STM 32 L 073 RZ
STM 32 L 073 RZ
STM32L073xZ
Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, up to 192KB
Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs
Datasheet - production data
Features
UFBGA FBGA
basic for DAC, and 2x watchdogs • True RNG and firewall protection
(independent/window) • All packages are ECOPACK2
• CRC calculation unit, 96-bit unique ID
Table 1. Device summary
Reference Part number
STM32L073x8 STM32L073V8
STM32L073xB STM32L073VB, STM32L073RB, STM32L073CB
STM32L073xZ STM32L073VZ, STM32L073RZ, STM32L073CZ
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 27
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.11 Liquid crystal display (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.12 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.13 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.13.1 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.13.2 VLCD voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.15 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 31
3.16 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.17.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22) . . . . . . . . . . . 33
3.17.2 Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.17.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 70
6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
List of tables
List of figures
1 Introduction
The ultra-low-power STM32L073xx are offered in 7 different package types from 48 to 100
pins. Depending on the device chosen, different sets of peripherals are included, the
description below gives an overview of the complete range of peripherals proposed in this
family.
These features make the ultra-low-power STM32L073xx microcontrollers suitable for a wide
range of applications:
• Gas/water meters and industrial sensors
• Healthcare and fitness equipment
• Remote control and user interface
• PC peripherals, gaming, GPS equipment
• Alarm system, wired and wireless sensors, video intercom
This STM32L073xx datasheet should be read in conjunction with the STM32L0x3xx
reference manual (RM0367).
For information on the device errata with respect to the datasheet and reference manual,
refer to the STM32L073xx errata sheet (ES0292), available on the STMicroelectronics
website www.st.com.
For information on the Arm®(a) Cortex®-M0+ core please refer to the Cortex®-M0+ Technical
Reference Manual, available from the www.arm.com website.
Figure 1 shows the general block diagram of the device family.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
2 Description
General-
4
purpose
Timers
Basic 2
LPTIMER 1
RTC/SYSTICK/IWDG/WWDG 1/1/1/1
SPI/I2S 6(4)(1)/1
I2 C 3
Commu-
nication USART 4
interfaces
LPUART 1
USB/(VDD_USB) 1/(1)
Clocks:
1/1/1/1/1
HSE/LSE/HSI/MSI/LSI
12-bit DAC 2
Number of channels 2
1 1 1 1 1
LCD 1 1
4x52 or 4x52 or 4x32 or 4x18 or 4x32 or
COM x SEG 4x18 4x52 or 8x48
8x48 8x48 8x28(2) 4x21(3) 8x28(2)
Comparators 2
Capacitive sensing
24 17 24 24(2) 17(3) 24 24(2)
channels
Operating voltage 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 to 3.6 V without BOR option
2. TFBGA64 has one GPIO, one ADC input, one capacitive sensing channel and one COMxSEG (4x31 or 8x27) less than
LQFP64.
3. LQFP48 has three GPIOs, three ADC channels, two capacitive sensing channel and three COMxSEG (4x18) less than
WLCSP49.
Temp
SWD SWD sensor
FLASH
EEPROM
BOOT ADC1 AINx
MISO, MOSI,
FIREWALL SPI1
CORTEX M0+ CPU SCK, NSS
Fmax:32MHz RAM
USART1 RX, TX, RTS,
MPU DBG A CTS, CK
P
DMA1 TIM21 2ch
NVIC B
2
EXTI
TIM22 2ch
BRIDGE
COMP1 INP, INM, OUT
TSC
PA[0:15] GPIO PORT A
COMP2 INP, INM, OUT
A SCL, SDA,
I2C3
P SMBA
B
1 RX, TX, RTS,
USART2
CTS, CK
HSI 48M CRS
OSC_IN, HSE HSI 16M RX, TX, RTS,
USART4
OSC_OUT CTS, CK
LSI IWDG RX, TX, RTS,
PLL USART5
CTS, CK
MSI RTC RX, TX, RTS,
LPUART1 CTS
MISO/MCK,
SPI2/I2S MOSI/SD,
BCKP REG
SCK/CK, NSS/
WKUPx RESET & CLK WS
TIM2 4ch
OSC32_IN, LSE
OSC32_OUT TIM3 4ch
PVD_IN
LCD COMx, SEGx,
VREF_OUT LCD_VLCDx
PMU
NRST
VDDA
VDD REGULATOR
MSv35410V1
3 Functional overview
CPU Y -- Y -- -- --
Flash memory O O O O -- --
RAM Y Y Y Y Y --
Backup registers Y Y Y Y Y Y
EEPROM O O O O -- --
Brown-out reset
O O O O O O O O
(BOR)
DMA O O O O -- --
Programmable
Voltage Detector O O O O O O -
(PVD)
Power-on/down
Y Y Y Y Y Y Y Y
reset (POR/PDR)
High Speed (3)
O O -- -- --
Internal (HSI)
High Speed
O O O O -- --
External (HSE)
Low Speed Internal
O O O O O O
(LSI)
Low Speed
O O O O O O
External (LSE)
Multi-Speed
O O Y Y -- --
Internal (MSI)
Inter-Connect
Y Y Y Y Y --
Controller
RTC O O O O O O O
RTC Tamper O O O O O O O O
Auto WakeUp
O O O O O O O O
(AWU)
LCD O O O O O --
USB O O -- -- -- O --
(4)
USART O O O O O O --
(4)
LPUART O O O O O O --
SPI O O O O -- --
I2C O O -- -- O(5) O --
ADC O O -- -- -- --
DAC O O O O O --
Temperature
O O O O O --
sensor
Comparators O O O O O O --
16-bit timers O O O O -- --
LPTIMER O O O O O O
IWDG O O O O O O O O
WWDG O O O O -- --
Touch sensing
O O -- -- -- --
controller (TSC)
SysTick Timer O O O O --
GPIOs O O O O O O 2 pins
Wakeup time to
0 µs 0.36 µs 3 µs 32 µs 3.5 µs 50 µs
Run mode
0.4 µA (No 0.28 µA (No
RTC) VDD=1.8 V RTC) VDD=1.8 V
• Startup clock
After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI).
The prescaler ratio and clock source can be changed by the application program as
soon as the code execution starts.
• Clock security system (CSS)
This feature can be enabled by software. If an HSE clock failure occurs, the master
clock is automatically switched to HSI and a software interrupt is generated if enabled.
Another clock security system can be enabled, in case of failure of the LSE it provides
an interrupt or wakeup event which is generated if enabled.
• Clock-out capability (MCO: microcontroller clock output)
It outputs one of the internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
I2CCLK
usb_en 48MHz
USBCLK
rng_en
48MHz RNG
MSv35411V1
3.8 Memories
The STM32L073xx devices have the following features:
• 20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).
• The non-volatile memory is divided into three arrays:
– 64, 128 or 192 Kbytes of embedded Flash program memory
– 6 Kbytes of data EEPROM
– Information block containing 32 user and factory options bytes plus 8 Kbytes of
system memory
Flash program and data EEPROM are divided into two banks. This allows writing in one
bank while running code or reading data from the other bank.
The user options bytes are used to write-protect or read-out protect the memory (with
4 Kbyte granularity) and/or readout-protect the whole memory with the following options:
• Level 0: no protection
• Level 1: memory readout protected.
The Flash memory cannot be read from or written to if either debug features are
connected or boot in RAM is selected
• Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in
RAM selection disabled (debugline fuse)
The firewall protects parts of code/data from access by the rest of the code that is executed
outside of the protected area. The granularity of the protected code segment or the non-
volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the
volatile data segment (RAM).
The whole non-volatile memory embeds the error correction code (ECC) feature.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.
TIM2, TIM3
TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit
prescaler. It features four independent channels each for input capture/output compare,
PWM or one-pulse mode output.
The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22
general-purpose timers via the Timer Link feature for synchronization or event chaining.
Their counter can be frozen in debug mode. Any of the general-purpose timers can be used
to generate PWM outputs.
TIM2/TIM3 have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain
independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop
mode on address match.
Each I2C interface can be served by the DMA controller.
Refer to Table 12 for an overview of I2C interface features.
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while
having an extremely low energy consumption. Higher speed clock can be used to reach
higher baudrates.
LPUART interface can be served by the DMA controller.
4 Pin descriptions
BOOT0
PA15
PA14
PC12
PC11
PC10
PB7
PB6
VDD
PE 1
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PB9
PB8
PB5
PB4
PB3
PE0
VSS
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PE2 1 75 VDD_USB
PE3 2 74 VSS
PE4 3 73 VDD
PE5 4 72 PA13
PE6 5 71 PA12
VLCD 6 70 PA 11
PC13 7 VDD69 PA10
PC14-OSC32_IN 8 68 PA9
PC15-OSC32_OUT 9 67 PA8
PH9 10 66 PC9
PH10 11 65 PC8
PH0-OSC_IN 12 64 PC7
PH1-OSC_OUT 13 LQFP100 63 PC6
NRST 14 62 PD15
PC0 15 61 PD14
PC1 16 60 PD13
PC2 17 59 PD12
PC3 18 58 PD11
VSSA 19 57 PD10
VREF- 20 56 PD9
VREF+ 21 55 PD8
VDDA 22 54 PB 15
PA0 23 53 PB 14
PA1 24 52 PB 13
PA2 25 51 PB 12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PE 10
PE 11
PE 12
PE 13
PE 14
PE 15
PB 10
PB 11
PA6
PA7
PA3
VSS
VDD
PB0
PB1
PB2
PC4
PC5
PE7
PE8
PE9
VDD
PA4
PA5
VSS
MSv35413V2
1 2 3 4 5 6 7 8 9 10 11 12
A PE3 PE1 PB8 BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12
B PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11
C PC13 PE5 PE0 VDD PB5 PD2 PD0 PC11 VDD PA10
PC14-
D OSC32 PE6 VSS PA9 PA8 PC9
_IN
PC15-
E OSC32 VLCD VSS PC8 PC7 PC6
_OUT
PH0-
F PH9 VSS VSS
OSC_IN
PH1- VDD_
G OSC_ PH10 USB VDD
OUT
K VREF
PC3 PA2 PA5 PC4 PD9 PD8 PB15 PB14 PB13
-
L VREF PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 PB11 PB12
+
M VDDA PA1 PA4 PA7 PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15
MSv35414V3
BOOT0
PC12
PC10
PC11
PA15
PA14
VDD
VSS
PD2
PB9
PB8
PB7
PB6
PB5
PB4
PB3
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
VLCD 1 48 VDD_USB
PC13 2 47 VSS
PC14-OSC32_IN 3 46 PA13
PC15-OSC32_OUT 4 45 PA12
PH0 -OSC_IN 5 44 PA11
PH1-OSC_OUT 6 43 PA10
NRST 7 42 PA9
PC0 8 41 PA8
PC1 9 LQFP64 40 PC9
PC2 10 39 PC8
PC3 11 38 PC7
VSSA 12 37 PC6
VDDA 13 36 PB15
PA0 14 35 PB14
PA1 15 34 PB13
PA2 16 33 PB12
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PC4
PC5
VDD
VSS
VDD
VSS
MS31485V3
1 2 3 4 5 6 7 8
PC14-
A OSC32 PC13 PB9 PB4 PB3 PA15 PA14 PA13
_IN
PC15-
BOOT
B OSC32 VLCD PB8 PD2 PC11 PC10 PA12
0
_OUT
PH0-
VSS PB7 PB5 PC12 PA10 PA9 PA11
C OSC_IN
PH1-
D OSC_ VDD PB6 VSS VSS VSS PA8 PC9
OUT
VDD_
E NRST PC1 PC0 VDD VDD
USB
PC7 PC8
MSv37829V2
1 2 3 4 5 6 7
VDD_
A USB PA15 PB3 PB5 BOOT0 PB9 VDD
PC14- PC15-
C PA10 PA13 PB7 PC1 PC0 OSC32
OSC32
_IN _OUT
PH0- PH1-
D PA8 PA11 PB1 VSS NRST OSC_IN OSC_
OUT
MSv66802V1
BOOT0
PA15
PA14
VDD
VSS
PB9
PB8
PB7
PB6
PB5
PB4
PB3
48 47 46 45 44 43 42 41 40 39 38 37
VLCD 1 36 VDD_USB
PC13 2 35 VSS
PC14-OSC32_IN 3 34 PA13
PC15-OSC32_OUT 4 33 PA12
PH0-OSC_IN 5 32 PA11
PH1-OSC_OUT 6 LQFP48 31 PA10
NRST 7 30 PA9
VSSA 8 29 PA8
VDDA 9 28 PB15
PA0 10 27 PB14
PA1 11 26 PB13
PA2 12 25 PB12
13 14 15 16 17 18 19 20 21 22 23 24
PB10
PB11
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
VDD
VSS
MS31484V3
PA15
PA14
VDD
VSS
PB9
PB8
PB7
PB6
PB5
PB4
PB3
48
47
46
45
44
43
42
41
40
39
38
37
VLCD 1 36 VDD_USB
PC13 2 35 VSS
PC14-OSC32_IN 3 34 PA13
PC15-OSC32_OUT 4 33 PA12
PH0-OSC_IN 5 32 PA11
PH1-OSC_OUT 6 31 PA10
NRST 7
UFQFPN48 30 PA9
VSSA 8 29 PA8
VDDA 9 28 PB15
PA0 10 27 PB14
PA1 11 26 PB13
PA2 12 25 PB12
13
14
15
16
17
18
19
20
21
22
23
24
PB0
PB1
PB2
PB10
VSS
VDD
PA3
PA4
PA5
PA6
PA7
PB11
MSv62439V1
Unless otherwise specified in brackets below the pin name, the pin function during and
Pin name
after reset is the same as the actual pin name
S Supply pin
Pin type I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
I/O structure TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
Notes
reset.
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin functions
Additional
Functions directly selected/enabled through peripheral registers
functions
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
Note
TFBGA64
LQFP100
LQFP64
LCD_SEG38,
- - - - 1 B2 PE2 I/O FT - -
TIM3_ETR
TIM22_CH1,
- - - - 2 A1 PE3 I/O FT - LCD_SEG39, -
TIM3_CH1
TIM22_CH2,
- - - - 3 B1 PE4 I/O FT - -
TIM3_CH2
TIM21_CH1,
- - - - 4 C2 PE5 I/O FT - -
TIM3_CH3
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
TIM21_CH2,
- - - - 5 D2 PE6 I/O FT - RTC_TAMP3/WKUP3
TIM3_CH4
1 B6 1 B2 6 E2 VLCD S - -
RTC_TAMP1/RTC_T
2 B7 2 A2 7 C1 PC13 I/O FT - - S/
RTC_OUT/WKUP2
PC14-
3 C6 3 A1 8 D1 OSC32_IN I/O FT - - OSC32_IN
(PC14)
PC15-
4 C7 4 B1 9 E1 OSC32_OU I/O TC - - OSC32_OUT
T (PC15)
- - - - 10 F2 PH9 I/O FT - - -
- - - - 11 G2 PH10 I/O FT - - -
PH0-
5 D6 5 C1 12 F1 OSC_IN I/O TC - USB_CRS_SYNC OSC_IN
(PH0)
PH1-
6 D7 6 D1 13 G1 OSC_OUT I/O TC - - OSC_OUT
(PH1)
7 D5 7 E1 14 H2 NRST I/O - - - -
LPTIM1_IN1,
LCD_SEG18,
EVENTOUT,
- C5 8 E3 15 H1 PC0 I/O FTf - ADC_IN10
TSC_G7_IO1,
LPUART1_RX,
I2C3_SCL
LPTIM1_OUT,
LCD_SEG19,
EVENTOUT,
- C4 9 E2 16 J2 PC1 I/O FTf - ADC_IN11
TSC_G7_IO2,
LPUART1_TX,
I2C3_SDA
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
LPTIM1_IN2,
LCD_SEG20,
- E7 10 F2 17 J3 PC2 I/O FTf - ADC_IN12
SPI2_MISO/I2S2_MCK
, TSC_G7_IO3
LPTIM1_ETR,
LCD_SEG21,
- - 11 - 18 K2 PC3 I/O FT - ADC_IN13
SPI2_MOSI/I2S2_SD,
TSC_G7_IO4
8 - 12 F1 19 J1 VSSA S - - - -
- - - - 20 K1 VREF- S - - - -
- E6 - G1 21 L1 VREF+ S - - - -
9 F7 13 H1 22 M1 VDDA S - - - -
TIM2_CH1,
TSC_G1_IO1,
COMP1_INM,
USART2_CTS,
10 E5 14 G2 23 L2 PA0 I/O TC - ADC_IN0,
TIM2_ETR,
RTC_TAMP2/WKUP1
USART4_TX,
COMP1_OUT
EVENTOUT,
LCD_SEG0,
TIM2_CH2,
TSC_G1_IO2, COMP1_INP,
11 E4 15 H2 24 M2 PA1 I/O FT -
USART2_RTS/ ADC_IN1
USART2_DE,
TIM21_ETR,
USART4_RX
TIM21_CH1,
LCD_SEG1,
TIM2_CH3,
COMP2_INM,
12 F6 16 F3 25 K3 PA2 I/O FT - TSC_G1_IO3,
ADC_IN2
USART2_TX,
LPUART1_TX,
COMP2_OUT
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
TIM21_CH2,
LCD_SEG2,
TIM2_CH4, COMP2_INP,
13 G7 17 G3 26 L3 PA3 I/O FT -
TSC_G1_IO4, ADC_IN3
USART2_RX,
LPUART1_RX
- - 18 C2 27 E3 VSS S - - - -
- - 19 D2 28 H3 VDD S - - - -
SPI1_NSS, COMP1_INM,
(1) TSC_G2_IO1, COMP2_INM,
14 F5 20 H3 29 M3 PA4 I/O TC
USART2_CK, ADC_IN4,
TIM22_ETR DAC_OUT1
COMP1_INM,
SPI1_SCK, TIM2_ETR,
(1) COMP2_INM,
15 G6 21 F4 30 K4 PA5 I/O TC TSC_G2_IO2,
ADC_IN5,
TIM2_CH1
DAC_OUT2
SPI1_MISO,
LCD_SEG3,
TIM3_CH1,
TSC_G2_IO3,
16 G5 22 G4 31 L4 PA6 I/O FT - ADC_IN6
LPUART1_CTS,
TIM22_CH1,
EVENTOUT,
COMP1_OUT
SPI1_MOSI,
LCD_SEG4,
TIM3_CH2,
17 F4 23 H4 32 M4 PA7 I/O FT - TSC_G2_IO4, ADC_IN7
TIM22_CH2,
EVENTOUT,
COMP2_OUT
EVENTOUT,
- - 24 H5 33 K5 PC4 I/O FT - LCD_SEG22, ADC_IN14
LPUART1_TX
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
LCD_SEG23,
- - 25 H6 34 L5 PC5 I/O FT - LPUART1_RX, ADC_IN15
TSC_G3_IO1
EVENTOUT,
LCD_VLCD3,
LCD_SEG5,
18 G4 26 F5 35 M5 PB0 I/O FT - ADC_IN8,
TIM3_CH3,
VREF_OUT
TSC_G3_IO2
LCD_SEG6,
TIM3_CH4,
ADC_IN9,
19 D3 27 G5 36 M6 PB1 I/O FT - TSC_G3_IO3,
VREF_OUT
LPUART1_RTS/
LPUART1_DE
LPTIM1_OUT,
20 E3 28 G6 37 L6 PB2 I/O FT - TSC_G3_IO4, LCD_VLCD2
I2C3_SMBA
LCD_SEG45,
USART5_CK/
- - - - 38 M7 PE7 I/O FT - -
USART5_RTS/
USART5_DE
LCD_SEG46,
- - - - 39 L7 PE8 I/O FT - -
USART4_TX
TIM2_CH1,
LCD_SEG47,
- - - - 40 M8 PE9 I/O FT - -
TIM2_ETR,
USART4_RX
TIM2_CH2,
- - - - 41 L8 PE10 I/O FT - LCD_SEG40, -
USART5_TX
TIM2_CH3,
- - - - 42 M9 PE11 I/O FT - LCD_VLCD1
USART5_RX
- - - - 43 L9 PE12 I/O FT - TIM2_CH4, SPI1_NSS LCD_VLCD3
LCD_SEG41,
- - - - 44 M10 PE13 I/O FT - -
SPI1_SCK
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
LCD_SEG42,
- - - - 45 M11 PE14 I/O FT - -
SPI1_MISO
LCD_SEG43,
- - - - 46 M12 PE15 I/O FT - -
SPI1_MOSI
LCD_SEG10,
TIM2_CH3,
TSC_SYNC,
21 G3 29 G7 47 L10 PB10 I/O FT - -
LPUART1_TX,
SPI2_SCK, I2C2_SCL,
LPUART1_RX
EVENTOUT,
LCD_SEG11,
TIM2_CH4,
22 F3 30 H7 48 L11 PB11 I/O FT - TSC_G6_IO1, -
LPUART1_RX,
I2C2_SDA,
LPUART1_TX
23 D4 31 D6 49 F12 VSS S - - -
24 G2 32 E5 50 G12 VDD S - - -
SPI2_NSS/I2S2_WS,
LCD_SEG12,
LPUART1_RTS/
25 G1 33 H8 51 L12 PB12 I/O FT - LPUART1_DE, LCD_VLCD1
TSC_G6_IO2,
I2C2_SMBA,
EVENTOUT
SPI2_SCK/I2S2_CK,
LCD_SEG13, MCO,
26 F2 34 G8 52 K12 PB13 I/O FTf - TSC_G6_IO3, -
LPUART1_CTS,
I2C2_SCL, TIM21_CH1
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
SPI2_MISO/I2S2_MCK
, LCD_SEG14,
RTC_OUT,
TSC_G6_IO4,
27 F1 35 F8 53 K11 PB14 I/O FTf - -
LPUART1_RTS/
LPUART1_DE,
I2C2_SDA,
TIM21_CH2
SPI2_MOSI/I2S2_SD,
28 E1 36 F7 54 K10 PB15 I/O FT - LCD_SEG15, -
RTC_REFIN
LPUART1_TX,
- - - - 55 K9 PD8 I/O FT - -
LCD_SEG28
LPUART1_RX,
- - - - 56 K8 PD9 I/O FT - -
LCD_SEG29
- - - - 57 J12 PD10 I/O FT - LCD_SEG30 -
LPUART1_CTS,
- - - - 58 J11 PD11 I/O FT - -
LCD_SEG31
LPUART1_RTS/
- - - - 59 J10 PD12 I/O FT - LPUART1_DE, -
LCD_SEG32
- - - - 60 H12 PD13 I/O FT - LCD_SEG33 -
- - - - 61 H11 PD14 I/O FT - LCD_SEG34 -
USB_CRS_SYNC,
- - - - 62 H10 PD15 I/O FT - -
LCD_SEG35
TIM22_CH1,
LCD_SEG24,
- - 37 F6 63 E12 PC6 I/O FT - -
TIM3_CH1,
TSC_G8_IO1
TIM22_CH2,
LCD_SEG25,
- - 38 E7 64 E11 PC7 I/O FT - -
TIM3_CH2,
TSC_G8_IO2
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
TIM22_ETR,
LCD_SEG26,
- - 39 E8 65 E10 PC8 I/O FT - -
TIM3_CH3,
TSC_G8_IO3
TIM21_ETR,
LCD_SEG27,
- - 40 D8 66 D12 PC9 I/O FTf - USB_NOE/TIM3_CH4, -
TSC_G8_IO4,
I2C3_SDA
MCO, LCD_COM0,
USB_CRS_SYNC,
29 D1 41 D7 67 D11 PA8 I/O FTf - EVENTOUT, -
USART1_CK,
I2C3_SCL
MCO, LCD_COM1,
TSC_G4_IO1,
30 E2 42 C7 68 D10 PA9 I/O FTf - USART1_TX, -
I2C1_SCL,
I2C3_SMBA
LCD_COM2,
TSC_G4_IO2,
31 C1 43 C6 69 C12 PA10 I/O FTf - -
USART1_RX,
I2C1_SDA
SPI1_MISO,
EVENTOUT,
(2)
32 D2 44 C8 70 B12 PA11 I/O FT TSC_G4_IO3, USB_DM
USART1_CTS,
COMP1_OUT
SPI1_MOSI,
EVENTOUT,
(2) TSC_G4_IO4,
33 B1 45 B8 71 A12 PA12 I/O FT USB_DP
USART1_RTS/
USART1_DE,
COMP2_OUT
SWDIO, USB_NOE,
34 C2 46 A8 72 A11 PA13 I/O FT - -
LPUART1_RX
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
- - - - 73 C11 VDD S - - -
35 - 47 D5 74 F11 VSS S - - -
36 A1 48 E6 75 G11 VDD_USB S - - -
SWCLK, USART2_TX,
37 B2 49 A7 76 A10 PA14 I/O FT - -
LPUART1_TX
SPI1_NSS,
LCD_SEG17,
TIM2_ETR,
EVENTOUT,
38 A2 50 A6 77 A9 PA15 I/O FT - -
USART2_RX,
TIM2_CH1,
USART4_RTS/
USART4_DE
LPUART1_TX,
LCD_COM4/LCD_SEG
- - 51 B7 78 B11 PC10 I/O FT - -
28/LCD_SEG48,
USART4_TX
LPUART1_RX,
LCD_COM5/LCD_SEG
- - 52 B6 79 C10 PC11 I/O FT - -
29/LCD_SEG49,
USART4_RX
LCD_COM6/LCD_SEG
30/LCD_SEG50,
- - 53 C5 80 B10 PC12 I/O FT - -
USART5_TX,
USART4_CK
TIM21_CH1,
- - - - 81 C9 PD0 I/O FT - -
SPI2_NSS/I2S2_WS
- - - - 82 B9 PD1 I/O FT - SPI2_SCK/I2S2_CK -
LPUART1_RTS/
LPUART1_DE,
LCD_COM7/LCD_SEG
- - 54 B5 83 C8 PD2 I/O FT - -
31/LCD_SEG51,
TIM3_ETR,
USART5_RX
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
USART2_CTS,
- - - - 84 B8 PD3 I/O FT - LCD_SEG44, -
SPI2_MISO/I2S2_MCK
USART2_RTS/
- - - - 85 B7 PD4 I/O FT - USART2_DE, -
SPI2_MOSI/I2S2_SD
- - - - 86 A6 PD5 I/O FT - USART2_TX -
- - - - 87 B6 PD6 I/O FT - USART2_RX -
USART2_CK,
- - - - 88 A5 PD7 I/O FT - -
TIM21_CH2
SPI1_SCK,
LCD_SEG7,
TIM2_CH2,
TSC_G5_IO1,
39 A3 55 A5 89 A8 PB3 I/O FT - COMP2_INM
EVENTOUT,
USART1_RTS/
USART1_DE,
USART5_TX
SPI1_MISO,
LCD_SEG8,
TIM3_CH1,
TSC_G5_IO2,
40 B3 56 A4 90 A7 PB4 I/O FTf - COMP2_INP
TIM22_CH1,
USART1_CTS,
USART5_RX,
I2C3_SDA
SPI1_MOSI,
LCD_SEG9,
LPTIM1_IN1,
I2C1_SMBA,
41 A4 57 C4 91 C5 PB5 I/O FT - TIM3_CH2/TIM22_CH2 COMP2_INP
, USART1_CK,
USART5_CK,
USART5_RTS/
USART5_DE
I/O structure
Pin type
Pin name
UFBGA100
WLCSP49
TFBGA64
Note
LQFP100
LQFP64
USART1_TX,
I2C1_SCL,
42 B4 58 D3 92 B5 PB6 I/O FTf - COMP2_INP
LPTIM1_ETR,
TSC_G5_IO3
USART1_RX,
I2C1_SDA,
43 C3 59 C3 93 B4 PB7 I/O FTf - LPTIM1_IN2, COMP2_INP, PVD_IN
TSC_G5_IO4,
USART4_CTS
44 A5 60 B4 94 A4 BOOT0 I - - -
LCD_SEG16,
45 B5 61 B3 95 A3 PB8 I/O FTf - -
TSC_SYNC, I2C1_SCL
LCD_COM3,
EVENTOUT,
46 A6 62 A3 96 B3 PB9 I/O FTf - -
I2C1_SDA,
SPI2_NSS/I2S2_WS
LCD_SEG36,
- - - - 97 C3 PE0 I/O FT - -
EVENTOUT
LCD_SEG37,
- - - - 98 A2 PE1 I/O FT - -
EVENTOUT
47 - 63 D4 99 D3 VSS S - - - -
48 A7 64 E4 100 C4 VDD S - - - -
1. PA4 and PA5 offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/Os.
2. These pins are powered by VDD_USB. For all characteristics that refer to VDD, VDD_USB must be used instead.
SPI1/SPI2/I2S2/
SPI1/SPI2/I2S2/ I2C1/2/
USART1/2/
LPUART1/ I2C1/USART1/2 LPUART1/
Port LPUART1/USB/ SPI1/SPI2/I2S2/ SPI2/I2S2/I2C2/ I2C3/LPUART1/
USART5/USB/L I2C1/TSC/ /LPUART1/ USART4/
LPTIM1/TSC/ I2C1/LCD/ USART1/ COMP1/2/
PTIM1/TIM2/3/E EVENTOUT TIM3/22/ UASRT5/TIM21
TIM2/21/22/ TIM2/21 TIM2/21/22 TIM3
VENTOUT/ EVENTOUT /
EVENTOUT/
SYS_AF EVENTOUT
SYS_AF
USB_CRS_
PA8 MCO LCD_COM0 EVENTOUT USART1_CK - - I2C3_SCL
SYNC
PA9 MCO LCD_COM1 - TSC_G4_IO1 USART1_TX - I2C1_SCL I2C3_SMBA
PA10 - LCD_COM2 - TSC_G4_IO2 USART1_RX - I2C1_SDA -
PA11 SPI1_MISO - EVENTOUT TSC_G4_IO3 USART1_CTS - - COMP1_OUT
USART1_RTS/
PA12 SPI1_MOSI - EVENTOUT TSC_G4_IO4 - - COMP2_OUT
USART1_DE
PA13 SWDIO - USB_NOE - - - LPUART1_RX -
STM32L073xx
PA14 SWCLK - - - USART2_TX - LPUART1_TX -
USART4_RTS/
PA15 SPI1_NSS LCD_SEG17 TIM2_ETR EVENTOUT USART2_RX TIM2_CH1 -
USART4_DE
Table 18. Alternate functions port B
STM32L073xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/I2S2/
SPI1/SPI2/I2S2/
USART1/2/ I2C1/2/
LPUART1/ I2C1/USART1/2/
Port LPUART1/USB/ SPI1/SPI2/I2S2/I SPI2/I2S2/I2C2/ LPUART1/ I2C3/LPUART1/
USART5/USB/L I2C1/TSC/ LPUART1/
LPTIM1/TSC/ 2C1/LCD/ USART1/ USART4/ COMP1/2/
PTIM1/TIM2/3/E EVENTOUT TIM3/22/
TIM2/21/22/ TIM2/21 TIM2/21/22 UASRT5/TIM21/ TIM3
VENTOUT/ EVENTOUT
EVENTOUT/ EVENTOUT
SYS_AF
SYS_AF
LPUART1_RTS/
PB1 - LCD_SEG6 TIM3_CH4 TSC_G3_IO3 - - -
LPUART1_DE
USART1_RTS/
PB3 SPI1_SCK LCD_SEG7 TIM2_CH2 TSC_G5_IO1 EVENTOUT USART5_TX -
USART1_DE
DS10685 Rev 7
USART5_CK,
TIM3_CH2/
PB5 SPI1_MOSI LCD_SEG9 LPTIM1_IN1 I2C1_SMBA USART1_CK USART5_RTS/ -
TIM22_CH2
USART5_DE
SPI2_NSS/
PB9 - LCD_COM3 EVENTOUT - I2C1_SDA - -
I2S2_WS
Pin descriptions
PB13 SPI2_SCK/I2S2_CK LCD_SEG13 MCO TSC_G6_IO3 LPUART1_CTS I2C2_SCL TIM21_CH1 -
SPI2_MISO/ LPUART1_RTS/
PB14 LCD_SEG14 RTC_OUT TSC_G6_IO4 I2C2_SDA TIM21_CH2 -
I2S2_MCK LPUART1_DE
SPI2_MOSI/
PB15 LCD_SEG15 RTC_REFIN - - - - -
57/163
I2S2_SD
Table 19. Alternate functions port C
Pin descriptions
58/163 AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/I2S2/
USART1/2/ SPI1/SPI2/I2S2/ I2C1/2/
I2C1/USART1/2/ SPI2/I2S2
Port LPUART1/USB/ SPI1/SPI2/I2S2/I2C1/ LPUART1/ LPUART1/ I2C3/LPUART1/
I2C1/TSC/ LPUART1/ /I2C2/
LPTIM1/TSC/ LCD/ USART5/USB/ USART4/ COMP1/2/
EVENTOUT TIM3/22/ USART1/
TIM2/21/22/ TIM2/21 LPTIM1/TIM2/3 UASRT5/TIM21/E TIM3
EVENTOUT TIM2/21/22
EVENTOUT/ /EVENTOUT/SYS_AF VENTOUT
SYS_AF
SPI2_MISO/
PC2 LPTIM1_IN2 LCD_SEG20 TSC_G7_IO3
I2S2_MCK
SPI2_MOSI/
PC3 LPTIM1_ETR LCD_SEG21 TSC_G7_IO4
I2S2_SD
DS10685 Rev 7
LCD_COM4/LCD_SEG
PC10 LPUART1_TX USART4_TX
28/LCD_SEG48
LCD_COM5/LCD_SEG
PC11 LPUART1_RX USART4_RX
29/LCD_SEG49
LCD_COM6/LCD_SEG
PC12 USART5_TX USART4_CK
30/LCD_SEG50
PC13
PC14
STM32L073xx
PC15
Table 20. Alternate functions port D
STM32L073xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/I2S2/
SPI1/SPI2/I2S2/
USART1/2/ I2C1/2/
LPUART1/ I2C1/USART1/2/ SPI2/I2S2
Port LPUART1/USB/ LPUART1/
SPI1/SPI2/I2S2/I2C1/ USART5/USB/ I2C1/TSC/ LPUART1/ /I2C2/ I2C3/LPUART1/
LPTIM1/TSC/ USART4/
LCD/TIM2/21 LPTIM1/TIM2/3 EVENTOUT TIM3/22/ USART1/ COMP1/2/TIM3
TIM2/21/22/ UASRT5/TIM21/E
/EVENTOUT/ EVENTOUT TIM2/21/22
EVENTOUT/ VENTOUT
SYS_AF
SYS_AF
PD1 - SPI2_SCK/I2S2_CK - - - - - -
LCD_COM7/
LPUART1_RTS/
PD2 LCD_SEG31/ TIM3_ETR - - - USART5_RX -
LPUART1_DE
LCD_SEG51
SPI2_MISO/
PD3 USART2_CTS LCD_SEG44 - - - - -
I2S2_MCK
DS10685 Rev 7
USART2_RTS/
PD4 SPI2_MOSI/I2S2_SD - - - - - -
USART2_DE
PD5 USART2_TX - - - - - - -
PD6 USART2_RX - - - - - - -
Port D
LPUART1_RTS/
PD12 LCD_SEG32 - - - - - -
LPUART1_DE
PD13 - LCD_SEG33 - - - - - -
Pin descriptions
PD14 - LCD_SEG34 - - - - - -
Pin descriptions
60/163 AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/I2S2/
SPI1/SPI2/I2S2/
USART1/2/ I2C1/2/
LPUART1/ I2C1/USART1/2/ SPI2/I2S2
Port LPUART1/USB/ LPUART1/
SPI1/SPI2/I2S2/I2C1 USART5/USB/ I2C1/TSC/ LPUART1/ /I2C2/ I2C3/LPUART1/
LPTIM1/TSC/ USART4/
/LCD/TIM2/21 LPTIM1/TIM2/3 EVENTOUT TIM3/22/ USART1/ COMP1/2/TIM3
TIM2/21/22/ UASRT5/TIM21/
/EVENTOUT/ EVENTOUT TIM2/21/22
EVENTOUT/ EVENTOUT
SYS_AF
SYS_AF
USART5_CK,
PE7 - LCD_SEG45 - - - - USART5_RTS/ -
Port E
USART5_DE
STM32L073xx
Table 22. Alternate functions port H
STM32L073xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
SPI1/SPI2/
SPI1/SPI2/I2S2/
I2S2/USART1/2/ I2C1/2/
LPUART1/ I2C1/USART1/2/ I2C3/
Port LPUART1/USB/ SPI2/I2S2/I2C2/ LPUART1/
SPI1/SPI2/I2S2 USART5/USB/ I2C1/TSC/ LPUART1/ LPUART1/
LPTIM1/TSC/ USART1/ USART4/
/I2C1/LCD/TIM2/21 LPTIM1/TIM2/3/ EVENTOUT TIM3/22/ COMP1/2/
TIM2/21/22/ TIM2/21/22 UASRT5/TIM21/
EVENTOUT/ EVENTOUT TIM3
EVENTOUT/ EVENTOUT
SYS_AF
SYS_AF
PH0 USB_CRS_SYNC - - - - - - -
Port H
PH1 - - - - - - - -
DS10685 Rev 7
Pin descriptions
61/163
Memory mapping STM32L073xx
5 Memory mapping
Refer to the product line reference manual for details on the memory mapping as well as the
boundary addresses for all peripherals.
6 Electrical characteristics
Figure 10. Pin loading conditions Figure 11. Pin input voltage
ai17851c ai17852c
Standby-power circuitry
(OSC32,RTC,Wake-up
logic, RTC backup
registers)
Level shifter
OUT
IO
GP I/Os Logic Kernel logic
IN
(CPU,
Digital &
VDD Memories)
VDD
Regulator
N × 100 nF
+ 1 × 10 μF
VSS
VDDA
VDDA
VREF
VREF+
100 nF Analog:
+ 1 μF 100 nF ADC/ RC,PLL,COMP,
VREF- DAC ….
+ 1 μF
VSSA
VLCD
VSS LCD
VSS
USB
VDD_USB transceiver
MSv33790V1
VDD VSEL
VDD Step-up
N x 100 nF Converter
+ 1 x 10 μF
Option 1 VLCD
100 nF LCD
VLCD
Option 2
CEXT
VSS
MSv33791V1
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an
external capacitance is needed for correct behavior of this converter.
NxVDD
N × 100 nF
+ 1 × 10 μF
NxVSS
MSv34711V1
ΣIVDD(2) Total current into sum of all VDD power lines (source)(1) 105
ΣIVSS(2) Total current out of sum of all VSS ground lines (sink) (1)
105
ΣIVDD_USB Total current into VDD_USB power lines (source) 25
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
(1)
IVSS(PIN) Maximum current out of each VSS ground pin (sink) 100
Output current sunk by any I/O and control pin except FTf
16
pins
IIO
Output current sunk by FTf pins 22
Output current sourced by any I/O and control pin -16
mA
Total output current sunk by sum of all IOs and control pins
90
except PA11 and PA12(2)
ΣIIO(PIN) Total output current sunk by PA11 and PA12 25
Total output current sourced by sum of all IOs and control
-90
pins(2)
Injected current on FT, FTf, RST and B pins -5/+0(3)
IINJ(PIN)
Injected current on TC pin ± 5(4)
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5) ± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
LQFP packages.
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)
must never be exceeded. Refer to Table 23 for maximum allowed input voltage values.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)
must never be exceeded. Refer to Table 23: Voltage characteristics for the maximum allowed input voltage
values.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
VDD_ Standard operating voltage, USB USB peripheral used 3.0 3.6
V
USB domain(2) USB peripheral not used 0 3.6
Input voltage on FT, FTf and RST 2.0 V ≤VDD ≤3.6 V -0.3 5.5
pins(3) 1.65 V ≤VDD ≤2.0 V -0.3 5.2
VIN V
Input voltage on BOOT0 pin - 0 5.5
Input voltage on TC pin - -0.3 VDD+0.3
UFBGA100 - 351
LQFP100 - 488
TFBGA64 - 313
Power dissipation at TA = 85 °C
LQFP64 - 435
(range 6) or TA = 105 °C (range 7) (4)
WLCSP49 - 417
LQFP48 - 370
UFQFPN48 - 714
PD mW
UFBGA100 - 88
LQFP100 - 122
TFBGA64 - 78
Power dissipation at TA = 125 °C
WLCSP49 - 104
(range 3) (4)
LQFP64 - 109
LQFP48 - 93
UFQFPN48 - 179
Table 27. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
VREFINT out(2) Internal reference voltage – 40 °C < TJ < +125 °C 1.202 1.224 1.242 V
TVREFINT Internal reference startup time - - 2 3 ms
VDDA and VREF+ voltage during
VVREF_MEAS - 2.99 3 3.01 V
VREFINT factory measure
Including uncertainties
Accuracy of factory-measured
AVREF_MEAS due to ADC and - - ±5 mV
VREFINT value(3)
VDDA/VREF+ values
TCoeff(4) Temperature coefficient –40 °C < TJ < +125 °C - 25 100 ppm/°C
ACoeff(4) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm
VDDCoeff(4) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V
ADC sampling time when
TS_vrefint(4)(5) reading the internal reference - 5 10 - µs
voltage
Startup time of reference
TADC_BUF(4) - - - 10 µs
voltage buffer for ADC
Consumption of reference
IBUF_ADC(4) - - 13.5 25 µA
voltage buffer for ADC
IVREF_OUT(4) VREF_OUT output current(6) - - - 1 µA
CVREF_OUT(4) VREF_OUT output load - - - 50 pF
Consumption of reference
ILPBUF(4) voltage buffer for VREF_OUT - - 730 1200 nA
and COMP
VREFINT_DIV1(4) 1/4 reference voltage - 24 25 26
%
VREFINT_DIV2(4) 1/2 reference voltage - 49 50 51
VREFINT
VREFINT_DIV3(4) 3/4 reference voltage - 74 75 76
1. Refer to Table 41: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current
consumption (IREFINT).
2. Guaranteed by test in production.
3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
4. Guaranteed by design.
5. Shortest sampling time can be determined in the application by multiple iterations.
6. To guarantee less than 1% VREF_OUT deviation.
Table 30. Current consumption in Run mode, code with data processing running from
Flash memory
fHCLK
Symbol Parameter Condition Typ Max(1) Unit
(MHz)
1 190 250
Range3,
Vcore=1.2 V 2 345 380 µA
VOS[1:0]=11
4 650 670
fHSE = fHCLK up to 4 0,8 0,86
Range2,
16MHz included,
Vcore=1.5 V 8 1,55 1,7
fHSE = fHCLK/2 above
VOS[1:0]=10
16 MHz (PLL ON)(2) 16 2,95 3,1
mA
8 1,9 2,1
Range1,
IDD (Run Supply current in Run Vcore=1.8 V 16 3,55 3,8
from Flash mode code executed VOS[1:0]=01
32 6,65 7,2
memory) from Flash memory
0,065 39 130
Range3,
MSI clock source Vcore=1.2 V 0,524 115 210 µA
VOS[1:0]=11
4,2 700 770
Range2,
Vcore=1.5 V 16 2,9 3,2
HSI clock source VOS[1:0]=10
mA
(16MHz) Range1,
Vcore=1.8 V 32 7,15 7,4
VOS[1:0]=01
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Dhrystone 650
CoreMark 655
Range 3,
Fibonacci 485
VCORE=1.2 V, 4 MHz µA
Supply VOS[1:0]=11 while(1) 385
IDD current in while(1), 1WS,
fHSE = fHCLK up to 375
(Run Run mode, prefetch OFF
16 MHz included, fHSE
from code
= fHCLK/2 above 16 Dhrystone 6,65
Flash executed
MHz (PLL ON)(1)
memory) from Flash CoreMark 6,9
memory Range 1,
Fibonacci 6,75
VCORE=1.8 V, 32 MHz mA
VOS[1:0]=01 while(1) 5,8
while(1), prefetch
5,5
OFF
1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Figure 15. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE, 1WS
3.50
3.00
2.50
IDD (mA)
2.00
1.50
1.00
0.50
VDD (V)
0
1.65 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
-40 °C
25 °C
55 °C
85 °C
105 °C
125 °C
MSv37843V1
Figure 16. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS
3.50
3.00
2.50
IDD (mA)
2.00
1.50
1.00
0.50
VDD (V)
0
1.65 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
-40 °C
25 °C
55 °C
85 °C
105 °C
125 °C
MSv37844V1
Table 32. Current consumption in Run mode, code with data processing running from RAM
fHCLK
Symbol Parameter Condition Typ Max(1) Unit
(MHz)
1 175 230
Range3,
Vcore=1.2 V 2 315 360 µA
VOS[1:0]=11
4 570 630
fHSE = fHCLK up to 4 0,71 0,78
Range2,
16 MHz included,
Vcore=1.5 V 8 1,35 1,6
fHSE = fHCLK/2 above
VOS[1:0]=10
16 MHz (PLL ON)(2) 16 2,7 3
mA
8 1,7 1,9
Range1,
Supply current in Run Vcore=1.8 V 16 3,2 3,7
IDD (Run mode code executed VOS[1:0]=01
from RAM) from RAM, Flash 32 6,65 7,1
memory switched off 0,065 38 98
Range3,
MSI clock Vcore=1.2 V 0,524 105 160 µA
VOS[1:0]=11
4,2 615 710
Range2,
Vcore=1.5 V 16 2,85 3
HSI clock source VOS[1:0]=10
mA
(16 MHz) Range1,
Vcore=1.8 V 32 6,85 7,3
VOS[1:0]=01
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
Dhrystone 570
Range 3, CoreMark 670
VCORE=1.2 V, 4 MHz µA
Supply current in VOS[1:0]=11 Fibonacci 410
Run mode, code fHSE = fHCLK up to
IDD (Run while(1) 375
executed from 16 MHz included,
from
RAM, Flash fHSE = fHCLK/2 above Dhrystone 6,65
RAM)
memory switched 16 MHz (PLL ON)(2)
Range 1, CoreMark 6,95
off
VCORE=1.8 V, 32 MHz mA
VOS[1:0]=01 Fibonacci 5,9
while(1) 5,2
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
1 43,5 110
Range3,
Vcore=1.2 V 2 72 140
VOS[1:0]=11
4 130 200
fHSE = fHCLK up to 4 160 220
Range2,
16 MHz included,
Vcore=1.5 V 8 305 380
fHSE = fHCLK/2 above
VOS[1:0]=10
16 MHz (PLL ON)(2) 16 590 690
8 370 460
Range1,
Supply current in Vcore=1.8 V 16 715 840
Sleep mode, Flash VOS[1:0]=01
memory switched 32 1650 2000
OFF 0,065 18 93
Range3,
MSI clock Vcore=1.2 V 0,524 31,5 110
VOS[1:0]=11
4,2 140 230
Range2,
Vcore=1.5 V 16 665 850
HSI clock source VOS[1:0]=10
(16 MHz) Range1,
Vcore=1.8 V 32 1750 2100
IDD VOS[1:0]=01
µA
(Sleep) 1 57,5 130
Range3,
Vcore=1.2 V 2 84 160
VOS[1:0]=11
4 150 220
fHSE = fHCLK up to 4 170 240
Range2,
16MHz included,
Vcore=1.5 V 8 315 400
fHSE = fHCLK/2 above
VOS[1:0]=10
16 MHz (PLL ON)(2) 16 605 710
8 380 470
Range1,
Supply current in Vcore=1.8 V 16 730 860
Sleep mode, Flash VOS[1:0]=01
memory switched 32 1650 2000
ON 0,065 29,5 110
Range3,
MSI clock Vcore=1.2 V 0,524 44,5 120
VOS[1:0]=11
4,2 150 240
Range2,
Vcore=1.5 V 16 680 930
HSI clock source VOS[1:0]=10
(16MHz) Range1,
Vcore=1.8 V 32 1750 2200
VOS[1:0]=01
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.
TA = − 40 to 25°C 9,45 12
Figure 17. IDD vs VDD, at TA= 25 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS
IDD (mA)
4,5E-02
4,0E-02
3,5E-02
3,0E-02
2,5E-02
2,0E-02
1,5E-02
1,0E-02
5,0E-03
0 VDD (V)
1,65 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6
-40
25
55
85
105
125
MSv37845V2
Figure 18. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive
1.6E-02
1.4E-02
1.2E-02
1.0E-02
8.0E-03
IDD (mA)
6.0E-03
4.0E-03
2.0E-03
VDD (V)
0
1.65 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
-40 °C
25 °C
55 °C
85 °C
105 °C
125 °C
MSv37846V1
Figure 19. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks OFF
1.4E-02
1.2E-02
1.0E-02
8.0E-03
6.0E-03
IDD (mA)
4.0E-03
2.0E-03
VDD (V)
0
1.65 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
-40 °C
25 °C
55 °C
85 °C
105 °C
125 °C
MSv37847V1
HSI 1
HSI/4 0,7
IDD (Wakeup from Supply current during Wakeup from
MSI clock = 4,2 MHz 0,7
Stop) Stop mode
MSI clock = 1,05 MHz 0,4
MSI clock = 65 KHz 0,1
mA
IDD (Reset) Reset pin pulled down - 0,21
IDD (Wakeup from With Fast wakeup set MSI clock = 2,1 MHz 0,5
StandBy) With Fast wakeup disabled MSI clock = 2,1 MHz 0,12
CRS 2.5 2 2 2
DAC1/2 4 3.5 3 2.5
I2C1 11 9.5 7.5 9
I2C3 11 9 7 9
LCD1 4 3.5 3 2.5
LPTIM1 10 8.5 6.5 8
LPUART1 8 6.5 5.5 6
SPI2 9 4.5 3.5 4
µA/MHz
APB1 USART2 14.5 12 9.5 11
(fHCLK)
USART4 5 4 3 5
USART5 5 4 3 5
USB 8.5 4.5 4 4.5
TIM2 10.5 8.5 7 9
TIM3 12 10 8 11
TIM6 3.5 3 2.5 2
TIM7 3.5 3 2.5 2
WWDG 3 2 2 2
- LPUART1 - 0,5
1. LCD, LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode.
2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN
and OSC32_OUT.-
CSS is ON or
1 8 32 MHz
User external clock source PLL is used
fHSE_ext
frequency CSS is OFF,
0 8 32 MHz
PLL not used
VHSEH OSC_IN input pin high level voltage - VDD -
V
VHSEL OSC_IN input pin low level voltage - VSS -
tw(HSE)
OSC_IN high or low time 12 - -
tw(HSE)
- ns
tr(HSE)
OSC_IN rise or fall time - - 20
tf(HSE)
Cin(HSE) OSC_IN input capacitance - 2.6 - pF
DuCy(HSE) Duty cycle 45 - 55 %
IL OSC_IN Input leakage current VSS ≤VIN ≤VDD - - ±1 µA
1. Guaranteed by design.
VHSEH
90%
10%
VHSEL
tr(HSE) tW(HSE) t
tf(HSE) tW(HSE)
THSE
ai18232c
VLSEH
90%
10%
VLSEL
tr(LSE) tW(LSE) t
tf(LSE) tW(LSE)
TLSE
EXTERNAL fLSE_ext
OSC32_IN IL
CLOCK SOURCE
STM32Lxx
ai18233c
1. Guaranteed by design.
2. Guaranteed by characterization results. tSU(HSE) is the startup time measured from the moment it is
enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard
crystal resonator and it can vary significantly with the crystal manufacturer.
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 22). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
fHSE to core
Rm
CO RF
Lm
CL1
Cm OSC_IN
gm
Resonator
Consumption
control
Resonator
STM32
OSC_OUT
CL2
ai18235b
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
OSC32_IN fLSE
OSC32_OUT
CL2
MS30253V2
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
4.00%
3.00%
2.00%
1.00%
1.65V min
0.00%
3V typ
-60 -40 -20 0 20 40 60 80 100 120 140
-1.00% 3.6V max
1.65V max
-2.00%
3.6V min
-3.00%
-4.00%
-5.00%
-6.00%
MSv34791V1
MSI range 0 - 40
MSI range 1 - 20
MSI range 2 - 10
MSI range 3 - 4
MSI range 4 - 2.5
tSTAB(MSI)(2) MSI oscillator stabilization time µs
MSI range 5 - 2
MSI range 6,
Voltage range 1 - 2
and 2
MSI range 3,
- 3
Voltage range 3
Any range to
- 4
range 5
fOVER(MSI) MSI oscillator frequency overshoot MHz
Any range to
- 6
range 6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
Operating voltage
VDD - 1.65 - 3.6 V
Read / Write / Erase
Table 54. Flash memory and data EEPROM endurance and retention
Value
Symbol Parameter Conditions Unit
Min(1)
Table 54. Flash memory and data EEPROM endurance and retention (continued)
Value
Symbol Parameter Conditions Unit
Min(1)
0.1 to 30 MHz -7
Peak(1) VDD = 3.6 V, TA = 25 °C, 30 to 130 MHz 14 dBµV
SEMI LQFP100 package
compliant with IEC 61967-2 130 MHz to 1 GHz 9
Level(2) 0.1 MHz to 1 GHz 2 -
1. Refer to the EMI radiated test section of the application note AN1709 “EMC design guide for STM8,
STM32 and legacy MCUs”.
2. Refer to the EMI level classification section of the application note AN1709 “EMC design guide for STM8,
STM32 and legacy MCUs”
TA = +25 °C,
Electrostatic discharge
VESD(HBM) conforming to 2 2000
voltage (human body model)
ANSI/JEDEC JS-001
V
Electrostatic discharge TA = +25 °C,
VESD(CDM) voltage (charge device conforming to C4 500
model) ANSI/ESD STM5.3.1.
1. Guaranteed by characterization results.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
• A supply overvoltage is applied to each power supply pin
• A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
VDD≤VIN ≤5 V
- - 500
FTf I/Os
VDD≤VIN ≤5 V
PA11, PA12 and - - 10 µA
BOOT0
RPU Weak pull-up equivalent resistor(5) VIN = VSS 25 45 65 kΩ
RPD Weak pull-down equivalent resistor(5) VIN = VDD 25 45 65 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Guaranteed by characterization.
2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
3. With a minimum of 200 mV. Guaranteed by characterization results.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
V DD
= 0.3
1.3 V ILmax
Input range not
guaranteed
CMOS standard requirements VILmax = 0.3VDD
VILmax 0.7
0.6
VDD (V)
2.0 2.7 3.0 3.3 3.6
MSv34789V1
V DD
= 0.3
1.3 V ILmax
Input range not
guaranteed
VILmax 0.8
0.7 TTL standard requirements VILmax = 0.8 V
VDD (V)
2.0 2.7 3.0 3.3 3.6
MSv34790V1
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 27 and
Table 62, respectively.
Unless otherwise specified, the parameters given in Table 62 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 26.
90% 10%
50% 50%
10% 90%
t r(IO)out t f(IO)out
Maximum frequency is achieved with a duty cycle at (45 - 55%) when loaded by the
specified capacitance.
([WHUQDO
UHVHWFLUFXLW 9''
538
1567 ,QWHUQDOUHVHW
)LOWHU
)
069
TS
R AIN < ---------------------------------------------------------------
- – R ADC
N+2
f ADC × C ADC × ln ( 2 )
The simplified formula above (Equation 1) is used to determine the maximum external
impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
VREF+ VDDA
[1LSB = (or )]
Output code 2n 2n
EG
(1) Example of an actual transfer curve
2n-1 (2) Ideal transfer curve
2n-2 (3) End-point correlation line
2n-3 (2)
n = ADC resolution
ET = total unadjusted error: maximum deviation
(3) between the actual and ideal transfer curves
ET
7 (1) EO = offset error: maximum deviation between the first
actual transition and the first ideal one
6
EL EG = gain error: deviation between the last ideal
5 EO
transition and the last actual one
4 ED = differential linearity error: maximum deviation
ED between actual steps and the ideal one
3
2 EL = integral linearity error: maximum deviation between
1 any actual transition and the end point correlation line
1 LSB ideal
0 VREF+ (VDDA)
(1/2n)*VREF+
(2/2n)*VREF+
(3/2n)*VREF+
(4/2n)*VREF+
(5/2n)*VREF+
(6/2n)*VREF+
(7/2n)*VREF+
(2n-3/2n)*VREF+
(2n-2/2n)*VREF+
(2n-1/2n)*VREF+
(2n/2n)*VREF+
VSSA
MSv19880V6
VDDA(4) VREF+(4)
MSv67871V3
1. Refer to Table 64: ADC characteristics for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (refer to Table 60: I/O static characteristics). A high Cparasitic value downgrades
conversion accuracy. To remedy this, fADC must be reduced.
3. Refer to Table 60: I/O static characteristics for the value of Ilkg.
4. Refer to Figure 12: Power supply scheme.
Figure 31. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32Lxx
VREF+
1 μF // 100 nF VDDA
1 μF // 100 nF
VSSA / VREF–
MS39601V1
Figure 32. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32Lxx
VREF+/VDDA
1 μF // 100 nF
VREF–/VSSA
MS39602V1
CL ≤ 50 pF, RL ≥ 5 kΩ
- 1.5 3
DAC output buffer ON
DNL(2) Differential non linearity(4)
No RLOAD, CL ≤ 50 pF
- 1.5 3
DAC output buffer OFF
CL ≤ 50 pF, RL ≥ 5 kΩ
- 2 4
DAC output buffer ON
INL(2) Integral non linearity(5)
No RLOAD, CL ≤ 50 pF LSB
- 2 4
DAC output buffer OFF
CL ≤ 50 pF, RL ≥ 5 kΩ
- ±10 ±25
DAC output buffer ON
Offset(2) Offset error at code 0x800 (6)
No RLOAD, CL ≤ 50 pF
- ±5 ±8
DAC output buffer OFF
No RLOAD, CL ≤ 50 pF
Offset1(2) Offset error at code 0x001(7) - ±1.5 ±5
DAC output buffer OFF
VDDA = 3.3V
VREF+= 3.0 V
-20 -10 0
TA = 0 to 50 ° C
Offset error temperature DAC output buffer OFF
dOffset/dT(2) µV/°C
coefficient (code 0x800) VDDA = 3.3V
VREF+= 3.0 V
0 20 50
TA = 0 to 50 ° C
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
- +0.1 / -0.2% +0.2 / -0.5%
DAC output buffer ON
Gain(2) Gain error(8) %
No RLOAD, CL ≤ 50 pF
- +0 / -0.2% +0 / -0.4%
DAC output buffer OFF
VDDA = 3.3V
VREF+= 3.0 V
-10 -2 0
TA = 0 to 50 ° C
Gain error temperature DAC output buffer OFF
dGain/dT(2) µV/°C
coefficient VDDA = 3.3V
VREF+= 3.0 V
-40 -8 0
TA = 0 to 50 ° C
DAC output buffer ON
CL ≤ 50 pF, RL ≥ 5 kΩ
- 12 30
DAC output buffer ON
TUE(2) Total unadjusted error LSB
No RLOAD, CL ≤ 50 pF
- 8 12
DAC output buffer OFF
Buffer(1)
RL
12-bit
digital to DAC_OUTx
analog
converter
CL
MSv45341V1
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.18 Comparators
1 - tTIMxCLK
tres(TIM) Timer resolution time
fTIMxCLK = 32 MHz 31.25 - ns
The analog spike filter is compliant with I2C timings requirements only for the following
voltage ranges:
• Fast mode Plus: 2.7 V ≤VDD ≤3.6 V and voltage scaling Range 1
• Fast mode:
– 2 V ≤VDD ≤3.6 V and voltage scaling Range 1 or Range 2.
– VDD < 2 V, voltage scaling Range 1 or Range 2, Cload < 200 pF.
In other ranges, the analog filter should be disabled. The digital filter can be used instead.
Note: In Standard mode, no spike filter is required.
Range 1 100(3)
Maximum pulse width of spikes that
tAF Range 2 50(2) - ns
are suppressed by the analog filter
Range 3 -
1. Guaranteed by characterization results.
2. Spikes with widths below tAF(min) are filtered.
3. Spikes with widths above tAF(max) are not filtered
SPI characteristics
Unless otherwise specified, the parameters given in the following tables are derived from
tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 26.
Refer to Section 6.3.12: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Master mode 16
Slave mode - -
16
receiver
Master mode 8
Slave mode Transmitter
fSCK 8
SPI clock frequency 1.65<VDD<3.6V - - MHz
1/tc(SCK)
Slave mode Transmitter
8(2)
2.7<VDD<3.6V
Duty cycle of SPI clock
Duty(SCK) Slave mode 30 50 70 %
frequency
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - -
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - -
tw(SCKH)
SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2
tw(SCKL)
tsu(MI) Master mode 0 - -
Data input setup time
tsu(SI) Slave mode 3 - -
th(MI) Master mode 11 - -
Data input hold time ns
th(SI) Slave mode 4.5 - -
ta(SO Data output access time Slave mode 18 - 52
tdis(SO) Data output disable time Slave mode 12 - 42
NSS input
tc(SCK) th(NSS)
CPOL=0
CPHA=0
CPOL=1
ta(SO) tw(SCKL) tv(SO) th(SO) tf(SCK) tdis(SO)
MISO output First bit OUT Next bits OUT Last bit OUT
th(SI)
tsu(SI)
MSv41658V1
Figure 35. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
tc(SCK)
CPOL=0
CPHA=1
CPOL=1
ta(SO) tw(SCKL) tv(SO) th(SO) tr(SCK) tdis(SO)
MISO output First bit OUT Next bits OUT Last bit OUT
tsu(SI) th(SI)
MSv41659V1
CPHA=0
CPOL=0
CPHA=0
CPOL=1
SCK Output
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH) tr(SCK)
tsu(MI)
tw(SCKL) tf(SCK)
MISO
INPUT MSB IN BIT6 IN LSB IN
th(MI)
MOSI
MSB OUT BIT1 OUT LSB OUT
OUTPUT
tv(MO) th(MO)
ai14136d
I2S characteristics
Note: Refer to the I2S section of the product reference manual for more details about the sampling
frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral
behavior, source clock precision might slightly change them. DCK depends mainly on the
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
USB characteristics
The USB interface is USB-IF certified (full speed).
Input levels
Output levels
Figure 39. USB timings: definition of data signal rise and fall time
Cross over
points
Differential
data lines
VCRS
VSS
tf tr
ai14137b
tr Rise time(2) CL = 50 pF 4 20 ns
(2)
tf Fall Time CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf 90 110 %
VCRS Output signal crossover voltage 1.3 2.0 V
1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
7 Package information
ș2 ș
(2)
R1
H
R2
B
B-
N
O
(6)
TI
C
SE
D1/4 B GAUGE PLANE
S
E1/4
B ș
4x N/4 TIPS
ș L
4x (L1)
aaa C A-B D
bbb H A-B D (1) (11)
(N-4) x e (13)
C
A (9) (11)
0.05
ccc C b WITH PLATING
A2 A1 b aaa C A-BD
(12)
SIDE VIEW
D (4)
(11) c
(2) (5) D1 c1 (11)
D (3)
(10) (4)
N
b1 BASE METAL
1 (11)
2
3 E1/4 SECTION B-B
E1 E
SECTION A-A
A A
Notes:
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3. Datums A-B and D to be determined at datum plane H.
4. To be determined at seating datum plane C.
5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6. Details of pin 1 identifier are optional but must be located within the zone indicated.
7. All Dimensions are in millimeters.
8. No intrusion allowed inwards the leads.
9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
76 50
0.5
0.3
16.7 14.3
100 26
1.2
1 25
12.3
16.7
1L_LQFP100_FP_V1
Product identification(1)
STM32L073
Date code
Y WW
Pin 1
indentifier
MS34771V3
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
ddd Z
A4 A3 A2 A1 A
E1 X
A1 ball A1 ball
identifier index area E
e Z
A
Z
D1 D
e
Y
M
12 1
BOTTOM VIEW Øb (100 balls) TOP VIEW
Ø eee M Z Y X
Ø fff M Z
A0C2_ME_V5
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 0.0094
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D1 - 5.500 - - 0.2165 -
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E1 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
Z - 0.750 - - 0.0295 -
Dpad
Dsm
BGA_WLCSP_FT_V1
Table 84. UFBGA100 - Recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
0.370 mm typ. (depends on the solder mask
Dsm
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Product identification(1)
STM32L
073VZI6
Date code
Y WW
Ball 1
indentifier Revision code
MSv37821V1
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
2 1
(2)
R1
H
R2
B
B-
N
O
TI
C
SE
B GAUGE PLANE
D 1/4
0.25
(6)
S
B
L
4x N/4 TIPS
E 1/4 3
(L1)
aaa C A-B D (1) (11)
bbb H A-B D 4x
SECTION A-A
(13) (N – 4)x e
C
A
0.05
A2 A1 (12)
b
ddd C A-B D ccc C
D (4)
(10)
D (3) b WITH PLATING
N (4)
A A SECTION B-B
(Section A-A)
Notes:
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3. Datums A-B and D to be determined at datum plane H.
4. To be determined at seating datum plane C.
5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6. Details of pin 1 identifier are optional but must be located within the zone indicated.
7. All Dimensions are in millimeters.
8. No intrusion allowed inwards the leads.
9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
48 33
0.30
49 0.5 32
12.70
10.30
10.30
64 17
1.20
1 16
7.80
12.70
5W_LQFP64_FP_V2
R
STM32L
073RZT6
Date code
Y WW
Pin 1
indentifier
MSv36150V1
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
A E1
E e F
H
F
D D1
Øb (64 balls) e
Ø eee M C B A
Ø fff M C
B A
1 8
C Seating plane
ddd C
A4
A2 A1 A
SIDE VIEW
R8_ME_V4
Table 86. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid
array package outline
millimeters inches(1)
Symbol
Min Typ Max Min Typ Max
A - - 1.200 - - 0.0472
A1 0.150 - - 0.0059 - -
A2 - 0.200 - - 0.0079 -
A4 - - 0.600 - - 0.0236
b 0.250 0.300 0.350 0.0098 0.0118 0.0138
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D1 - 3.500 - - 0.1378 -
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E1 - 3.500 - - 0.1378 -
e - 0.500 - - 0.0197 -
F - 0.750 - - 0.0295 -
Table 86. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid
array package outline (continued)
millimeters inches(1)
Symbol
Min Typ Max Min Typ Max
Figure 50. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
,grid array recommended footprint
Dpad
Dsm
R8_FP_V1
Table 87. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
0.370 mm typ. (depends on the soldermask
Dsm
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 1.125 mm
Pad trace width 0.100 mm
Product identification(1)
L073RBH6
Y WW
Revision
code
Ball A1 R
MSv37820V1
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
e1 bbb Z
F
A1 ball location A1
G
Detail A
e2 E
e
e
A
D
A2
Bottom view
Bump side Side view
A3 A2
b
Bump
Front view
A1
eee Z
Z
b49x
ccc ZXY
ddd Z
E Detail A Seating plane
Note 2
(rotated 90 ) Note 1
A1
Orientation
reference
aaa
D (4x)
Top view
Wafer back side A038_ME_V1
Table 88. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
millimeters inches(1)
Symbol
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
(2)
A3 - 0.025 - - 0.0010 -
b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110
D 3.259 3.294 3.329 0.1283 0.1297 0.1311
E 3.223 3.258 3.293 0.1269 0.1283 0.1296
e - 0.400 - - 0.0157 -
e1 - 2.400 - - 0.0945 -
e2 - 2.400 - - 0.0945 -
F - 0.447 - - 0.0176 -
G - 0.429 - - 0.0169 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Figure 53. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
recommended footprint
Dpad
Dsm MS18965V2
Ball 1
indentifier
Product identification(1)
L073CZ6
Revision code
Date code
Y WW R
MSv66803V1
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
4x N/4 TIPS
aaa C A-B D
2 1
(2)
R1
H
R2
B
B-
D 1/4
N
O
(6)
TI
C
SE
B GAUGE PLANE
E 1/4
0.25
S
B
bbb H A-B D 4x
L
3
(13) (L1)
0.05 (N – 4)x e (1) (11)
A A2 C SECTION A-A
(12) ccc C
A1 ddd C A-B D
b
D (4)
(2) (5)
D1
(10) D (3) (9) (11)
N b WITH PLATING
1
2 E 1/4
(3) A 3
(6) B (3)
D 1/4 c c1
E1 E (11) (11)
(2) (4)
(5)
A A b1 BASE METAL
(Section A-A) (11)
SECTION B-B
TOP VIEW
5B_LQFP48_ME_V1
A - - 1.60 - - 0.0630
(12)
A1 0.05 - 0.15 0.0020 - 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
(9)(11)
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
(11)
b1 0.17 0.20 0.23 0.0067 0.0079 0.0090
(11)
c 0.09 - 0.20 0.0035 - 0.0079
c1(11) 0.09 - 0.16 0.0035 - 0.0063
(4)
D 9.00 BSC 0.3543 BSC
(2)(5)
D1 7.00 BSC 0.2756 BSC
E(4) 9.00 BSC 0.3543 BSC
E1(2)(5) 7.00 BSC 0.2756 BSC
e 0.50 BSC 0.1970 BSC
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
L1 1.00 REF 0.0394 REF
N(13) 48
θ 0° 3.5° 7° 0° 3.5° 7°
θ1 0° - - 0° - -
θ2 10° 12° 14° 10° 12° 14°
θ3 10° 12° 14° 10° 12° 14°
R1 0.08 - - 0.0031 - -
R2 0.08 - 0.20 0.0031 - 0.0079
S 0.20 - - 0.0079 - -
aaa(1)(7) 0.20 0.0079
bbb(1)(7) 0.20 0.0079
(1)(7)
ccc 0.08 0.0031
(1)(7)
ddd 0.08 0.0031
Notes:
1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
2. The Top package body size may be smaller than the bottom package size by as much
as 0.15 mm.
3. Datums A-B and D to be determined at datum plane H.
4. To be determined at seating datum plane C.
5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash
or protrusions is “0.25 mm” per side. D1 and E1 are Maximum plastic body size
dimensions including mold mismatch.
6. Details of pin 1 identifier are optional but must be located within the zone indicated.
7. All Dimensions are in millimeters.
8. No intrusion allowed inwards the leads.
9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall
not cause the lead width to exceed the maximum “b” dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Minimum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
10. Exact shape of each corner is optional.
11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm
from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point on the package
body.
13. “N” is the number of terminal positions for the specified body size.
14. Values in inches are converted from mm and rounded to 4 decimal digits.
15. Drawing is not to scale.
36 25
37 24 0.30
0.20
9.70 7.30
48 13
1 12
5.80
9.70
5B_LQFP48_FP_V1
Product identification(1)
STM32L
073CZT6
Date code
Y WW Revision code
Pin 1
indentifier
R
MSv37819V1
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
A
E E
T Seating
plane
ddd A1
e b
Detail Y
D
Y
Exposed pad
area D2
1
L
48
C 0.500x45°
pin1 corner R 0.125 typ.
E2 Detail Z
48
Z
A0B9_UFQFPN48_ME_V3
7.30
6.20
48 37
1 36
0.20 5.60
7.30
5.80
6.20
5.60
0.30
12 25
13 24
0.50 0.75
0.55
5.80 A0B9_UFQFPN48_FP_V3
Product identification(1)
STM32L073
CZU6D
Date code
Y WW
Revision code
Pin 1
indentifier
R
MSv62438V1
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not approved for use in production. ST is not responsible for any consequences
resulting from such use. In no event will ST be liable for the customer using any of these engineering
samples in production. ST’s Quality department must be contacted prior to any decision to use these
engineering samples to run a qualification activity.
4000
3500
UFQFPN48
3000
LQFP48
2500 LQFP64
PD (mW) WLCSP49
2000 TFBGA64
LQFP100
1500 UFBGA100
1000
500
0
125 100 75 50 25 0
8 Ordering information
Example: STM32 L 073 R 8 T 6 D TR
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
L = Low power
Device subfamily
073 = USB + LCD
Pin count
C = 48/49 pins
R = 64 pins
V = 100 pins
Package
T = LQFP
H = TFBGA
I = UFBGA
U = UFQFPN
Y = Standard WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
3 = Industrial temperature range, –40 to 125 °C
Options
No character = VDD range: 1.8 to 3.6 V and BOR enabled
D = VDD range: 1.65 to 3.6 V and BOR disabled
Packing
TR = tape and reel
No character = tray or tube
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
The STMicroelectronics group of companies (ST) places a high value on product security,
which is why the ST product(s) identified in this documentation may be certified by various
security certification bodies and/or may implement our own security measures as set forth
herein. However, no level of security certification and/or built-in security measures can
guarantee that ST products are resistant to all forms of attacks. As such, it is the
responsibility of each of ST's customers to determine if the level of security provided in an
ST product meets the customer needs both in relation to the ST product alone, as well as
when combined with other components and/or software for the customer end product or
application. In particular, take note that:
• ST products may have been certified by one or more security certification bodies, such
as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation
standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST
product(s) referenced herein have received security certification along with the level
and current status of such certification, either visit the relevant certification standards
website or go to the relevant product page on www.st.com for the most up to date
information. As the status and/or level of security certification for an ST product can
change from time to time, customers should re-check security certification status/level
as needed. If an ST product is not shown to be certified under a particular security
standard, customers should not assume it is certified.
• Certification bodies have the right to evaluate, grant and revoke security certification in
relation to ST products. These certification bodies are therefore independently
responsible for granting or revoking security certification for an ST product, and ST
does not take any responsibility for mistakes, evaluations, assessments, testing, or
other activity carried out by the certification body with respect to any ST product.
• Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open
standard technologies which may be used in conjunction with an ST product are based
on standards which were not developed by ST. ST does not take responsibility for any
flaws in such cryptographic algorithms or open technologies or for any methods which
have been or may be developed to bypass, decrypt or crack such algorithms or
technologies.
• While robust security testing may be done, no level of certification can absolutely
guarantee protections against all attacks, including, for example, against advanced
attacks which have not been tested for, against new or unidentified forms of attack, or
against any form of attack when using an ST product outside of its specification or
intended use, or in conjunction with other components or software which are used by
customer to create their end product or application. ST is not responsible for resistance
against such attacks. As such, regardless of the incorporated security features and/or
any information or support that may be provided by ST, each customer is solely
responsible for determining if the level of attacks tested for meets their needs, both in
relation to the ST product alone and when incorporated into a customer end product or
application.
• All security features of ST products (inclusive of any hardware, software,
documentation, and the like), including but not limited to any enhanced security
features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the
applicable written and signed contract terms specifically provide otherwise.
10 Revision history
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.