0% found this document useful (0 votes)
77 views28 pages

Water Supply Project

This document summarizes the design and analysis of a water supply distribution system for Degahbour Town, Ethiopia over a 20-year period from 2020-2040. It involves designing groundwater wells and reservoirs to meet projected population growth and water demands. The population is projected to reach 86,184 by 2040 based on government growth rates. Water demands are calculated and eight wells and one 2000m3 reservoir are designed for Phase 1, with seven wells and another 2000m3 reservoir for Phase 2. The water distribution system is also designed to meet peak demands using hydraulic modeling software. Environmental impacts and mitigation methods are also considered.

Uploaded by

Deberge
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
77 views28 pages

Water Supply Project

This document summarizes the design and analysis of a water supply distribution system for Degahbour Town, Ethiopia over a 20-year period from 2020-2040. It involves designing groundwater wells and reservoirs to meet projected population growth and water demands. The population is projected to reach 86,184 by 2040 based on government growth rates. Water demands are calculated and eight wells and one 2000m3 reservoir are designed for Phase 1, with seven wells and another 2000m3 reservoir for Phase 2. The water distribution system is also designed to meet peak demands using hydraulic modeling software. Environmental impacts and mitigation methods are also considered.

Uploaded by

Deberge
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 28

© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.

org (ISSN-2349-5162)

Design and Analysis of Water supply distribution


system in Degahbour Town, Somali Region
Rabin Selvaraj1, Kemal Detu2, Welela Yimam3
1
Lecturer,Department of Hydraulics and Water Resources Engineering, Institute of Technology, Jigjiga
University, Jigjiga, Ethiopia.
2
Lecturer,Department of Hydraulics and Water Resources Engineering, Institute of Technology, Jigjiga
University, Jigjiga, Ethiopia.
3
Lecturer,Department of Hydraulics and Water Resources Engineering, Institute of Technology, Jigjiga
University, Jigjiga, Ethiopia.

*Corresponding Author Mail ID: selvarobin318@gmail.com

Abstract: This paper represents the design and analysis of water supply system for Degahbour town
throughout the design period which is 20 years from (2020-2040 GC) in two phases .The overall objective
of this research to design and implement sustainable water Supply and sanitation system for Degahbour
town for improving the quantity, quality and level of service for these project area communities. The
Population projection has been made based on central statistics authority of Ethiopia (CSA); accordingly,
the total projected population at the end of the design period is calculated to be 86184. The maximum
daily demand for the phases I and II have found to be 81.0lit/s and124.4lit/s respectively. Ground water is
selected as a source for the town to satisfy this demand eight borehole for phase one in tawlane well field
and seven boreholes for phase two have been selected. In addition to that One service reservoirs have
been designed for phase one with capacity of 2000m3 and also one service reservoir for phase two with
capacity of 2000m3 it also include the structural design of the reservoirs. Moreover, the distribution
system was designed to meet the peak hour demands using water CAD depending on the master plane of
Degahbour town. The projects also encompass positive and negative impact including its mitigation
methods of the environmental impact of the project.

Keywords: Water Supply, Population, Ground water, Water Demand, Reservoir.

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f392
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

1. Introduction

In the world everyone whatever their stage of growth and social and economic condition, have the right to
have access safe drinking-water in quantities and of a quality equal to their basic needs’ (WHO, 1997).

Water supply and distribution is a complex system and that exists to satisfy the various needs of peoples.
Whereby, it consists of various components of physical assets including reservoirs, pipes, pumps, and
different hydraulic controlling accessories that make up the water distribution system. It is generally
desired that water should be supplied continuously in the required quantities with adequate pressure and
flow from sources to all customers. On the other hand the intermittent supply due to failures of their
supply components and variation of demands may occur over the service period (Jalal, 2008).

The Water Distribution System (WDS) is responsible for supplying water to its customers at serviceable
pressures and speeds from the source or treatment plant (Walski, (2003).). It is made up of tubes, pumps,
junctions, valves, fittings and tanks for storage.

Healthy drinking water is as much a birthright as clean air for all human beings(SDSWE, 2016), while
access to clean water can be considered as one of a human being's fundamental needs and rights. Access to
clean water is the foundation for the protection of individuals and dignified lives.
The demand for water is the amount of water requested by consumers to fulfill their needs. It is sometimes
considered equivalent to water consumption in a simplistic way the two concepts do not conceptually have
the same meaning either. In most developed countries, the potential demand for water exceeds the real
intake of water substantially (Zewdu, 2014).
The demand for water was predicted on time. The useful life of many water supply projects is relatively
long. Therefore the proposal could stretch to around 50 years for the long term in the forecasting of water
demand studies. A lead time of 15 to 25 years can apply to medium-scale development plans (Karamouz
M, 2003).
Water distribution network efficiency can be described as its ability to deliver the necessary amount of
water under adequate pressure and an appropriate level of quality in various normal and abnormal
operating situations Tabesh and doulakha 2006.
In general, using a computer model WaterCaD; assessing the hydraulic behaviours and evaluating the
performance of existing towns’ water distribution network are advantageous. Therefore, ‘making
hydraulic simulation software, especially from hydraulic point view using engineering approach is one of
the method used for discussion and decision measure on the system, either is the system within level of
service based on pressure consideration or not’ (Hussni & Zyoud, 2003).
In order to ensure better water management, promotion and distribution of the resource there the water
demand forecast will be used to avoid crises often associated with water accessibility, to address urban
and suburban growth issues and to provide information on past and potential water usage (Ogunbode and
Ifabiyi, 2014).

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f393
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

2. Description of the Study Area


Degahbour town the town is located 165 km. away from Jigjiga along the road to Godey. It is the capital
city of Jarer Administrative Zone; Northeast of Jigjiga its one of the zones in Somali National Regional
State. Geographically, it is located at 8°13’Nlatitude and 43°34’6’Elongitude.Ff

Figure:1 Study area Map

3. Materials and Methods


3.1 Design period
The design period, however, should neither too long or too short. Mostly water supply schemes have
design period of 20-30years.
The following are the normal design periods of various units of water supply system.

Table: 1 various units of water supply systems Normal design periods.


No Name of units Design period
1 Wells for underground source 5 years
2 Impounding reservoir 30 years

3 Water pumping stations 10 years

4 Pipe line from source to town 20 year

(Source: G.S. Birdie. Water supply and sanitary engineering 1989)

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f394
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Table: 2 Population Growth rate on targeted year


year 2020 2025 2030 2035 2040
growth rates 3.51 3.51 3.35 3.19 3.03
Source :( Urban Water Supply Design Criteria January 31, 2006)

Sample calculation for CSA method:


𝑃𝑛 = 𝑃𝑜𝑒 𝑘𝑛
𝑃𝑜 =36774
𝑃2020 = 𝑃2013𝑒 3.51%∗𝑛 = 36774𝑒 3.51/100∗7
𝑃2020 = 47016
Table: 3 Summery of Population forecast by CSA method
Year Growth CSA
rate %
2020 3.51 47016
2021 3.51 48696
2022 3.51 50435
2023 3.51 52237
2024 3.51 54103
2025 3.51 56036
2026 3.35 57483
2027 3.35 59441
2028 3.35 61466
2029 3.35 63560
2030 3.35 65726
2031 3.19 66779
2032 3.19 68944
2033 3.19 71178
2034 3.19 73485
2035 3.19 75867
2036 3.03 76347
2037 3.03 78696
2038 3.03 81117
2039 3.03 83612
2040 3.03 86184

3.2 Population Distribution by Mode of Service


The percentage of HC in most Ethiopian town is in the range of 2%to5%. Based on this fact the
percentage of HC in Degahbour town is expected to be from 2% to 5% at the end of design period. The
remaining percentage of population, which is 55%, is expected to have yard connections at the end of the
design period. The above end target year values are presented in the table below.

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f395
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Table: 4 population percentage distribution based on mode of service


Years
Demand
2020 2025 2030 2035 2040
Category
HC (%) 7.80% 10.30% 12.80% 15.30% 17.80%
YC (%) 68.60% 69.60% 70.60% 71.60% 72.60%
PT (%) 23.60% 20.10% 16.60% 13.10% 9.60%
Total 100% 100% 100% 100% 100%
Projected Per Capita Water Demand by Mode of Service (l/c/d)

Domestic water demand for the following categories of consumer:


Stage 1 Stage 2
-House connection (HC). 50 l/c/day 70 l/c/day
-Yard connection, own (YCO). 25 l/c/day 30 l/c/day
-Yard connection, shared (YCS). 30 l/c/day 40 l/c/day
- Public tap supplies (PT). 20 l/c/day 25 l/c/day
Source: water supply criteria (MoWR, January 31, 2006)

To calculate the projected water demand by mode of service 3.5% for house, yard connection and for
public connection is considered
𝑙/𝑐/𝑑 (2025) = 70 + 70 ∗ 3.5%=70*(1+3.5%)
= 72.5
Table: 5 projected per capital water demand by mode of service (l/c/d)
Years

Demand Category 2020 2025 2030 2035 2040

HC (l/c/day) 70 72.5 75 77.6 80


YC (l/c/day) 40 41.4 42.8 44.3 46
PT (l/c/day) 30 31.1 32.1 33.3 34

Table: 6 summary of growth population by mode of service

Years 2020 2025 2030 2035 2040

demand
pop: 47016 56036 65726 75867 86184
category
HC 3667 5772 8413 11608 15341
YC 32253 39001 46402 54321 62570
PT 11096 11263 10910 9939 8274
Total 47016 56036 65726 75867 86184

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f396
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Sample calculation population on 2020


Population∗HTU 47016∗7.80
HC population = = = 3667
100 100

3.3. Domestic water demand for each mode of service


Domestic water demand for each mode of service=population for each mode of service *per capital
demand for each mode of service
𝐻𝑇𝑈2020 = 3667 ∗ 70 = 256707𝑙/𝑑
Table:7 domestic water demand for each mode of service
year

Demand Category 2020 2025 2030 2035 2040


HC(l/d) 256707 418446 630965 900759 1227264
YC(l/d) 1290119 1614633 1986016 2406425 2878211
PT(l/d) 332873 350284 350225 330957 281306
Total(l/d) 1879700 2383364 2967207 3638141 4386781
Total(m3/d) 1880 2383.4 2967.2 3638.1 4386.8
Total(l/s) 21.76 27.59 34.34 42.11 50.77
Sample; Calculation for 2020
Adjusted domestic demand for 2020=1.1 ∗ 1 ∗1879.7 = 2067.67m3/d
Table: 8 Adjusted domestic demand

Year 2020 2025 2030 2035 2040


Total domestic
demand Demand(m3/d) 1879.7 2383.4 2967.2 3638.1 4386.8

climatic factor 1.1 1.1 1.1 1.1 1.1


socio-economic
factor 1 1 1 1 1

Adjusted Demand (m3/d) 2067.67 2621.7 3263.93 4001.96 4825.46


domestic demand Demand(l/s) 23.93 30.34 37.78 46.32 55.85

3.4. Non Domestic Demand Projection


3.4.1 Public Demand
The water requirement of all schools, hospitals, public facilities, hotels and small-scale industries etc. are
included in this demand category. Studies made in Ethiopia on towns with metered water supply facilities
indicates that the public water demand ranges between 10 to 20% of domestic water consumption
depending on the size of the town, type and extent of commercial, economic and industrial activities. For
Degahbour town, the public water demand is assumed to be 10% of the domestic water demand.

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f397
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Sample Calculation for 2020


Public demand = Domestic demand * 10/100
=2067.67*10/100 =206.77m3/d

Table: 9 Public water demand

Year 2020 2025 2030 2035 2040


domestic
demand(m3/d) 2067.67 2621.7 3263.9 4001.9 4825.5
Public
Demand 10% % 10 10 10 10 10
public
demand(m3/d) 206.77 262.17 326.39 400.2 482.55

3.4.2 Total Demand


In considering the design of the different element of each water supply scheme, the following demand
conditions will be taken in to consideration:
 Average Day Demand -ADD
 Maximum Day Demand –MDD
 Peak hour demand-PHD
3.4.3 Average day demand
The average day demand is taken to be the sum of domestic demand, public demand, industrial and
unaccounted for water (water demand).
Sample Calculation for 2020
Average day demand (m3/d) = domestic + public + animal demand
=2067.67+206.77+310.15
=2584.59m3/d
Uncounted water demand (m3/d) = Average day demand * percentage of Uncounted
= 2584.59m3/d *40/100
=1033.8m3/d
Total average demand (m3/d) = Average day demand + water loss
= 2584.59+1033.8
= 3618.4m3
Table: 10 Average day demand of Degahbour town
Year 2020 2025 2030 2035 2040
Domestic demand 2067.67 2621.70 3263.93 4001.96 4825.46
(m3/d)
Public demand(m3/d) 206.77 262.17 326.39 400.20 482.55
non-Domestic
demand(m3/d) 517.07 655.43 815.98 1000.49 1206.36
JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f398
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Animal demand(m3/d) 310.15 393.26 489.59 600.29 723.82


Total demand(m3/d) 2584.59 3277.13 4079.91 5002.44 6031.82
% uncounted water 40% 35% 30% 32.5% 35%
uncounted water(m3/d) 1033.8 1147.0 1224.0 1625.8 2111.1
Average daily 3618.4 4424.1 5303.9 6628.2 8143.0
demand(m3/d)
fire% 10% 10% 10% 10% 10%
fire demand(m3/d) 361.8 442.4 530.4 662.8 814.3
Total average daily 3980.3 4866.5 5834.3 7291.1 8957.3
water demand(m3/d)

3.4.4 Maximum day demand


The water consumption varies from day to day. The maximum day water demand is considered to meet
water consumption changes with seasons and days of the week. The ratio of the maximum daily
consumption to the mean annual daily consumption is the maximum day factor. The maximum day factor
(MDF) utilized to calculate the maximum day demand is dependent on the population of the town.
Table: 11 Maximum daily demand factors
Town
Town population population
Number MDF MDF
1 0- 20,000 1.3
2 20,001-50,000 1.25
3 50,001and above 1.2
(Source: national water supply and sanitary master plan)
So Degahbour town the population was 86184 so it’s MDF IS 1.2
The maximum day demand is used to in infrastructure calculations such as for source pumping
requirements.
Sample calculation for 2020;
Maximum day demand (m3/d) = Total average day demand* MDD coefficient
= 3980.3*1.2
=12076.7m3/d
Table: 12 Maximum day demand
Year 2020 2025 2030 2035 2040
Total Average day
demand (m3/d) 3980.3 4866.5 5834.3 7291.1 8957.3
MDD coefficient 1.2 1.2 1.2 1.2 1.2
MDD (m3/d) 4776.3 5839.8 7001.1 8749.3 10748.7
MDD (l/s) 55.3 67.6 81 101.3 124.4

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f399
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

3.4.5 Peak hourly demand


The peak hour demand is the highest demand in any one hour over the year. It represents the diurnal
variation in water demand resulting from behavioral patterns of the local population. The size of the town,
mode of service and social activities of the town significantly influence the peak hour demand. Further,
studies show that the peak hour factor is greater for smaller population than bigger population. A peaking
factor suiting the town is selected from the design criteria associating peaking factor with number of
population as stated in the table below.
Table: 13 Peak hourly factors
Number Town population PHF PHF
1 < 20000 2
2 20001 to 50000 1.9
3 50001 to100000 1.8
4 > 100000 1.6
Source: water supply criteria (MoWR, January 31, 2006)
So Degahbour town the population was 86184 so it’s PHF IS 1.8
Sample calculation for 2020;
Peak hour demand (m3/d) = maximum day demand * peak hour factor
=4776.3* 1.8
= 8597.4m3
Table: 14 Summary of Water Demand
Description Year 2020 2025 2030 2035 2040
Population
1
Population No 47016 56036 65726 75867 86184
1.1
Demand
2
m3/d 2067.67 2621.7 3263.93 4001.96 4825.46
domestic water demand l/s 23.93 30.34 37.78 46.32 55.85
2.1
m3/d 517.07 655.43 815.98 1000.49 1206.36
Non-domestic demand l/s 5.98 7.59 9.44 11.58 13.96
2.2
m3/d 1033.8 1147 1224 1625.8 2111.1
Uncounted water demand l/s 11.97 13.28 14.17 18.82 24.43
2.3
m3/d 3618.4 4424.1 5303.9 6628.2 8143
Average daily demand l/s 41.9 51.2 61.4 76.7 94.2
2.4
m3/d 361.8 442.4 530.4 662.8 814.3
fire demand l/s 4.2 5.1 6.1 7.7 9.4
2.5
Total average daily water m3/d 3980.3 4866.5 5834.3 7291.1 8957.3
demand l/s 46.1 56.3 67.5 84.4 103.7
2.6
JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f400
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Max day factor 1.2 1.2 1.2 1.2 1.2


2.7
m3/d 4776.3 5839.8 7001.1 8749.3 10748.7
Max day demand l/s 55.3 67.6 81 101.3 124.4
2.8
Peak hour factor 1.8 1.8 1.8 1.8 1.8
2.9
m3/d 8597.4 10511.7 12602 15748.7 19347.7
peak hour demand l/s 99.51 121.66 145.86 182.28 223.93
2.8

Table: 15 Reservoir capacity computations using analytical method for phase I


Time(Hr) Hourly Hourly Cumulative Hourly Cumulative Supply/Sur Demand/D
Factor Demand Hourly Pumping Hourly plus(m3) eficiency(
(m3) Demand Rate/Hourly Supply(m3) m3)
(m3) Supply(m3)
1 0.25 72.9 72.9 0 0 72.9
2 0.25 72.9 145.8 0 0 145.8
3 0.25 72.9 218.8 388.95 388.95 170.2
4 0.25 72.9 291.7 388.95 777.9 486.2
5 0.5 145.9 437.5 388.95 1166.85 729.3
6 0.8 233.4 670.9 388.95 1555.8 884.9
7 1.05 306.3 977.2 388.95 1944.75 967.5 Max
8 1.35 393.8 1371.0 388.95 2333.7 962.7
9 1.8 525.1 1896.1 0 2333.7 437.6
10 1.6 466.7 2362.8 0 2333.7 29.1
11 1.8 525.1 2887.9 388.95 2722.65 165.3
12 1.45 423.0 3310.9 388.95 3111.6 199.3
13 1.35 393.8 3704.7 388.95 3500.55 204.2
14 1.35 393.8 4098.5 388.95 3889.5 209.0
15 1.4 408.4 4506.9 388.95 4278.45 228.5
16 1.45 423.0 4929.9 0 4278.45 651.5
17 1.5 437.6 5367.5 0 4278.45 1089.0
18 1.4 408.4 5775.9 388.95 4667.4 1108.5
19 1.25 364.6 6140.5 388.95 5056.35 1084.2
20 1.05 306.3 6446.8 388.95 5445.3 1001.5
21 0.9 262.5 6709.4 388.95 5834.25 875.1
22 0.7 204.2 6913.6 388.95 6223.2 690.4
23 0.5 145.9 7059.4 388.95 6612.15 447.3
24 0.25 72.9 7132.3 388.95 7001.1 131.2

Phase –I(2020-2030)
Maximum value of excess demand =1089.0m3
Maximum value of excess supply =967.5m3
Reservoir capacit = Maximum value of excess demand + Maximum value of excess supply
= 1089.0m3 + 967.5m3
=2056.5m3
Fire demand = 10% of reservoir capacity
= 10/100 ∗ (2056.5m3 ) =205.65m3

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f401
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Misslanious loss = 5% of reservoir capacity = 0.05 ∗ 2056.5m3 =102.825m3


Capacity of reservoir = 2056.5 + 205.65 + 102.825 = 2365m3
There is existing 350m3 of two reservoirs
Therefore Provide = 2365m -350=2015m3
But for standard reservoir take as 2000m3
So it should be construct one reservoir with capacity of2000m3 which is positioned in the higher elevation
of Degahbour town.
Phase II (2030 – 2040)
MDD =10748.7m3/d
Hourly demand of the town = 10748.7/24 =447.9m3
Pumping hour = 18hr
Pumping rate = 10748.7/18 =597.15m3
Table: 14 Determination of reservoir capacity for phase –II
Time(Hr) Hourly Hourly Cumulativ Hourly Cumulative Supply/Sur Demand/Defi
Factor Deman e Hourly Pumping Hourly plus(m3) ciency(m3)
d (m3) Demand Rate/Hourly Supply(m3)
(m3) Supply(m3)
1 0.25 111.97 111.97 0 0 111.97
2 0.25 111.97 223.93 0 0 223.93
3 0.25 111.97 335.90 584.22 584.2 248.3
4 0.25 111.97 447.86 584.22 1168.4 720.6
5 0.5 223.93 671.79 584.22 1752.7 1080.9
6 0.8 358.29 1030.1 584.22 2336.9 1306.8
7 1.05 470.26 1500.34 584.22 2921.1 1420.8
8 1.35 604.61 2104.95 584.22 3505.3 1400.4
9 1.8 806.15 2911.11 0 3505.3 594.2
10 1.6 716.58 3627.69 0 3505.3 122.4
11 1.8 806.15 4433.84 584.22 4089.5 344.3
12 1.45 649.40 5083.24 584.22 4673.8 409.5
13 1.35 604.61 5687.85 584.22 5258.0 429.9
14 1.35 604.61 6292.47 584.22 5842.2 450.3
15 1.4 627.01 6919.48 584.22 6426.4 493.1
16 1.45 649.40 7568.88 0 6426.4 1142.5
17 1.5 671.79 8240.67 0 6426.4 1814.3
18 1.4 627.01 8867.68 584.22 7010.6 1857.0
19 1.25 559.83 9427.51 584.22 7594.9 1832.6
20 1.05 470.26 9897.76 584.22 8179.1 1718.7
21 0.9 403.08 10300.84 584.22 8763.3 1537.5
22 0.7 313.50 10614.34 584.22 9347.5 1266.8
23 0.5 223.93 10838.27 584.22 9931.7 906.5
24 0.25 111.97 10950.24 584.22 10516.0 434.3
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑥𝑐𝑒𝑠𝑠 𝑑𝑒𝑚𝑎𝑛𝑑 = 1489.76𝑚3
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑥𝑐𝑒𝑠𝑠 𝑠𝑢𝑝𝑝𝑙𝑦 = 1453.25𝑚3
𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑥𝑐𝑒𝑠𝑠 𝑑𝑒𝑚𝑎𝑛𝑑 + 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑥𝑐𝑒𝑠𝑠 𝑠𝑢𝑝𝑝𝑙𝑦
= 1857𝑚3 + 1420.8 =3277.8𝑚3

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f402
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

𝐹𝑖𝑟𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 = 10% 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦


= 10/100(3277.8)
=327.78𝑚3
𝑀𝑖𝑠𝑠𝑙𝑎𝑛𝑖𝑜𝑢𝑠 𝑙𝑜𝑠𝑠 = 5% 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
= 0.05 ∗ 3277. 𝑚3
=163.89𝑚3
Capacity of reservoir = 3277.8 + 327.78 + 163.89 = 3770m3
There is existing 2015m3service reservoirs in phase one
Therefore Provide 3770m -2015=1755m3
But for standard reservoir take as 2000m3
So it should be construct one reservoir with capacity of 2000m 3 each which is positioned in the higher
elevation of Degahbour town.
Depending upon the level of the source of water and that of the city, topography of the area and other local
conditions water may be forced in to different distribution system.

4. Result and Discussion


It is necessary to analyze pipe networks of a given distribution system in order to determine the
pressure and flow availability in any section of the system and to suggest ways to improve up on the same
if found in adequate.
 The simulation of the distribution system has been controlled by “WATER CAD” computer aided
software
 Hazen William’s formula is used for computation program. Thus, Hazen William’s coefficient has
been chosen for pipes according to the pipe material and age. The design is using new and old
pipes of Galvanized iron with roughness coefficient of 150 is used.
It was carried out for extended period analysis by taking in to consideration the hourly demand fluctuation
pattern on average and maximum day. The analysis began by feeding assumed diameters of the pipe, pipe
material, pipe length; and the pressure, velocity and head loss are checked for peak & average flow. The
results of this analysis are shown in the appendix.

4.1 Water Cad Analysis Report

Table: 15 Nodal report for zone-1


Label Elevation (m) Zone Base Flow (l/s) Demand Pressure (kPa)
(Calculated) (l/s)

J-1 1,060.00 Zone - 1 1.2 1.2 49.3


J-2 1,065.00 Zone - 1 1.1 1.1 49.7
J-3 1,068.00 Zone - 1 1.09 1.09 49.9
J-4 1,069.00 Zone - 1 1.08 1.08 49.6
J-5 1,072.00 Zone - 1 1.05 1.05 45.9
J-6 1,075.00 Zone - 1 1.04 1.04 45.3
JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f403
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

J-7 1,077.00 Zone - 1 1.02 1.02 30.1


J-8 1,055.00 Zone - 1 0.9 0.9 12.2
J-9 1,079.00 Zone - 1 1.03 1.03 51.0
J-10 1,080.00 Zone - 1 1.2 1.2 50.8
J-11 1,065.00 Zone - 1 1.1 1.1 50.0
J-12 1,064.00 Zone - 1 1.1 1.1 49.9
J-13 1,062.00 Zone - 1 1.02 1.02 49.7
J-14 1,061.00 Zone - 1 1.02 1.02 49.6
J-15 1,058.00 Zone - 1 1.03 1.03 49.2
J-16 1,057.00 Zone - 1 1 1 49.1
J-17 1,056.00 Zone - 1 1 1 49.0
J-18 1,054.00 Zone - 1 1 1 48.7
J-19 1,046.00 Zone - 1 1.1 1.1 47.9
J-20 1,045.00 Zone - 1 1.1 1.1 47.8
J-21 1,047.00 Zone - 1 0.9 0.9 47.9
J-22 1,044.00 Zone - 1 0.8 0.8 47.8
J-23 1,043.00 Zone – 1 0.7 0.7 47.6
J-24 1,042.00 Zone - 1 0.6 0.6 47.5
J-25 1,041.00 Zone - 1 0.5 0.5 47.3
J-26 1,060.00 Zone - 1 1 1 49.1
J-27 1,061.00 Zone - 1 1.1 1.1 49.0
J-28 1,062.00 Zone - 1 1.06 1.06 49.4
J-29 1,064.00 Zone - 1 1.02 1.02 49.6
J-30 1,067.00 Zone - 1 1.01 1.01 49.8
J-31 1,066.00 Zone - 1 1.05 1.05 49.6
J-32 1,064.00 Zone - 1 1.04 1.04 49.5
J-33 1,062.00 Zone - 1 1 1 49.3
J-34 1,060.00 Zone - 1 1.1 1.1 48.7
J-35 1,079.00 Zone - 1 1.1 1.1 48.6
J-36 1,075.00 Zone - 1 1.01 1.01 40.9
J-37 1,073.00 Zone - 1 1.02 1.02 48.3
J-38 1,072.00 Zone - 1 1.03 1.03 49.8
J-39 1,071.00 Zone - 1 1 1 50.2
J-40 1,050.00 Zone - 1 1 1 48.2
J-41 1,051.00 Zone - 1 1 1 47.5
J-42 1,052.00 Zone - 1 1 1 47.5
J-43 1,053.00 Zone - 1 1.1 1.1 48.0
J-44 1,055.00 Zone - 1 1.1 1.1 48.2
J-45 1,056.00 Zone - 1 1 1 48.4
J-46 1,057.00 Zone – 1 1.06 1.06 48.6
J-47 1,059.00 Zone - 1 1.05 1.05 48.8
J-48 1,048.00 Zone - 1 1.04 1.04 48.0
J-49 1,046.00 Zone - 1 1.03 1.03 43.3
J-50 1,045.00 Zone - 1 1.02 1.02 47.3
J-51 1,044.00 Zone - 1 1.01 1.01 45.7
J-52 1,042.00 Zone - 1 1.1 1.1 45.7
J-53 1,041.00 Zone - 1 1.2 1.2 45.3
J-54 1,040.00 Zone - 1 1.2 1.2 39.1
J-55 1,065.00 Zone - 1 1.1 1.1 36.9
J-56 1,066.00 Zone - 1 1.1 1.1 36.0
J-57 1,067.00 Zone - 1 1.1 1.1 32.8
J-58 1,068.00 Zone - 1 1 1 45.4
J-59 1,069.00 Zone - 1 1 1 36.4
J-60 1,060.00 Zone - 1 1 1 46.1

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f404
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

J-61 1,061.00 Zone - 1 1 1 45.5


J-62 1,062.00 Zone - 1 0.9 0.9 37.3
J-63 1,063.00 Zone - 1 0.9 0.9 35.6
J-64 1,064.00 Zone - 1 0.9 0.9 30.3
J-65 1,057.00 Zone - 1 0.9 0.9 31.2
J-66 1,055.00 Zone - 1 0.7 0.7 31.0
J-67 1,053.00 Zone - 1 0.8 0.8 30.8
J-68 1,052.00 Zone - 1 0.6 0.6 28.6
J-69 1,051.00 Zone – 1 0.6 0.6 29.9
J-70 1,050.00 Zone - 1 0.6 0.6 40.8
J-71 1,040.00 Zone - 1 0.5 0.5 39.5
J-72 1,041.00 Zone - 1 0.4 0.4 39.5
J-73 1,041.00 Zone - 1 0.3 0.3 39.3
J-74 1,047.00 Zone - 1 0.7 0.7 40.0
J-75 1,048.00 Zone - 1 0.7 0.7 42.5
J-76 1,049.00 Zone - 1 0.7 0.7 41.7
J-77 1,050.00 Zone - 1 0.6 0.6 45.5
J-78 1,051.00 Zone - 1 0.5 0.5 46.2
J-79 1,052.00 Zone - 1 0.9 0.9 46.7
J-80 1,053.00 Zone - 1 1 1 43.0
J-81 1,054.00 Zone - 1 1 1 45.7
J-82 1,055.00 Zone - 1 1 1 47.7
J-83 1,056.00 Zone - 1 1.1 1.1 48.5
J-84 1,057.00 Zone - 1 1.02 1.02 45.8
J-85 1,058.00 Zone - 1 1.02 1.02 48.6
J-86 1,064.00 Zone - 1 1.01 1.01 49.2
J-87 1,065.00 Zone - 1 1.06 1.06 49.5
J-88 1,066.00 Zone - 1 1.05 1.05 49.8
J-89 1,067.00 Zone - 1 1.04 1.04 51.5
J-90 1,069.00 Zone - 1 1.03 1.03 50.7
J-91 1,072.00 Zone - 1 1.02 1.02 51.2
J-92 1,073.00 Zone – 1 1.01 1.01 37.5
J-93 1,074.00 Zone - 1 1 1 37.2
J-94 1,076.00 Zone - 1 1 1 36.5

Table:16 Pipe report for zone-1


Headloss

Gradient
Length Diameter Hazen- Discharge Velocity
(m) (mm) Material Williams C (l/s) (m/km) (m/s)
Label
P-1 441.66 200 Galvanized iron 120 9.21 0.65 0.64

P-3 579.73 150 HDPE 100 3.31 0.56 0.73

P-4 553.52 150 HDPE 100 5.95 1.64 0.62

P-7 852.22 150 HDPE 100 16.16 10.46 0.65

P-9 508.71 100 HDPE 100 35.14 317.58 2

P-12 552.91 100 HDPE 100 3.84 5.27 0.5

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f405
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

P-13 928.12 100 HDPE 100 3.14 3.62 0.55

P-15 323.39 80 HDPE 100 1.21 1.84 0.6

P-16 247.19 80 HDPE 100 0.73 0.72 0.52

P-17 293.83 80 HDPE 100 0.83 0.91 0.72

P-18 843.38 50 HDPE 100 0.48 3.26 0.71

P-19 398.68 50 HDPE 100 0.29 1.27 0.7

P-20 238.05 50 HDPE 100 0.62 5.28 0.81

P-21 915.31 50 PVC 150 0.5 1.64 0.8

P-22 719.94 100 PVC 150 1.16 0.27 0.6

P-23 239.27 100 PVC 150 2.16 0.85 0.51

P-24 562.97 100 PVC 150 3.16 1.73 0.9

P-25 327.96 150 PVC 150 4.16 0.4 0.8

P-26 439.22 100 PVC 150 1.06 0.23 0.54

P-27 343.2 80 PVC 150 0.38 0.1 0.65

P-28 233.48 80 PVC 150 1.81 1.82 0.5

P-29 587.65 80 PVC 150 1.94 2.09 0.60

P-30 511.15 80 PVC 150 1.04 0.66 0.75

Corrugated
HDPE

P-31 243.84 50 (smooth interior) 70 0.16 0.87 0.80

Corrugated
HDPE

P-32 321.87 50 (smooth interior) 70 0.44 5.29 0.81

Corrugated
HDPE

P-34 602.89 50 (smooth interior) 70 9.21 1,507.59 1.2

Corrugated
HDPE

P-35 351.13 50 (smooth interior) 70 0.61 9.84 0.55

Corrugated
P-36 733.35 100 HDPE 70 1.95 2.9 0.5

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f406
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

P-37 483.72 100 (smooth interior) 70 0.32 0.1 0.04

Corrugated
P-38 368.5 100 HDPE 70 0.51 0.24 0.56

P-39 508.41 150 (smooth interior) 70 0.07 0 0.6

Corrugated
P-40 431.29 150 HDPE 70 0.95 0.11 0.50

P-41 954.33 100 HDPE 100 1.75 1.22 0.54

P-42 467.26 100 HDPE 100 0.7 0.22 0.57

P-43 578.51 150 HDPE 100 1.93 0.2 0.6

P-44 849.78 150 HDPE 100 5.56 1.45 0.57

P-45 672.69 100 HDPE 100 1.88 1.4 0.67

P-46 265.18 100 HDPE 100 2.63 2.61 0.52

P-47 750.11 100 HDPE 100 0.87 0.33 0.54

P-48 189.59 50 HDPE 100 0.72 7 0.77

P-51 214.27 50 HDPE 100 2.9 91.76 1.48

P-55 504.75 50 HDPE 100 0.59 4.87 0.8

P-56 343.2 50 HDPE 100 2.47 67.83 1.26

P-58 668.73 50 HDPE 100 0.81 8.71 0.41

P-59 518.46 50 HDPE 100 0.36 1.89 0.56

P-60 417.88 80 HDPE 100 0.99 1.28 0.7

P-61 321.26 80 PVC 150 0.16 0.02 0.83

P-62 565.4 80 PVC 150 0.19 0.03 0.64

P-63 355.09 80 PVC 150 0.35 0.09 0.97

P-64 323.09 80 PVC 150 2.55 3.45 0.51

P-65 214.88 80 PVC 150 4.39 9.45 0.87

P-66 445.92 80 PVC 150 8.46 31.8 1.68

P-67 232.26 80 PVC 150 6.16 17.65 1.22

P-69 316.99 80 PVC 150 2.37 3.01 0.47

P-71 214.88 80 PVC 150 1.8 1.82 0.66

P-72 237.44 80 PVC 150 5.44 14.02 1.08

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f407
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

P-73 282.24 80 PVC 150 0.68 0.3 0.94

P-74 476.71 100 PVC 150 3.66 2.27 0.87

P-75 464.21 100 PVC 150 6.06 5.79 0.77

P-76 237.74 100 PVC 150 7.4 8.37 0.94

P-77 576.38 100 PVC 150 2.66 1.25 0.54

P-78 437.39 150 PVC 150 2.93 0.21 0.87

P-79 456.9 150 PVC 150 1.33 0.05 0.68

Corrugated
HDPE

P-80 505.66 100 (smooth interior) 70 0.33 0.11 0.54

Corrugated
HDPE

P-81 485.85 100 (smooth interior) 70 2.7 5.3 0.84

Corrugated
HDPE

P-82 490.73 100 (smooth interior) 70 0.82 0.58 0.6

Corrugated
HDPE

P-83 339.55 100 (smooth interior) 70 0.57 0.29 0.97

Corrugated
HDPE

P-84 321.56 50 (smooth interior) 70 2.82 168.83 1.44

Corrugated
HDPE

P-85 426.11 50 (smooth interior) 70 0.23 1.58 1.12

Corrugated
HDPE

P-86 514.5 50 (smooth interior) 70 0.27 2.18 1.14

Corrugated
HDPE

P-87 249.94 50 (smooth interior) 70 2.2 106.32 1.12

Corrugated
P-88 535.23 50 HDPE 70 1.06 27.66 1.54

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f408
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

(smooth interior)

Corrugated
HDPE

P-89 247.8 50 (smooth interior) 70 4.08 333.33 2.0

Corrugated
HDPE

P-90 694.33 100 (smooth interior) 70 5.59 20.43 0.71

Corrugated
HDPE

P-91 348.08 100 (smooth interior) 70 2.61 4.99 0.73

Corrugated
HDPE

P-92 214.27 100 (smooth interior) 70 9.52 54.8 1.21

Corrugated
HDPE

P-93 246.58 100 (smooth interior) 70 13.21 100.43 1.68

Corrugated
HDPE

P-94 375.51 100 (smooth interior) 70 2.49 4.55 1.32

Corrugated
HDPE

P-96 479.45 80 (smooth interior) 70 7.28 98.85 1.45

P-97 344.12 80 HDPE 100 17.2 250.82 2.0

P-98 231.95 80 HDPE 100 19.11 304.89 1.8

1,247.
P-101 55 80 HDPE 100 7.91 59.54 1.57

P-102 475.49 80 HDPE 100 0.97 1.22 1.19

P-103 331.32 80 HDPE 100 1.38 2.34 1.27

P-104 352.65 50 HDPE 100 2.99 97.04 1.52

P-105 774.5 50 HDPE 100 3.37 121.07 1.72

P-106 633.07 50 HDPE 100 1.4 23.81 0.71

P-107 410.26 50 HDPE 100 1.7 34.14 0.87

P-108 290.78 50 HDPE 100 3.81 151.52 1.94

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f409
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

P-109 495 50 HDPE 100 1.1 15.31 0.56

P-111 304.5 50 HDPE 100 5.51 300.92 2

P-112 454.76 50 HDPE 100 1.45 25.26 0.74

P-113 201.78 50 HDPE 100 0.57 4.46 1.29

P-114 468.17 80 HDPE 100 6.41 40.35 1.28

P-115 681.23 80 HDPE 100 9.33 80.74 1.86

P-116 355.09 100 HDPE 100 44.74 496.69 2

P-117 302.67 100 HDPE 100 0.9 0.36 1.11

P-118 548.03 100 HDPE 100 1.6 1.04 1.2

P-119 247.8 100 HDPE 130 12.01 26.73 1.53

P-120 344.42 100 HDPE 100 14.41 60.9 1.83

P-121 312.12 100 PVC 150 15.01 31 1.91

P-122 485.85 100 PVC 150 30.9 118.12 1.93

P-123 452.63 150 PVC 150 34.51 20.11 1.95

P-125 692.2 150 PVC 150 14.8 4.19 0.84

P-126 381 150 PVC 150 11.43 2.6 0.65

P-127 853.74 150 PVC 150 11.83 2.77 0.67

P-128 401.42 150 PVC 150 11.84 2.77 0.67

P-129 886.97 100 PVC 150 3.88 2.53 0.49

P-133 650.44 100 PVC 150 23.96 73.76 2

P-134 606.25 80 PVC 150 2.28 2.8 0.55

P-135 401.42 80 PVC 150 9.54 39.71 1.9

P-136 263.96 80 PVC 150 8.84 34.48 1.76

P-137 281.33 80 PVC 150 6.42 19.07 1.28

P-138 156.67 80 PVC 150 7.02 22.5 1.4

1,180.
P-139 49 80 PVC 150 10.36 46.29 2.0

P-140 916.23 80 PVC 150 2.81 4.12 0.56

P-141 940.92 50 PVC 150 1.91 19.88 0.97

P-143 633.98 50 PVC 150 0.25 0.48 1.13

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f410
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

P-144 277.67 50 PVC 150 3.84 72.74 1.96

P-145 530.96 50 PVC 150 3.1 48.77 1.58

P-146 842.16 50 PVC 150 2.1 23.68 1.07

P-147 283.16 50 PVC 150 1.16 7.98 0.59

P-148 196.6 50 PVC 150 1.38 10.97 0.7

Corrugated
HDPE

P-149 378.87 50 (smooth interior) 70 0.88 19.53 0.45

Corrugated
HDPE

P-150 381.61 80 (smooth interior) 70 2.9 17.91 0.58

Corrugated
HDPE

P-151 213.97 80 (smooth interior) 70 7.88 114.47 1.57

Corrugated
HDPE

P-152 674.52 80 (smooth interior) 70 3.97 32.09 0.79

Corrugated
HDPE

P-153 497.43 100 (smooth interior) 70 4.18 11.93 0.53

Corrugated
HDPE

P-154 896.72 100 (smooth interior) 70 2.35 4.1 0.5

Corrugated
HDPE

(smooth
P-155 569.98 100 interior)) 70 7.05 31.42 0.9

Corrugated
HDPE

P-156 538.58 100 (smooth interior) 70 1.14 1.08 1.15

Corrugated
HDPE

P-157 219.46 100 (smooth interior) 70 3.53 8.73 1.45

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f411
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Corrugated
HDPE

P-158 993.34 100 (smooth interior) 70 1.57 1.94 1.2

Corrugated
HDPE

P-159 415.14 80 (smooth interior) 70 0.52 0.74 0.7

Corrugated
HDPE

P-160 406.6 80 (smooth interior) 70 2.02 9.17 0.63

Corrugated
HDPE

P-161 896.72 80 (smooth interior) 70 1.31 4.1 0.66

Corrugated
HDPE

P-163 513.28 80 (smooth interior) 70 2.19 10.65 0.75

Corrugated
HDPE

P-162 513.28 50 (smooth interior) 70 0.9 20.42 0.56

Corrugated
HDPE

P-164 310.9 50 (smooth interior) 70 1.04 26.53 0.53

P-165 256.95 50 PVC 150 1.16 7.88 0.59

P-166 673 50 PVC 150 1.01 6.13 0.51

P-167 401.42 50 PVC 150 2.01 21.92 1.02

P-169 916.84 50 PVC 150 3.01 46.3 1.53

P-170 604.11 150 HDPE 100 3.78 205.87 1.57

P-171 165.2 100 HDPE 100 3.05 204.5 1.3

P-172 198.12 100 HDPE 100 2.04 105.5 1..2

Table: 17 Nodal report for zone-2

Elevation Base Flow Demand.calcutd


Label Zone Pressure (kPa)
(m) (l/s) (l/s)
J-95 1,065.00 Zone – 2 1.2 1.2 17.845
J-96 1,064.00 Zone – 2 1.1 1.1 18.2135

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f412
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

J-97 1,063.00 Zone – 2 1.1 1.1 19.7316


J-98 1,062.00 Zone – 2 1.05 1.05 19.6536
J-99 1,059.00 Zone – 2 1.06 1.06 12.8709
J-100 1,058.00 Zone – 2 1.07 1.07 22.9522
J-101 1,055.00 Zone – 2 1.08 1.08 24.1507
J-102 1,054.00 Zone – 2 1.09 1.09 21.1671
J-103 1,052.00 Zone – 2 1 1 23.3208
J-104 1,051.00 Zone – 2 1 1 21.6553
J-105 1,040.00 Zone – 2 1 1 20.5186
J-106 1,041.00 Zone – 2 1 1 21.8104
J-107 1,042.00 Zone – 2 1 1 21.9756
J-108 1,043.00 Zone – 2 1 1 20.2819
J-109 1,044.00 Zone – 2 1 1 20.9773
J-110 1,045.00 Zone – 2 1 1 21.6947
J-111 1,046.00 Zone – 2 1 1 22.0535
J-112 1,043.00 Zone – 2 1 1 24.0203
J-113 1,042.00 Zone – 2 0.9 0.9 24.7723
J-114 1,041.00 Zone – 2 0.8 0.8 25.1227
J-115 1,040.00 Zone – 2 0.7 0.7 24.9751
J-116 1,060.00 Zone – 2 0.6 0.6 25.6283
J-117 1,061.00 Zone – 2 0.5 0.5 25.4662
J-118 1,062.00 Zone – 2 0.4 0.4 24.9613
J-119 1,063.00 Zone – 2 1.1 1.1 25.6621
J-120 1,064.00 Zone – 2 1.1 1.1 26.1423
J-121 1,065.00 Zone – 2 1.2 1.2 27.2133
J-122 1,066.00 Zone – 2 1.2 1.2 27.9185
J-123 1,067.00 Zone – 2 1.06 1.06 26.9701
J-124 1,068.00 Zone – 2 1.05 1.05 28.5672
J-125 1,069.00 Zone – 2 1.05 1.05 28.6121
J-126 1,070.00 Zone – 2 1.05 1.05 29.1573
J-127 1,059.00 Zone – 2 1.04 1.04 26.9002
J-128 1,058.00 Zone – 2 1.03 1.03 26.3531
J-129 1,057.00 Zone – 2 1.02 1.02 25.9498
J-130 1,055.00 Zone – 2 1.01 1.01 31.967
J-131 1,054.00 Zone – 2 1 1 32.124
J-132 1,053.00 Zone – 2 1 1 31.8674
J-133 1,052.00 Zone – 2 0.9 0.9 29.9207
J-134 1,051.00 Zone – 2 0.8 0.8 26.9553
J-135 1,050.00 Zone – 2 0.7 0.7 31.5379
J-136 1,049.00 Zone – 2 0.6 0.6 31.4702
J-137 1,048.00 Zone – 2 0.5 0.5 31.3693
J-138 1,047.00 Zone – 2 0.5 0.5 31.2562
J-139 1,046.00 Zone – 2 0.4 0.4 31.127
J-140 1,044.00 Zone – 2 0.4 0.4 30.9272
J-141 1,043.00 Zone – 2 0.4 0.4 30.7421
J-142 1,042.00 Zone – 2 0.3 0.3 30.7601
J-143 1,041.00 Zone – 2 0.2 0.2 30.6625
J-144 1,040.00 Zone – 2 1.09 1.09 30.2331
JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f413
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

J-145 1,039.00 Zone – 2 1.08 1.08 29.9918


J-146 1,038.00 Zone – 2 1.07 1.07 30.3204
J-147 1,037.00 Zone – 2 1.06 1.06 30.2848
J-148 1,036.00 Zone – 2 1.05 1.05 30.1877
J-149 1,035.00 Zone – 2 1.04 1.04 30.0837
J-150 1,034.00 Zone – 2 1.03 1.03 29.9321
J-151 1,065.00 Zone – 2 1.02 1.02 32.9035
J-152 1,064.00 Zone – 2 1.01 1.01 32.8323
J-153 1,063.00 Zone – 2 1 1 32.7395
J-154 1,062.00 Zone – 2 1 1 33.2092
J-155 1,061.00 Zone – 2 1 1 33.0193
J-156 1,060.00 Zone – 2 0.9 0.9 32.3525
J-157 1,058.00 Zone – 2 0.8 0.8 32.38
J-158 1,057.00 Zone – 2 0.92 0.92 33.0401
J-159 1,055.00 Zone – 2 0.95 0.95 33.2978
J-160 1,054.00 Zone – 2 0.94 0.94 32.984
J-161 1,053.00 Zone – 2 0.92 0.92 32.0715
J-162 1,052.00 Zone – 2 0.91 0.91 31.9689
J-163 1,051.00 Zone – 2 0.8 0.8 31.8548
J-164 1,050.00 Zone – 2 0.81 0.81 30.6135
J-165 1,046.00 Zone – 2 0.7 0.7 28.4195
J-166 1,045.00 Zone – 2 0.6 0.6 26.0131
J-167 1,044.00 Zone – 2 0.65 0.65 25.7916
J-168 1,043.00 Zone – 2 0.5 0.5 25.4515
J-169 1,042.00 Zone – 2 0.4 0.4 23.7278

Table: 18 Pipe report for zone-2


Hazen- Headloss
Williams Discharge Gradient Velocity
Label Length(m) Diameter(m) Material C (l/s) (m/km) (m/s)
P-174 471.22 200 Galvanized iron 120 40.59 10.11 1.29
P-175 1,275.89 150 HDPE 100 18.13 12.94 1.03
P-176 704.7 150 HDPE 100 2.32 0.29 1.13
P-178 737.92 150 HDPE 100 41.79 60.74 2
P-179 1,129.89 100 HDPE 100 14.12 58.68 1.8
P-180 933.6 100 HDPE 100 11.57 40.6 1.47
P-181 910.44 100 HDPE 100 7.17 16.75 0.91
P-183 340.77 100 HDPE 100 15.39 68.86 1.96
P-184 378.87 100 HDPE 100 6.63 14.46 0.84
P-185 853.74 100 HDPE 100 7.63 18.76 0.97
P-186 338.94 100 HDPE 100 8.63 23.57 1.1
P-187 449.58 80 HDPE 100 10.79 105.77 2
P-188 292.61 80 PVC 150 9.79 41.69 1.95
P-189 772.06 80 PVC 150 1.23 0.89 1.24
P-190 652.88 80 PVC 150 7.9 28.04 1.57
P-192 878.13 80 PVC 150 10.56 47.98 2
P-193 780.9 80 PVC 150 7.81 27.44 1.55
P-194 530.96 80 PVC 150 5.67 15.18 1.13
P-195 634.9 50 PVC 150 3.14 49.97 1.6
P-196 808.63 50 PVC 150 1.66 15.38 0.85

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f414
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

P-197 186.23 50 PVC 150 0.34 0.82 1.17


P-198 443.18 50 PVC 150 1 6.02 0.51
P-199 566.93 50 PVC 150 2.99 45.71 1.52
P-200 626.67 50 PVC 150 1.57 13.86 0.8
P-201 655.93 50 PVC 150 1.08 6.98 0.55
P-202 519.68 50 PVC 150 0.38 0.98 1.19
Corrugated HDPE
P-203 712.93 50 (smooth interior) 70 0.86 18.69 0.44
Corrugated HDPE
P-204 457.5 50 (smooth interior) 70 0.9 20.23 0.46
Corrugated HDPE
P-205 618.44 150 (smooth interior) 70 7 4.3 0.4
Corrugated HDPE
P-206 897.03 150 (smooth interior) 70 9.98 8.3 0.56
Corrugated HDPE
P-207 139.6 150 (smooth interior) 70 10.55 9.19 0.6
Corrugated HDPE
P-208 720.24 150 (smooth interior) 70 10.15 8.55 0.57
Corrugated HDPE
P-209 801.32 150 (smooth interior) 70 0.11 0 0.61
Corrugated HDPE
P-210 624.84 150 (smooth interior) 70 4.64 2 0.76
Corrugated HDPE
P-211 552.91 150 (smooth interior) 70 9.16 7.07 0.52
Corrugated HDPE
P-212 768.4 150 (smooth interior) 70 12.69 12.94 0.72
Corrugated HDPE
P-213 789.43 150 (smooth interior) 70 5.44 2.7 0.61
Corrugated HDPE
P-215 551.08 100 (smooth interior) 70 5.44 19.4 0.69
Corrugated HDPE
P-216 636.73 100 (smooth interior) 70 8.13 40.89 1.04
Corrugated HDPE
P-217 548.34 100 (smooth interior) 70 3.47 8.44 0.54
Corrugated HDPE
P-218 1,656.59 100 (smooth interior) 70 0.6 0.33 0.78
Corrugated HDPE
P-219 451.71 100 (smooth interior) 70 5.23 18.07 0.67
Corrugated HDPE
P-222 417.88 100 (smooth interior) 70 0.66 0.39 0.98
Corrugated HDPE
P-223 746.46 100 (smooth interior) 70 2.49 4.56 0.92
P-224 504.75 80 HDPE 100 2.87 9.09 0.57
P-225 830.28 80 HDPE 100 1.78 3.76 0.5
P-226 839.72 80 HDPE 100 1.63 3.21 0.53
P-227 450.49 80 HDPE 100 0.48 0.34 1.1
P-228 657.15 80 HDPE 100 2.8 8.7 0.56
P-229 501.4 80 HDPE 100 2.38 6.44 0.47
P-231 802.54 50 HDPE 100 0.48 3.24 0.54
P-232 423.67 50 HDPE 100 0.52 3.83 0.77
P-233 888.8 50 HDPE 100 1.32 21.25 0.67
P-234 525.78 50 HDPE 100 2.22 55.73 1.13
P-235 53.04 80 HDPE 100 3.02 9.99 0.6
P-236 1,700.78 80 HDPE 100 0.5 0.36 1.1
P-237 1,039.37 80 HDPE 100 0.45 0.3 0.69
JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f415
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

P-238 850.39 80 HDPE 100 0.2 0.07 0.74


P-239 495.6 100 HDPE 100 0.35 0.06 0.54
P-240 479.45 100 HDPE 100 0.85 0.32 1.11
P-241 420.93 100 HDPE 100 1.35 0.76 1.17
P-242 593.45 100 HDPE 100 0.37 0.07 0.95
P-243 599.54 100 HDPE 100 1.94 1.49 0.85
P-244 453.54 100 HDPE 100 2.63 2.61 0.63
P-245 676.35 150 HDPE 100 0.2 0 0.71
P-246 1,004.93 150 HDPE 100 6.95 2.19 1.39
P-247 1,028.09 150 HDPE 100 5.51 1.43 1.31
P-248 448.06 100 HDPE 100 1.98 1.54 1.25
P-249 545.29 100 HDPE 100 1.7 1.17 1.22
P-250 508.41 100 HDPE 100 0.17 0.02 0.92
P-251 481.58 100 HDPE 100 0.52 0.13 0.87
P-252 610.51 100 HDPE 100 1.14 0.56 0.55
P-253 626.97 150 HDPE 100 2.52 0.33 0.64
P-254 740.97 150 HDPE 100 4.2 0.86 0.54
P-255 554.13 150 HDPE 100 3.1 0.49 0.68
P-256 220.07 150 HDPE 100 2.09 0.24 0.72
P-258 947.93 100 HDPE 100 1.56 0.99 0.52
P-259 611.73 80 HDPE 100 2.94 9.5 0.58
P-260 1,467.61 80 HDPE 100 0.79 0.84 0.86
P-262 715.37 80 HDPE 100 0.67 0.61 1.13
P-263 542.85 80 HDPE 100 0.8 0.85 1.16
P-264 633.98 80 HDPE 100 1.22 1.87 1.24
P-265 488.9 50 HDPE 100 0.36 1.89 0.18
P-266 502.62 50 HDPE 100 1.14 16.22 0.58
Corrugated HDPE
P-267 1,034.80 50 (smooth interior) 70 0.38 4.07 1.19
Corrugated HDPE
P-268 487.98 50 (smooth interior) 70 0.6 9.49 1.3
Corrugated HDPE
P-269 828.14 50 (smooth interior) 70 0.73 13.88 1.37
Corrugated HDPE
P-270 676.35 50 (smooth interior) 70 0.56 8.43 1.29
Corrugated HDPE
P-271 615.39 50 (smooth interior) 70 0.35 3.59 1.18
Corrugated HDPE
P-272 393.5 50 (smooth interior) 70 0.5 6.84 1.25
Corrugated HDPE
P-273 291.39 100 (smooth interior) 70 0.42 0.17 1.05
Corrugated HDPE
P-274 115.52 100 (smooth interior) 70 1.33 1.43 1.17
Corrugated HDPE
P-275 639.17 100 (smooth interior) 70 2.13 3.42 1.27
Corrugated HDPE
P-276 538.89 100 (smooth interior) 70 4.63 14.42 0.59
Corrugated HDPE
P-277 1,301.50 100 (smooth interior) 70 2.53 4.7 0.72
Corrugated HDPE
P-278 467.56 100 (smooth interior) 70 7.97 39.39 1.01
Corrugated HDPE
P-279 512.37 100 (smooth interior) 70 8.67 46.04 1.1
Corrugated HDPE
P-280 1,832.46 150 (smooth interior) 70 2.61 0.69 0.85
JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f416
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Corrugated HDPE
P-281 257.25 150 (smooth interior) 70 3.26 1.04 0.68
Corrugated HDPE
P-282 952.8 150 (smooth interior) 70 6.66 3.92 0.78
P-283 710.79 80 PVC 150 7.16 23.37 1.43
P-284 719.33 80 PVC 150 7.56 25.85 1.5
P-285 1,487.73 80 PVC 150 0.65 0.27 1.13
P-287 831.8 50 PVC 150 9.54 392.16 1.86
P-288 940.92 200 PVC 150 56.97 12.53 1.81
P-289 537.36 100 PVC 150 56.97 366.73 1.25
Corrugated HDPE
P-221 629.11 100 (smooth interior) 70 6.05 23.63 0.77
Corrugated HDPE
P-220 509.93 100 (smooth interior) 70 3.58 8.96 0.46
P-286 1,973.88 80 PVC 150 6.59 20.03 1.31
P-230 958.29 50 HDPE 100 1.99 45.61 1.01

Table: 19 Tank report for zone 1and 2


Base Minimum Maximum Tank
Elevation Elevation Initial Elevation Diameter Inflow
Label Zone (m) (m) HGL (m) (m) (m) (l/s)
T-1 Zone - 1 1,045.00 1,050.00 1,055.00 1,065.00 23 91.33
T-2 Zone - 2 145 150 165 175 23 68.53

Table: 20 Reservoir (source) report for zone 1and 2


Elevation Inflow
Label (m) Zone (l/s) Calculated Hydraulic Grade (m)
R-1 1,059.00 Zone - 1 8 1,059.00
R-2 1,070.00 Zone - 2 8 1,070.00

Table: 21 Pump report for zone 1 and 2


Elevation Control Discharge Calculated Water
Label (m) Status (l/s) Pump Head (m) Power (kW)
PMP-1 1,060.00 On 8 226.86 37
PMP-2 1,065.00 On 8 24.7 37

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f417
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

Figure: 2 Zone-1 distribution network & Zone-2 distribution network

4.3 Discussion

An improved and sufficient water supply service of in Ethiopian Somalia regional state of Degahbour
town is an important thing for economic development and its existence enables to have healthy and
productive population that has a great role in increasing the productivity of the economy. In relation to
this, access to safe drinking water varies from community to community because of physical and socio
economic factors. As a result, now a day, a number of people in the world doesn’t have reasonable access
to adequate amount of potable water.

The existing water supply project of Degahbour town phase is not sufficient. Due to this and the
alarmingly increasing population of the town, it is necessary to design and construct a new water supply
phase (I) and phase (II) project scheme. Generally, the design of Degahbour water supply project phase
(I) and phase (II) is to solve the scarcity of water in Degahbour town and solve the problem of water
related to quality and quantity of water. In this region the ground water is suitable, so the project is study
in ground water to gate fresh water rather than surface water.

5. References

1. CSA, (2007). "Population and housing census of Ethiopian, central statistics Agency. .". , s.l.: s.n.

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f418
© 2022 JETIR May 2022, Volume 9, Issue 5 www.jetir.org (ISSN-2349-5162)

2. EPA, (2010). "Control and mitigation of drinking water loss in distribution system. USA."., s.l.:
International Journal of Innovative Research in Science, Engineering and Technology 3:.

3. Karamouz M, S. F. a. Z. B., 2003. Water resources systems analysis: Lewis Publishers Boca Raton,
FL., s.l.: s.n.

4. Khatri K, V. K. a. P. M., 2008. Challenges for urban water supply and sanitation in developing
countries. , jigjiga: Water for a Changing World-Developing Local Knowledge and Capacity. CRC Press,
93-112.

5.Abu-MadiandTrifunovic, 2013. Impacts of supply duration on the design and performance of


intermittent water distribution systems in the West Bank., s.l.: Water international 38:.

Anon., n.d. s.l.: s.n.

6.AWWA, 2005. Computer modeling of water distribution systems: , s.l.: American Water Works
Association. .

7.Batish, 2003. A new approach to the design of intermittent water supply networks., s.l.: World Water
and Environmental Resources Congress..

8. Bogale, 2016. Assessment of the water distribution network of Metu town water supply system,
Ethiopia. MSc Thesis. Addis Ababa University, s.l.: International Journal of Engineering, Science and
Technology 7:.

9. SDSWE, 2016. Jigjiga town Water supply project, s.l.: s.n.

10. Sharma, 2008. Performance indicators of water losses in distribution system. , s.l.: Delft, the
Netherlands. .

11. TabeshandDoulakhah, 2006. Effects of pressure dependent analysis on quality performance


assessment of water distribution networks. , s.l.: s.n.

12. Walski, T. M. e. a., (2003).. "Advanced water distribution modeling and management." , s.l.: s.n.

13. Water CAD/GEMMs, W., 2008. Water Distribution Design and Modeling Full version V8i, s.l.:
Journal American Water Works Association 99:.

14. WHO, 2006. Meeting the MDG drinking water and sanitation target: the urban and rural challenge of
the decade, s.l.: s.n.

15. Zewdu, 2014. Assessing Water Supply Coverage and Water Losses from Distribution System for
Planning Water Loss Reduction Strategies (Case Study on Axum town, North Ethiopia)., s.l.: Civil and
Environmental Research 16:.

16. Zyoud, 2003. Hydraulic Performance of Palestinian Water Distribution Systems (Jenin Water Supply
Network as a Case Study).,

JETIR2205660 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f419

You might also like