0 ratings0% found this document useful (0 votes) 62 views7 pagesCircular Motion
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Wun A2 Plagues 4102.
Paper 4 (4702/4) 2 hy 100 marks
(No choice) O
Topic
O Mechanics + Electvo magnehc
» Ciraslar Motion Ln duch'ow
Gravitation . Alter nating
; ; Cav vents
® Osu uatioys
oe Havmowie @ Quantum Pays.
enon ‘Photo electric effect
@ Boia Physics i Spectral lines
» Ldeal gases - Band Theory:
i Temperature
Nucleay Plugsics
Thermal properhi seen
0 of mae ae pase NG
Electricity . © Olan Cntr
' Ele chostatcs @ Remole Sensing .
‘ Copocitance Divect Sensing -
Magnetic field @ Tele tommuni cation
* E lecWo wasagucki sna
Paper 5 (4102/5) (2 \
lhy : 15 minutes
Time
Marks * 30
Two Questions only [Ne choice | .
Ql Planning 4 Designing .
(6 may Ks)
Q.z Anodysis , Eveluation g
Con Lusi ow
(5 mark) :
Nola Crnteat ef AS is Reguived
but i wi Le gow Kano
exactly which theory | Pemde is
mek do be reutuheved -
weightage p4 30 2 7
PS WH 5Y
Civealar Motion (Mechanics) +
+ Angular displacement
refers +0 the angle (8)
made sab the
centte os it performs aM
denoted by (O)
units of Cradians)
fA
: angular. velocit4 .
. define = how much
ie (8) is coveved
nit time Of
- Linear clisplacemen- :
. dlenole (5)
- define. displ in
a Straight Line
» units (~)
. Lineav Velocity.
» Aenole (’)
. define ». Yale of
Change of displ:
“ u
eee = * fn Rale o change
- units (™]5) on 4 iP of ang displ ©
(tsec) - Symbol omega
o A 8 (~»
$ formula
7 w= F *
t
units vad /s
¥ Tf an 06). completes an entire
civde or St moves thaws, &= 2% and
x Exp tee term Uniform augulay velouly
» Tf an object Subtends equal angles
in eqyal intervals °f time
x How Can we caltulale augulay
Velocity (2).
eg Cab (2) Br he migule hand of &
clock @ [O:2% €, E+ 60 min
W: & a Ci br)
Ze 5 we 2% red/s
60x60
¥ Cal amg. velouty (2) _ for 4 persow
Standing or tre carla sus face -
wo?) Sinte Each is performing |
C.Mofion -. person alse moves
wa circle hence
fart for Complete livde
Ww: & G22
t t= 24 hes
We ZR vads~'.
24x 3600
———————
Re lakionsduip ow Linear veloc Ly () ©
dud duguday velo cil (»)
derivation NoT weeded (Maths)
frou Topic of Circular Measure
S=- GE
divide both Sides by time
N
|
oy YK,
Wy Mark Linear velocity. A
on na dingvam at A is?
iy Mark AnGulav veloute (2
on te didn (ffeen) 7
eq ae the blades of &
| When the
a _8) blade rotates.
bot. points Ag & will
have the Save 4m ular veloc
(~) however cee on 4
VeYay, Sine YY Is different
a Cl
ie ¥e>% -. Jineav velo of both
points will be different 4, Va 7 VA
W = Same.
4 @ Haris ————— “
‘) Batol ow
oTaha Vz1TwW
a Since Ya, 7 VB
Viaua > Vtiaris
Eavth,
Will they both, have the
Same Ainear ve loci tg 4)?
(onelurion 7 Tt Is osse be for
if foveut point? to have foe
Sane du gular velocity (2) , however
Aependung on thew ps tion (ie
value o v) , ther /ineay velocity Lv)
og ov wag wot Ae 2 gage -Circular motion ( Cevkinued) 0)
05 August 202
12 2, we 2h, [ve Tw
ca T
4 Q tan blades
° * Compave to for
W Yemams Uw Sane
CL for both. A dud B b/e
bot pts will Cover the same
dangle () in a unit bine
' Comrpave Linear veloclg @~) for be the
Ag & Ms. based of vero Since
Ww: lyst - voor .. siyee Tera
heute |Va > Vat:
4 @ Same Qe a FeO
: ~ WA = WB
NF | however based ow
we, We VD ; Juice VOGT
Ya> Ya
Va> Va
End te
Couchuzion 2 Tis posse ble Pov @
too pots + have le came
Velocity (wo) , hawever Aepe-hng Ow
hnecd positon / Location, (ie value
hy), a Leyear velocity (VD , aq
Coucept of Centripete! force CFe)
+ for any objeck to move 1% drde ,
it Vequives & force iguichy 1s
Directed Jrucardl, We Cente © lhe
Civeta Tuis Pree is tered
Cite petob frosee (Fe) .
dovyula for calarlak Fe.
devivation NOT Yegpived.
O ffc = mau
v
“= mass hy
v= Linear ve louty ms!
fe lus
‘ Suite ve TH (replace into &y
Fe mV? . wn (1),
=
Suvce = “ (Yeplace in E40)
Fe = my? tmav®
r= (6)
Ww
Concept /Pormula ° Centripetal
oS f eet
+ Based on F2ma, everg fovee gives
tise to accelojakiow
+ Hence a the free a CM Ws
alte Contyipetel free (Fe), nan
us Colregpending Ale. must be
colle cenwipetal ace (4s)
SS
formulas for Centripetal ec (4) ™
aCe = Force OK
mass
—
Aes yw, vA
Application of fase yesults-
24.0 - Rubbev elastic string. ve 0?
. Civular wotiow ~~ oaks
Pe T ~
7 , ___<——_»
Ly = be 2m é TE ee
after exteysion ~~. os on
lps em Answer
mass attached = 0-3 kg Live agar
String (Spring Constant) in the stving.
Tension (towards
ot the Centre provides
We thas “h to loa Fe)
Cal Ue Liyear
Velocity (v) gi es i
- » Hookes Law:
Hee pbject 9 T (Fore) = ree
T = Fe Fe 2 ray> s
he = mv? r
x
(20)(1'6- 12) = 03? [ve es mi]
oC
= 20Nm/
@) Civeulay JTurnta ble (4i ven)
nr
A rnqass (om) of! weight
3 (W) is positioyed on
: oe tury table + Tris
ae is OFm aw, frour Ln centye -
As tte toble Yotates F Hicion blo dae
mou § the toble prevecs lua Ass
Afowr Hidung Tf tle Maximuw fictiow
Wyo tac mal doe Aatle is 407: of
te lei gl 7 lus mess Caleulade
how rain Veoh Cw Hus mas :
Loew MA minule Without brakud.
je lmtack:
. Tts Me frictional force (F)/trickon
bho Table é ob; which Is ves onsible
a P
tor making phe obj maintain its CM
a 2
Fe E oz mrw i
v Since W2ZR
OIW= mares T
0-4 ty = or (25) [T= 79s]
oie ele
04 (441) = 08 (4) “ Bl Compl I
7 : yvevolutioys
14g ——> | vevolution, per
lamin (608) > my inule.
° Suaga tok polak will bape 4 ole
if we Ny be Meveare Le Yev- to
move Liaw 31 7
° The object begins ko glide ((¢2u tact
breaks)
Reasoy > Pricion in Hoa gi question
woas maximum at O-9W- As speed of
Yotaton increases, the 2b) REQUIRES @
freater Ee to Yemain intact. Tf
Avitton Can No togey meet with pus
dowand than the 0b) will Yot ha ve
enough, Fe to remain intact hence
Contact breaks -
Tivo identical
masses
a
vp Wwe keep incveoneng Wo cheed, wolicle
oyeck A or @ will slide fret &
ed
Wr = We
Since B is fur tier awag
its Lineav Velocity ™ is greater tan
Fe ds piven by formula,
fe = ™yo where me w are
Loth Constants So
as Velocita of 8 is Greater a it
Requires Aavger Fe :
' Since friction Cannot provide the
Yequired amt of fe to 8 hence
B will side of before A:
a I a AS SS
ACircular motion 3
06 August 2020 08:44
toe, we 2h Vere
t ee :
Fe-= omy | mya, WA
¥
ag 2 ve, pwr, VD:
Y
Examples of Horizontal Civealar Motion
Q Conicar Pendutom
=. mark forces
: © T vesolve -(Tension)
« Purpose of Teosb- is 0
balance the weight *
Tcos® = W OR
[Teese ==3]+
. Purpose of Tsin&® (which is Aivected
Cowavas tee tenNe of Cink) 's te
provide que Cen ti petal pvee which is
Regpi ved pr Overlay N4foton
| Tsu = Fe /— @®
Show that above Yesults Can be a
Simp fied leading to tad <4
64 . Asind = Fe
“70 Tensei mg learn
2
tanB = as = +au0=Vv>
my ~t.
@ zontal Circular Motion
performed an aero playe -
> normal See :
T wg) esis
fe 4
-~ “Leino S
- while pevfomi -
Ect Cae
ble of TH, Lift fre
(4) was able t° jenevale
two Components (cee te Resolution)
* Vertical Coupouent balayces weight
» Hovizontal Compoyeut provides
Coutyipetad force -
w (m4)
a: Su bola We pilot needs
to TILT He aeyoplane Ux ody 1
eve ule Crrutav Motion, ?
- Tilting is REQ, 80 that one
Comyoonent 2h te aft pre (in
ieee Case is L sin®) Can be a
divected Toconros fee Centve of NK
He Livche é Hus Com po ent ov ides
Ha Courvi petal See p (
— Lcos@= mg. 5 Lsin@= Fe
“Motion in a vertical Civele
Oe —————
Hovizohtal CM Vertical OM (i) Oo
———
© Tension ( provides) af
Ceutripetal fue @
Tz oor Learns ie
|T- mv [i
| +
° Assuming. that the Lowest
obj tYavels ah = pt @
Constant Speed , We Learn
PAID e Ud ecettaaot Hl card =u |-ontlt
Thy dow Yeurams
Coystaut at werp matches
@
pout
* at every instant LIARS
Tension Cenrans
urpurditular fo te
F wught
7 7 ca
Couclurion + 44 H.¢.Motion , “easion
(7) in te stvin Yewains CONSTANT
ar kverg position » However, IX &
Vic. MoHon, (alue +2 coeight 3 Contibuton)
He maguitude of Tension (T) Keeps
ehangeng at dif femrt positions . )
Highest position Te bhe-™ Tension
Lowest position TPR oy
Tivo Sideways Highest
osi tion Te Fe
[same as Ac]Circular motion question
Sie
Rand = Begg
eo Reotd o FD
Upenntes F)Circular motion Monday | Vertical circular
A Chighest pe) Motion Continued)
at A (highest pt)
5 Teg Fe
T. 2 mv
ng TOT
Te me mg,
© (Lowest +
™y aro aaaea
at D T= Fe
Ts mw
T:Fe
TT. mv AEC (ewest PO)
+ T-mg + Fe
To omg s mye
Coucluoion - Tr Hovizental CM ,
Tension at eutvy ph vemains Constant
ie Te my”
However, in VerHeal 6H, the
magnitude ef Tension Varies wl
position hence based om WorKingg
Chow above
Tina = MY avng [Lowest pe)
¥
Tinie mv omg, [haghest pt)
Nole :- Shing im a Vertical CM is
most Likely going to brea a8 it
passes the Jowest point (since
Teusion is ‘maxinnum )
Ques Tie guaph below sho0e hoi
Tiasion in A St¥ing Vavies during.
Circular Motor =e
e Th aries)
PS Tegeen)
eer ec ESS
position
I
oy
wo useg info flom the qraph |
rrnulas (stated above) » Calculate
w omass(™) of tha object
Tina = 12 [Lowest pt]
12 = wave4 mg oO
% Sinmultagesus
Tin = 6 {highest pt]
6
mut tng — @
Gos Zw m= 0-3
¢ aut
Se eee ec eee
veloalg (v) ? ae
from gape TH9 3 pags
q- vav®
+
4-(03)v*
eo
Example - The diagram beled shows”
a brolleg pecforeniag Verheal
Coveslar Motion - Cal: the minimum
sve? Velocity (v) of
¥2. the tyolleg ar the
highest pe be
A guest pl sue
2 iat i Compleles
its journey without
aun
bveaKing ‘ibs
enter = + Gin
daghest point . tae
= Normal force
er seen Reaction ply
Re mq rav* Normal Reachon
r force
Rew rag > Weigle
ua,
» Tf the contact breaks than IR=0
go if, you dont want the Contact
to b an 2ateY
o bveak. than ROO Carester
Zevo)
Replace
wey mg PO x 20m
= 10 m/s
=
mie” > lg, v > dea)
vr
vom
Hoye forraslae v> ly :
This formula indicater tet if at
Yee highest pt you maintain &
Velocity? which iss greater than ABs
the “Contact will “remain intact «
Q The diag Jhelowd shows a
= cov om a Road ( pert of Hus
wood forms a Veviical circle oF
Ye 5m as Shown Cal the
maxingumy
velocity (v)
Wwiths
which he Cov must travel at the
highest pt 40 ensure thar the
Contact does NoT break 7
«By 0m 40 occur, force towards
ne Centre (ie mg) muse be larger
hence eqpatiow will become
omg -R » Fe
omg R = my
i T
act bo vemain established
R>O
= 25
mg my" > 0 qe
2 v< [50 m]s-
hg > why ere
Yexerat formala |VX 7gQuestions on Circular Motion
He pear ete dae ee
Piet gee eee
He rat *
gong ethene noneer eer
x Lowe pt ole
Sosa T (highest)
tne ne eo |
Sitirecnacreemeaar
" en
—_——
Lonese pe T= rat + mg
ays.
were
Sansa def
‘hog peck Co) afar oe
oe eer
Le ot aL es.
tine (ad 6°)
See
hence Epa Fo
Ons me
ot ys
ik Sant OS
“eee
ie ye Ah tate, Re Dk
be WO eed met
vee i ey /hihon tate 2 meh
Was dang Let eine bo tee
Sige tee Op pee
pose oe
eae eas
ehners
cet ent eennen
a ae ae
bs pe
Te rete mg
weet + me
EERE ——nmCircular motion Tuesday
Recap (Previous class)
4 Oo
Cy
We Suggedlid nat for la ar
te txegle Ve-Motion , itt Speck
at te bighet pout wer be
qester tue Iq (v> 4)
5a
i yar)
Be te tor mmaving over a hump
pa tn (oad, its Speak must be
Las tan Jrg. (v< 14)
© Verkicol Civeular Motion ustug amv
Elashe sizing Jy eden
We Aiagrane mm > 05 Ky
Ly 2 Ib Geuw
r
v
js in FQ. Cab
# Given Hat Shing
‘the Spring Constant (K) fer te shing
Since Equilibivinn, is established. «
Tew = [Hooked Lao T= Ke]
ke = mg heir
km a- 2) (44)
ia 4 20 Wal 25f
iy The particle is no made t
perform Vertical Crretor Motions
(48 Shor below, qiven tha- aS
ib passes the “highest point , the
Lengte of the Shing reduces to Ibdem
Use fais nfo 0 Caleulelé dng. velo. (1)
° 72 For highest point
‘| : ; a io a
‘2 Phe ws:
. __-B2d(H6 4-62) 09 (ugys CD09) )
We BF vad. s~!
what if part iy of He Duestiow
ie Changed Slightly as shown 7
- At the fi ghest pe: the beagte
Yeduces to! /6.2¢m Cal ~ 7
a2c
for highest point Le lo-2em
Te er mg, Lo = Wezem
-0
Orie ot Eiht
wis on TE 72 @h(0)
ee
oe ea
faa = 7-8 rads!
Wii) Some time Later, Ue particle
Passes qavough its Lowest pe, while
performing “Vertical Civeulay Motion
Using 1528-9 Gal the dength of
fe “SHing ab fis instent
: Ys AE Lowest point
\ Tension (7) highest
° \
,
exbeysion, Marien
| hence Lengia (4) at
, Lem} tue Lowest ph musk be
1 i the Lougest -
perce)
Lowest poine
rie mrw + Et
ke
= MYw + om
> 2
(820) (L=/6 2) =O5(LY(89 +ODU4 8)
100 100
Lz 14-4 em
Couctude » Elastic shing bo per form
Ver tteaL Corot Motion,
ra “+ Motion ts Duel im
Shape
1s Reason» leug te
4 o ' Vavies Siuce T vavies >
‘+ Trowest ab top
2+ Least
+ Tiighest at bottom
7 we
Le maximum