Hess’s Law Practice Problems Answers
Determine ∆Ho for each of the following problems. Use a separate piece of paper to show
your work. You can always check your answer using molar enthalpies of formation (∆Hof)
   1. Find the standard molar enthalpy for the reaction C(s) + ½ O2(g) → CO(g)
             Given that     C(s) + O2(g) → CO2(g)          ∆Ho = -394 kJ
             and            CO2(g)      → CO(g) + ½ O2(g) ∆Ho = +283 kJ
      1. Cancel
                             C(s) + O2(g) → CO2(g)         ∆Ho = -394 kJ
                             CO2(g)      → CO(g) + ½ O2(g) ∆Ho = +283 kJ
      2. Add
                             C(s) + ½ O2(g) → CO(g)         ∆Ho = -111 kJ
   2. The standard enthalpy changes for the formation of aluminium oxide and iron (III) oxide
      are    2 Al(s) + 3/2 O2(g) → Al2O3(s)          ∆Ho = -1676 kJ
                      2 Fe(s) + 3/2 O2(g) → Fe2O3(s)        ∆Ho = -824 kJ
                    o
      Calculate ∆H for the reaction: Fe2O3(s) + 2 Al(s) → Al2O3(s) + 2 Fe(s)
      1. Inverse B
                     2 Al(s) + 3/2 O2(g) → Al2O3(s)         ∆Ho = -1676 kJ
                     Fe2O3(s)       → 2 Fe(s) + 3/2 O2(g)   ∆Ho = +824 kJ
      2. Cancel
                     2 Al(s) + 3/2 O2(g) → Al2O3(s)         ∆Ho = -1676 kJ
                     Fe2O3(s)       → 2 Fe(s) + 3/2 O2(g)   ∆Ho = +824 kJ
      3. Add
                     Fe2O3(s) + 2 Al(s) → Al2O3(s) + 2 Fe(s) ∆Ho = -852 kJ
   3. Coal gasification converts coal into a combustible mixture of carbon monoxide and
      hydrogen, called coal gas, in a gasifier: H2O(l) + C(s) → CO(g) + H2(g) ∆Ho = ?
      Calculate the standard enthalpy change for this reaction from the following chemical
      equations:     2 C(s) + O2(g) → 2 CO(g)              ∆Ho = -222 kJ
                             2 H2(g) + O2(g) → 2H2O(g)            ∆Ho = -484 kJ
                             H2O(l)        → H2O(g)               ∆Ho = +44 kJ
      1. Divide equation A and B by 2 and inverse equation B
                             C(s) + ½O2(g) → CO(g)                ∆Ho = -111 kJ
                             H2O(g)        → H2(g) + ½O2(g)       ∆Ho = +242 kJ
                             H2O(l)        → H2O(g)               ∆Ho = +44 kJ
      2. Cancel
                             C(s) + ½O2(g) → CO(g)                ∆Ho = -111 kJ
                             H2O(g)        → H2(g) + ½O2(g)       ∆Ho = +242 kJ
                             H2O(l)        → H2O(g)               ∆Ho = +44 kJ
      3. Add
                             H2O(l) + C(s) → CO(g) + H2(g)        ∆Ho = +175 kJ
4. This coal gas can be used a fuel: CO(g) + H2(g) + O2(g) → CO2(g) + H2O(g)
   Predict the change in enthalpy for this combustion reaction from the following equations:
                  2 C(s) + O2(g) → 2 CO(g)               ∆Ho = -222 kJ
                          C(s) + O2(g) → CO2(g)                 ∆Ho = -394 kJ
                          2 H2(g) + O2(g) → 2H2O(g)             ∆Ho = -484 kJ
   1. Divide equation A and C by 2 and inverse equation A
                          CO(g)      → C(s) + ½O2(g)            ∆Ho = +111 kJ
                          C(s) + O2(g) → CO2(g)                 ∆Ho = -394 kJ
                          H2(g) + ½O2(g) → H2O(g)               ∆Ho = -242 kJ
   2. Cancel
                          CO(g)      → C(s) + ½O2(g)            ∆Ho = +111 kJ
                          C(s) + O2(g) → CO2(g)                 ∆Ho = -394 kJ
                          H2(g) + ½O2(g) → H2O(g)               ∆Ho = -242 kJ
   3. Add
                      CO(g) + H2(g) + O2(g) → CO2(g) + H2O(g) ∆Ho = -525 kJ
5. Use the following calorimetrically determined enthalpy changes to predict the standard
   enthalpy change for the reaction of ethene with chlorine gas.
                 C2H4(g) + Cl2(g) → C2H3Cl(g) + HCl(g)         ∆Ho = ?
                        H2(g) + Cl2(g) → 2HCl(g)              ∆Ho = -185 kJ
                        C2H4(g) + HCl(g) → C2H5Cl(l)          ∆Ho = -65 kJ
                        C2H3Cl(g) + H2(g) → C2H5Cl(l)         ∆Ho = -140 kJ
   1. Inverse equation C
                        H2(g) + Cl2(g) → 2HCl(g)              ∆Ho = -185 kJ
                        C2H4(g) + HCl(g) → C2H5Cl(l)          ∆Ho = -65 kJ
                        C2H5Cl(l) → C2H3Cl(g) + H2(g)         ∆Ho = +140 kJ
   2. Cancel
                        H2(g) + Cl2(g) → 2HCl(g)              ∆Ho = -185 kJ
                        C2H4(g) + HCl(g) → C2H5Cl(l)          ∆Ho = -65 kJ
                        C2H5Cl(l)      → C2H3Cl(g) + H2(g)    ∆Ho = +140 kJ
   3. Add
                 C2H4(g) + Cl2(g) → C2H3Cl(g) + HCl(g)        ∆Ho = -110 kJ
6. Given:                 CaCO3(s)      → CaO(s) + CO2(g)      ∆Ho = 175 kJ
                          Ca(OH)2(s) → H2O(l) + CaO(s)                ∆Ho = 67 kJ
                          Ca(OH)2(s) + 2 HCl(g) → CaCl2(s) + 2 H2O(l) ∆Ho = -198 kJ
   Predict ∆Ho for        CaCO3(s) + 2 HCl(g) → CaCl2(s) + H2O(l) + CO2(g)
   1. Inverse B
                          CaCO3(s)      → CaO(s) + CO2(g)             ∆Ho = 175 kJ
                          CaO(s) + H2O(l) → Ca(OH)2(s)                ∆Ho = -67 kJ
                          Ca(OH)2(s) + 2 HCl(g) → CaCl2(s) + 2 H2O(l) ∆Ho = -198 kJ
   2. Cancel
                          CaCO3(s)     → CaO(s) + CO2(g)              ∆Ho = 175 kJ
                          CaO(s) + H2O(l) → Ca(OH)2(s)                ∆Ho = -67 kJ
                          Ca(OH)2(s) + 2 HCl(g) → CaCl2(s) + 2 H2O(l) ∆Ho = -198 kJ
   3. Add
                   CaCO3(s) + 2 HCl(g) → CaCl2(s) + H2O(l) + CO2(g) ∆Ho = -90 kJ
7. Find     2 C2H6(g) + 7 O2(g) → 4 CO2(g) + 6 H2O(g)           ∆Ho = ?
   if                      C2H4(g) + 3 O2(g) → 2 CO2(g) + 2 H2O (g)   ∆Ho = -1323 kJ
   and                     C2H4(g) + H2(g) → C2H6(g)                   ∆Ho = -137 kJ
   and                     H2(g) + ½ O2(g) → H2O(g)                    ∆Ho = -242 kJ
   1. Inverse equation B and multiply equation A, B and C by 2
                        2 C2H4(g) + 6 O2(g) → 4 CO2(g) + 4 H2O(g) ∆Ho = -2646 kJ
                        2 C2H6(g)       → 2C2H4(g) + 2 H2(g)       ∆Ho = +274 kJ
                        2 H2(g) + 1 O2(g) → 2 H2O(g)               ∆Ho = -484 kJ
   2. Cancel
                        2 C2H4(g) + 6 O2(g) → 4 CO2(g) + 4 H2O(g) ∆Ho = -2646 kJ
                        2 C2H6(g)       → 2C2H4(g) + 2 H2(g)       ∆Ho = +274 kJ
                        2 H2(g) + 1 O2(g) → 2 H2O(g)               ∆Ho = -484 kJ
   3. Add
                 2 C2H6(g) + 7 O2(g) → 4 CO2(g) + 6 H2O(g)        ∆H = -2856 kJ
                 I need to divided –2856 by 2 because the question is to find the molar
             enthalpy of formation.
                 The final answer is ∆Ho = -1428 kJ/mol