——— Taye of significance - if ot low Tiwo tailed Reg |= 258 1.96 cea ae eit Sq 22.3 ious (1-28 Lott tiled — %e2-2.33 GUS LB Tesh Lene> Slaps ficanee 6p —SArmple ade Tet of Significance for Lye Samples dp the Bangle Rize 730, then we Consider such Samples as Songe Samples . Fav Jorge Samples the Sampling dsttibubinn oF OW sjatstic 13 Appronimaldly a Norma) dlixbri bubinn.. Suppose wie Wish do textthe hypothoals that the prebabiltty Of success in Buch trial 7s PB Assuming. w® it be true, Howan 1 athe §.D o the Sampling datiibution of: 0.0f Suceayen are Mp 2 Py goxpeckioly | Tp A be the absevsed Moog Succedses in the gampe 2 Za the Standard Normal Variate then es = Thus We hate the allowing fest of Signifraance : i) Dp 12) 21.96, tho difference between the obgevued and expected ho.of Succnes 13 hat signifraant. Je lel 146, the difterence 8 Significant at Boe LOS 3) Tp lel 725%, Apo dlifdexence 8 significant at 17. LOS Assumplbns Poy Lange Somples : The following Oe dhe axumplions ) The aandom SAbapling. distibuko properties OF the normal Cove, . This Via hold good in care OF Smal) eupled - 2) Values Cie, statatie) given by the gaynples HVE sudgicentty Chee tothe population dJobaoy Che, Porcrwakey 2) and Can he ed tn ts place dor Cdadating the dardand een (S-E-) F tha under tohich ry op Static has the nay nok Problems : $8 ) Mean af population =0.100, mean of the Sample <0.742, Standard dariation of tho Sample = 0.040, Sample size =(0: Test the to null Fupothasis fer populstion wean = 0-700. 4 sa. Given te = mean af popN = 6.7 K = Mean OF Sample = 0.142 = Standard dawiation op the Sample = 0.040 N= Sample Spe =I0 The tost statistic 2 X-se Thy eet) -~ooy Te = OOM - oem OO! = oe 4/6 OOo bo 010126 ai soa [2] 71.96 ss l= 6.05 97.—-LOS Ral <1-96 pea Sarmple is Not from the ta > [ef Pop lhore mean 3, OWT. 2) A die ix txgeo} 956 tings ard 4f terns up with an ewen digit iso tinos. Te the dio biarod q sal’ Giuen N=256 P =The probability of getting an euen digit @ ov 4 6x6) a Aes iap’ ele | ae Sh 22 LZ w= np =Qs6)t = 18 T= (npr = 88x Lyd = fey -% = NO.OF succones -150 [reat enumler of | er oD 1) Wall Hu podhaxis u,: To die is Unpiased] 2) Altevnative Hypothoss H) 2 The die is biayeel 8) Level ap significance (Lod) ; a = 0.05 W) The test siatatic 2 2 Ao ae 1S0-128 Peal 4st. g = as {led 1% | + 21 rh96, the hall hypottotis 4p tas te be sgeuecl ak 5% 108 w wwe Crclude tat tho die is baxed. J) The Gin (oas es¢ad Yoo fimer Gnd Tekemed hands 916 Hires, Test the hypottasis that tha Gin 13 Ue Unbiaxd « Use q 0.05 Lowel af Sipiffcan@.- gals Biter) n= b00 "Pe piotability of getting toad =z Y= |-P = ee eh T= (nPF = fwoxdxl < fics -10 go = NP = YO xt -200 H =ho.oP StecCowes = 916 1) well Hypothesis Ho: The Coin 18 unbiated 's) eftemative Hypettesis H,. The Goin ix biaed 3) lowel OP significance (LOS) , «=0.05 (el 146] 4) Tho fet statistic 2 - a4 ae MG -200 lo a =o Ce = cea lal < 1.96, the hull hypothesis Ho has te be actepled 2 tte. Goncleade that ha. Gin ig Unbiared. an o~ iid Ay Under lange Sample Tesz, Loe call gee foun important OIF to dest the significance - ) Testing af Significance far Single proportion 2» Testing of Signsficanca Ay difference af proportions 3) Testing af Significan® oy Single. moan 4) Testing of BigniFi ane Foy diffesenca af wmeans Task fr of Significance op @ Ginjle_Mean) Sample mean A Random vanicble op size ni has the Sample mean i, Whidh & taken From the ptpulctio” worth mean LL 2 S.D and Ha Prpuletion mean yr has Rpecified Value So ) Nal Hypothesis :- Hp: Mee (H= 4p) 2) Altevnabic Prypothsic - yr 4 3 ftu (HH ) Hy > Wet (7H) Hi mem (wed) 3) lowth oP Signéfrcance - Table Value Say Y) Text static Cees UW he 5) Conclusion Te J ct fe Tree UE Teal ee Pay Ho fabee. . fs) Si Problems : DA ample oP Yoo tems i$ Aiken oma population sae Stardnd dauintin 1 10. ‘The ean of he Sample 1S YO. Test chethes tho Sample fas Come fom a population @idh vouan 38. Alse Glastate, 45% Gngrdence interval for the population, a Gwen W= 400, % =o, fee Ey ae 2100 1) Rall typothois Ho: 23g > etternative Hypothesis Hy . 90439 i SY Be OCme anno (led = 1-4 | (aera ot “) the tat statotic 2 _ Hu 2. 40-38 A "a an 5 ee °/ a6 You 2 as 21.46 Sey 7 ag OF ees Fay steed in “We gojeck the Null Hypothosis Ho. Met Aaa, ite fees fe. The Samp 1s not Rr dhe pep)? chose tnem 13 38, | IS% (ongidenca interval 4, G Bhan a pie ete Yn NA ip NTO 16h ee ss ie so Thel Wo tb Be a) = (Uo - Ib x 38, Yor 19ey se) = (Wo-0.98, go+o98) = (34.02, 4098) & Jn Cy Yardemby selected hears of production, the Wan and Hp “Slarderd deviation af dha number OF acleptance pieces poduced by an automatic Stamping: madinn axe y= 1-039 ahd o -046. At the 0.65 Level of Significance dovs hig Chable us ta owject tho hull hypathosis 1t = 1,000 @gainst dra allevnptive hypothesis Js p07 1,000 u gal): lob Given Z = mean of dhe Grople = 1.038 : J =tmean of the pop” = 1.000 T =5.D. af tho pop" =a." 6 N= Sample size =6Y ) bot dhe lukt Hypothesis Hy: ge = [-000 2) Allternakive Hypottosis Het us Looe ae LOS: & 0.05 (He =1.6Us) | 4) The fat Setatic 2 Hse aK z_ 1.03% - 1.000 a Tolyey Ot O38 0,038 ay OWS al g25° = 2,082 % =Q9.082 > ous 2. le vejert tho Null Hypothesis Ho at S7 Los & Gndydo that themean OF the pop %127 1000, - 3) A Sample of Feo members has q mean of ap 3.4 Cms er S.D 26) Crt, Ts this Sample has been faken frm & large population ae mean 8.25 cm cand s.D. 2.6) cms. UF the . popudlation 18 rpema) ard ity mean is Unknown ind the. 95% Feducial fiwits oP tree means. 3 als & a Sr ae =a ie EN 7-900 Ab ee tan resp een L =3N Cy a-=9.6) wy 5=2.6) ) Null typotfesis Hn 2 pgsune that he S4mple has been dracon from the popn with mean se= 3.25) 2) Alternative fypolosis H) 2 Le 3.25 on = Yming Pop mean (ir) = 1D Minds D Nu Hypothesis Hy: s2 = 0 ming 2) Aliavnalue Hrypotipsis Hy 3 16 10 mend Gare 3) Lofel of Significance ea (ea ee oe fable Value te =4-64S” u) Test etatist(>c ae (On| Smee Se Gs Ube “Te eye | = oe Ss) Grtluion — a fe oe Izj=alS yp (2B) =b64S Jz) < [2x] 2 Hp ob fae s, $0 = lO bing | BD A Simple ap cy staderds hove a mean coviglt OF 70 kg. Con Ha le gegarded a a Semple. Fok & Population Wit mea (eight 56 ER. and atandard dowsiakinn 2S E98. , * gal: sample size 6) ar pep Serle SD od = 26 poph mean Grd-= 56 ERK Sample méan &) = 70 kes D Noll Hypottesis Hp ; jross >) Alternative Hypollasis ys fs +56 Thon teed Text D Lower of Sigs Ficance eles 7 Table Valo Fup =(46 Q) Tat Stetiatic aoa OK Ue 2G Ss) Conclusion : zU.Us 5 Seu =bAG l2) 7 leap, | Pe il et 35]g = 2 LY-UR Ts =p i& fae | Hw true Sit Sb EB Tho Nall Hypottasis Has Sejecteded . ig Test of aguality of tivo means cor) Test of Sighifian@ differen Lotuseen favo means : D Neale Hetpatlarys 2 (ok X anh GF be Sauple weahy op favo independosd (ange Ramiples Sizes h, @ N) draum Prem two Populations harwing moang 6% 2 My With the staudard Samm Ben ra ize ti eae rie Conor (nos 420 population means axe equal . 1) Nel Hyprthasis : ie 3 Skt Sa ea) an es 1) Altarnctive typothesis : Q) Hs $I (Hy >4, Gy) HM aH, ) [Tivo tailed} Hsu, 7s (Pégld— tailed ) C) Hz Mes Cleft toiled ) tii) Lowel af Significance (ot) Table value = 2xy (or) By ww) “Test Statistic Sa ten E, We of = %p =o Gey) ieee —_—+t+—= oo at ea o fet. v) Condasion — Ge lel hy, Te (2) 7 tu, fy 2S. ths tee alse ery a tue. co! Fo, Beblany = Y Th means af fo Lange Samples Of 81203 [060 anal g000 membors ane 67.5 inches and 63,0 inches “pospectivcly. Gan athe Aamplos be gusarcoel @ daaon fom ho dame Population of 5,0 Qs inchs. dal), ok u,v th We the moans oF the tase populations . a gawyle Airey, Gwen “V,=1000 , N= 2000 Sanple Wiaty 5, = 62.5 inches, = 68 ‘inchos fo pulation S.D, = 2.5 inches : ) Nall Hypotesis Ho: To Samples have been doaon fom the Sawa popelation af S.D a5 inches, (Eee ety he Om HLS) inchos a) Nizvnatite Hypottosis tH, . ty ty B) loual of Sigwificance 2 4 25/. (24, 196) pte tt Aabstic 3, 2 = Hi oo oe crea oe ee a Le i Qa, AD @sy (t+ La | ; ooo ft ee Oe! oa a 9005 eee oss ae 0.0015, Cass n ONSHED @sy=6as 0.069375 age OS ee TT a a ace (qost 39s 0.0968 7S 5.16 ve a aaa ——_—a a L le) 7 By, 425%. (1,96) ee 1 het to i false , VD tue yt by te, The catcolatsd value aP z > Khe table Ualuc op 2 Te Nu Hypottesis Hy fs Sajecked aes Loses = Gondtide tat tho gamples ape nok deen ay the Samo population ap sp, as inches. clohen the poph proposéions FYB axe™Enown has Sample Ropoaliong lp Q b, aye Known

You might also like