NAME _____________________________________________ DATE ____________________________ PERIOD _____________
8-3 Study Guide and Intervention
Multiplying Polynomials
Multiply Binomials To multiply two binomials, you can apply the Distributive Property twice. A useful way to keep
track of terms in the product is to use the FOIL method as illustrated in Example 2.
Example 1: Find (x + 3)(x – 4).                                 Example 2: Find (x – 2)(x + 5) using the FOIL method.
Horizontal Method                                               (x – 2)(x + 5)
(x + 3)(x – 4)                                                        First   Outer      Inner     Last
      = x(x – 4) + 3(x – 4)                                       = (x)(x) + (x)(5) + (–2)(x) + (–2)(5)
      = (x)(x) + x(–4) + 3(x)+ 3(–4)                              = 𝑥 2 + 5x + (–2x) – 10
      = 𝑥 2 – 4x + 3x – 12                                        = 𝑥 2 + 3x – 10
      = 𝑥 2 – x – 12                                            The product is 𝑥 2 + 3x – 10.
Vertical Method
               x+ 3
(×)       x– 4
       – 4x – 12
 𝑥 2 + 3x
 𝑥 2 – x – 12
The product is 𝑥 2 – x – 12.
Exercises
Find each product.
 1. (x + 2)(x + 3)                       2. (x – 4)(x + 1)                             3. (x – 6)(x – 2)
       𝟐                                     𝟐
      𝒙 + 5x + 6                           𝒙 – 3x – 4                                    𝒙𝟐 – 8x + 12
 4. ( p – 4)( p + 2)                     5. ( y + 5)( y + 2)                           6. (2x – 1)(x + 5)
      𝟐                                       𝟐
  𝒑 – 2p – 8                                𝒚 + 7y + 10                                   2𝒙𝟐 + 9x – 5
 7. (3n – 4)(3n – 4)                     8. (8m – 2)(8m + 2)                           9. (k + 4)(5k – 1)
           𝟐                                         𝟐
      9𝒏 – 24n + 16                        64𝒎 – 4                                       5𝒌𝟐 + 19k – 4
10. (3x + 1)(4x + 3)                    11. (x – 8)(–3x + 1)                          12. (5t + 4)(2t – 6)
      12𝒙𝟐 + 13x + 3                        –3𝒙𝟐 + 25x – 8                               10𝒕𝟐 – 22t – 24
13. (5m – 3n)(4m – 2n)                  14. (a – 3b)(2a – 5b)                         15. (8x – 5)(8x + 5)
               𝟐              𝟐                  𝟐                𝟐
      20𝒎 – 22mn + 6𝒏                      2𝒂 – 11ab + 15𝒃                                64𝒙𝟐 – 25
16. (2n – 4)(2n + 5)                    17. (4m – 3)(5m – 5)                          18. (7g – 4)(7g + 4)
      4𝒏𝟐 + 2n – 20                         20𝒎𝟐 – 35m + 15                              49𝒈𝟐 – 16
Chapter 8                                                18                                                  Glencoe Algebra 1
NAME _____________________________________________ DATE ____________________________ PERIOD _____________
8-3 Study Guide and Intervention (continued)
Multiplying Polynomials
Multiply Polynomials The Distributive Property can be used to multiply any two polynomials.
Example: Find (3x + 2)(2𝒙𝟐 – 4x + 5).
(3x + 2)(2𝑥 2 – 4x + 5)
  = 3x(2𝑥 2 – 4x + 5) + 2(2𝑥 2 – 4x + 5)     Distributive Property
  = 6𝑥 3 – 12𝑥 2 + 15x + 4𝑥 2 – 8x + 10      Distributive Property
       3      2
  = 6𝑥 – 8𝑥 + 7x + 10                        Combine like terms.
                   3        2
The product is 6𝑥 – 8𝑥 + 7x + 10.
Exercises
Find each product.
 1. (x + 2)(𝑥 2 – 2x + 1)                             2. (x + 3)(2𝑥 2 + x – 3)
    𝒙𝟑 – 3x + 2                                           2𝒙𝟑 + 7𝒙𝟐 – 9
 3. (2x – 1)(𝑥 2 – x + 2)                             4. (p – 3)(𝑝2 – 4p + 2)
    2𝒙𝟑 – 3𝒙𝟐 + 5x – 2                                    𝒑𝟑 – 7𝒑𝟐 + 14p – 6
 5. (3k + 2)(𝑘 2 + k – 4)                             6. (2t + 1)(10𝑡 2 – 2t – 4)
   3𝒌𝟑 + 5𝒌𝟐 – 10k – 8                                    20𝒕𝟑 + 6𝒕𝟐 – 10t – 4
 7. (3n – 4)(𝑛2 + 5n – 4)                             8. (8x – 2)(3𝑥 2 + 2x – 1)
   3𝒏𝟑 + 11𝒏𝟐 – 32n + 16                                  24𝒙𝟑 + 10𝒙𝟐 – 12x + 2
 9. (2a + 4)(2𝑎2 – 8a + 3)                           10. (3x – 4)(2𝑥 2 + 3x + 3)
   4𝒂𝟑 – 8𝒂𝟐 – 26a + 12                                   6𝒙𝟑 + 𝒙𝟐 – 3x – 12
11. (𝑛2 + 2n – 1)(𝑛2 + n + 2)                        12. (𝑡 2 + 4t – 1)(2𝑡 2 – t – 3)
   𝒏𝟒 + 3𝒏𝟑 + 3𝒏𝟐 + 3n – 2                                2𝒕𝟒 + 7𝒕𝟑 – 9𝒕𝟐 – 11t + 3
13. (𝑦 2 – 5y + 3)(2𝑦 2 + 7y – 4)                    14. (3𝑏 2 – 2b + 1)(2𝑏 2 – 3b – 4)
   2𝒚𝟒 – 3𝒚𝟑 – 33𝒚𝟐 + 41y –12                             6𝒃𝟒 – 13𝒃𝟑 – 4𝒃𝟐 + 5b – 4
Chapter 8                                                19                                   Glencoe Algebra 1