Palladium-Catalyzed Cross-Coupling Reactions Organoboron Compounds
Palladium-Catalyzed Cross-Coupling Reactions Organoboron Compounds
Division of Molecular Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan
Received January 31, 1995 (Revised Manuscript Received August 17, 1995)
Contents
I. Introduction 2457
II. Synthesis of Organoboron Reagents 2458
A. Synthesis from Organolithium or Magnesium 2458
Reagents
B. Hydroboration of Alkenes and Alkynes 2458
Downloaded via TATA INST OF FUNDAMENTAL RESEARCH on October 6, 2023 at 03:09:47 (UTC).
1. Introduction
The cross-coupling reaction now accessible via a
variety of organometallic reagents may provide a
fundamentally common synthetic methodology (eq 1).
Pd-catalyst
R-M + R*-X - R-R' (1)
Akira Suzuki was bom in Hokkaido, Japan, in 1930. He received his
undergraduate and graduate training at Hokkaido University and joined
In 1972, Kumada and Tamao1 and Corriu2 reported the faculty in 1961 as an assistant professor. He spent two years as a
independently that the reaction of organomagnesium postdoctoral associate with Professor Herbert C. Brown al Purdue
reagents with alkenyl or aryl halides could be mark- University and was promoted to the rank of professor in 1971. After
retirement from Hokkaido University, Akira Suzuki moved to Okayama
edly catalyzed by Ni(ll) complex. Kochi3 found the
University of Science as a chemistry professor in 1994. His current
efficiency of Fe(III) catalyst for the cross-coupling of interests are mainly in the field of organoboron chemistry, with emphasis
Grignard reagents with 1-halo-1-alkenes and Li2- on applications to organic synthesis, organometallic chemistry, and the
CuCl4 catalyst for haloalkanes. The palladium- study of reactive intermediates.
catalyzed reaction of Grignard reagents was first
reported by Murahashi,4 the synthetic utility of which reagents. After those discoveries, many other orga-
was then amply demonstrated by Negishi5 on the nometallic reagents have proven to be highly useful
reactions of organoaluminum, zinc, and zirconium as nucleophiles for the cross-coupling reaction, e.g.,
organolithiums by Murahashi,6 organostannans by
f
Present address: Kurashiki University of Science and the Arts, Migita7 and Stille,® l-alkenylcopper(I) by Normant,9
Kurashiki 712, Japan. organosilicon compounds by Hiyama.10 These reac-
0009-2665/95/0795-2457$15.50/0 © 1995 American Chemical Society
2458 Chemical Reviews, 1995, Vol. 95, No. 7 Miyaura and Suzuki
(10)
acids or their esters. Hydroboration of terminal 2. r-PrOH RY^B(OPr)2
H
4a: X= Br
alkynes with 9-BBN leads to the formation of sig- 4b: X= I
nificant quantities of dihydroboration products. How-
ever, dihydroboration of 1-alkynes, followed by de- B(OPr)2
boration with benzaldehyde provides 9-[(£)-l-al-
kenyl]-9-BBN derivatives (3d) in high yields with
4 + KHB(OPr)3 R1^ H (11)
H
high trans selectivity.30 5
H B(OPr)2
R'.
4 + R2Li (12)
Cl^dfPPh* (13)
2 4b + R2ZnX
2b: V2= Br2*SMe2 R0H> 3b: y2 =
(OR)2
2e: Y2 =
(-CH -
CHCH3)2 =(Sla)2 3c R2= alkyl, aryl, 1-alkenyl, and 1-alkynyl
CKj CH3
which are not available by conventional hydrobora-
2d: Y2- 3d tion of internal alkynes (eq 13).36
1. BBr3 Br-
HC=CH
Terminal and internal (Z)-l-alkenylboronates are 2. to20
B(OPr)2
H
prepared from (Z)-(haloalkenyl)boronic esters (4) H
organolithiums35 takes place with complete inversion These two-step procedures are useful to achieve a
of configuration at the sp2 carbon (eqs 11 and 12).
formal carboboration of alkynes with a variety of
The reaction is almost quantitative and highly selec-
tive (inversion >99%). Thus, the boron derivatives organic groups.
prepared in situ can be directly used for the following D. Miscellaneous Methods
cross-coupling reaction without further purification.
On the other hand, alkylation of 4b with organozinc An efficient route to (-E)-l-alkenylboronates from
reagents in the presence of a palladium catalyst carbonyl compounds is achieved by the reaction with
stereospecifically provides (E)-1 -alkenylboronates (7) lithio(boryl)methanes. The (E)/(Z) isomeric ratio is
2460 Chemical Reviews, 1995, Vol. 95, No. 7 Miyaura and Suzuki
reported to be ~20:1 (eq 17).41 On the other hand, a esters of boronic acids are reported to be isolated by
trimethylsilyl analog gives a czs-rich isomer (~70:30) flash chromatography on silica gel.50
on reaction with aldehydes (eq 18).42 The reaction
of lithiotriborylmethane with aldehydes or ketones III. Palladium-Catalyzed Reactions of
yields 1,1-alkenyldiborates (eq 19).43 Organoboron Compounds and Their Mechanism
H
A. Cross-Coupling Reaction
BuLi R!sJns
O0^
1.
10
r~\ 2. R’CHO
-
401.
1.
2.
BuLi
O o-C A. ,
(19)
ses.11,51 It is significant that the great majority of
cross-coupling reactions catalyzed by Ni(0), Pd(0),
and Fed) are rationalized in terms of this common
catalytic cycle.
Oxidative addition11,52 of 1-alkenyl, 1-alkynyl, allyl,
Alkynylboronates are attacked by many electro-
benzyl, and aryl halides to a palladium(O) complex
philes at the position /3 to the boron atom. The affords a stable irazzs-a-palladium(II) complex (11).
following rearrangement gives a variety of function- The reaction proceeds with complete retention of
alized 1-alkenylboranes (eq 20).12’44 The stereochem-
istry can be either E or Z, or a mixture of the two in configuration for alkenyl halides and with inversion
for allylic and benzylic halides. Alkyl halides having
most cases.
/3-hydrogen are rarely useful because the oxidative
addition step is very slow and may compete with
R1—B-C=CR2 + EX (20) /3-hydride elimination from the a-organopalladium-
(II) species. However, it has been recently shown
that iodoalkanes undergo the cross-coupling reaction
EX= CISnMej, NCCHjl, EtO^CCH-Br, oxirane with organoboron compounds (sections IV.F and
VI).53
Allylboration of 1-alkynes proceeds at room tem- Oxidative addition is often the rate-determining
perature to give cis addition products in high yields step in a catalytic cycle. The relative reactivity
decreases in the order of I > OTf > Br » Cl. Aryl
(eq 21).45 The Diels-Alder reaction between 2-(di-
and 1-alkenyl halides activated by the proximity of
alkoxyboryl)-l,3-butadiene and dienophiles at 50 °C
provides cyclic 1-alkenylboronates (eq 22).46 electron-withdrawing groups are more reactive to the
oxidative addition than those with donating groups,
CH2=CHCH2 B(OMs)2 thus allowing the use of chlorides such as 3-chlo-
R CsCH + (C3H5)3B —-
2 MeOH
)=( (21) roenone for the cross-coupling reaction. A very wide
r H
range of palladium(O) catalysts or precursors can be
used for cross-coupling reaction. Pd(PPhs)4 is most
commonly used, but PdCl2(PPhs)2 and Pd(OAc)2 plus
PPI13 or other phosphine ligands are also efficient
since they are stable to air and readily reduced to
the active Pd(0) complexes with organometallics or
phosphines used for the cross-coupling.54 Palladium
The addition of diboron compounds to alkynes is complexes that contain fewer than four phosphine
an excellent method for the synthesis of czs-diboryl ligands or bulky phosphines such as tris(2,4,6-tri-
alkenes (eq 23).47 The reaction is catalyzed by Pt-
(PPhs)4 at 80 °C and works well with terminal and
internal alkynes. The addition of the Si—B48 or Sn—
B49 bonds to alkynes gives mixed-metal alkenylboron
reagents which have potential ability for use in the
stepwise double cross-coupling reaction at the both
metalated carbons.
R1 R2
(RO)2B-B(OR)2
R1-C=C-R2
Pt-catalyst
)=< (23)
(RO)2B B(OR)2
•12 v 11
methoxyphenyl)phosphine are, in general, highly Na2PdCl4 catalyst (eq 27),61 although it still remains
reactive for the oxidative addition because of the obscure whether the reaction indeed proceeds through
ready formation of coordinate unsaturated palladium the transmetalation or other processes.
species.55
Reductive elimination of organic partners from 12 BuCH=CHB(OH)2 +
Pd(OAc)2 + CH2=CHC02Et
reproduces the palladium(O) complex.56-58 The reac-
tion takes place directly from cis-12, and the trans- -
BuCH=CHCH=CHC02Et (26)
12 reacts after its isomerization to the corresponding
ds-complex (eqs 24 and 25). The order of reactivity 2 PhB(OH)2 + Na2PdCI4- Ph-Ph (27)
is diaryl- > (alkyl)aryl- > dipropyl- > diethyl- >
dimethylpalladium(II), suggesting participation by In spite of these previous reports, organoboron
the jr-orbital of aryl group during the bond formation
compounds are quite unlikely to participate in the
(eq 24).58b Although the step of 1-alkenyl- or 1-alky-
nylpalladium(II) complexes is not studied, the similar catalytic cycle of cross-coupling reaction since they
are inert to the organopalladium(II) halides (11) such
effect is observed in the reductive elimination of
as PdCl2, PdCl2(PPh3)2, or PhPdI(PPh3)2.62 There is
related platinum(II) complexes.59
some experimental evidence for the transmetalation
to the transition metals. The reaction of organobo-
ranes with organomercurials proceeds under neutral
conditions when Hg(OAc)2, Hg(OR)2, or HgO is used.63
It has also been reported that the addition of sodium
hydroxide or other bases exerts a remarkable effect
on the transmetalation rate of organoboron reagents
with metallic halides, such as mercuric,19 63 silver,13
The thermolysis of cjs-(dialkyl)palladium(II)-L2, auric,64 and platinic halides.64 Thus, the transmeta-
which is an intermediate on the alkyl—alkyl coupling, lation with transition-metal complexes appears to
is inhibited by excess phosphine (L), hence it is proceed well indeed, but the choice of suitable bases
considered to be initiated by the rate-determining and ligands on transition-metal complexes is es-
dissociation of phosphine ligand (L) producing a sential.
three-coordinated ds-(dialkyl)palladium(II)*L com- Preliminary successful results have reported that
plex (dissociative mechanism, eq 25).57 Thus, the CE)-l-hexenyl-l,3,2-benzodioxaborole couples with
effect of phosphine ligands is comparable to the order iodobenzene in the presence of Pd(PPhs)4 and bases
of ease of their dissociation: dppe « PEt3 < PEt2Ph to produce a mixture of desired and undesired
< PMePh2 < PEtPh2 < PPI13. coupling products depending on the base and the
catalyst used (eq 28).65
\ -L V
Me-Pd-Me Pd-catlyst / bass
Me-Pd-Me .
+ Ph-I -
3a(R1="Bu)
L
"Bu +
^"y?
Ph
(28)
Me .
|_
Me 13 14
‘
L-Pd-Me « L—Pd-Me —Me-Me + Pd(0)*L2 (25)
L The formation of normal coupling product 13
predominates when sodium hydroxide or alkoxides
On the other hand, cis-alkenyl- and cis-arylpalla- are used, whereas a combination of triethylamine and
dium(II) complexes, which are intermediates in most a palladium catalyst without phosphine ligands leads
of cross-coupling reactions discussed here, directly almost exclusively to an abnormal head-to-tail cou-
eliminate organic partners from the four-coordinated pling product 14 (Table l).65b
complex (nondissociative—nonassociative mechanism, The formation of the abnormal coupling product 14
eq 24).58 can be best understood by the mechanism of Heck
Although the mechanism of oxidative addition and reaction66 for vinylic metal compounds, that often
reductive elimination sequences are reasonably well predominates on the cross-coupling reaction of weakly
understood and are presumably fundamentally com-
mon processes for all cross-coupling reactions of Table 1. Reaction Conditions for Head-to-Head and
organometallics, less is known about the transmeta- Head-to-Tail Cross-Coupling (Eq 28)°
lation step because the mechanism is highly depend- base yield,%
ent on organometallics or reaction conditions used catalyst solvent (equiv) time, h (13/14)
for the couplings. Pd(PPh3)4 benzene none 6 0
The transmetalation between 1-hexenylboronic Pd(pph3)4 benzene NaOEt (2) 2 99 (100/0)
acid and palladium(II) acetate was first reported by Pd(pph3)4 benzene NaOH (2) 2 99 (100/0)
Heck.60 The in situ preparation of (E)- or (Z)-l- Pd(pph3)4 DMF Et3N (5) 20 54 (10/90)
PdCl2(PPh3)2 DMF Et3N (5) 20 66 (8/92)
alkenylpalladium(II) species and its addition to ethyl Pd black DMF Et3N (5) 20 94 (4/96)
acrylate readily proceeds at room temperature while Pd black DMF NaOH (2) 6 86 (56/44)
retaining their original configurations (eq 26).38 “
All reactions were carried out at 80 °C by using Pd catalyst
Before this observation, Davidson and Triggs re-
(3 mol %), Phi (1 equiv), base, and 3a (1.1 equiv).
ported the dimerization of phenylboronic acid with
2462 Chemical Reviews, 1995, Vol. 95, No. 7 Miyaura and Suzuki
such as sodium or potassium carbonate, phosphate, reaction at pH 9.5-11.75 The p.Ka of phenylboronic
=
hydroxide, and alkoxides.20-65 The bases can be used acid is 8.8, thus suggesting the formation of the
as aqueous solution, or as suspension in dioxane or
DMF. In contrast, the cross-coupling reaction with hydroxyboronate anion [RB(OH)3_] at pH > pifA and
its transmetalation to the palladium(II) halides. The
certain electrophiles, such as allylic acetates,656 1,3- formation of ArB(OH)3~ at pH 11-12 has been =
R1
VPd(0)
An alternative transmetalation process found dur-
X
ing our investigations is that organoboron compounds
readily transfer their organic groups to (alkoxo)-
It is apparent that the transmetalation between palladium(II) complexes under neutral conditions (eq
organopalladium(II) halides and organoboron com- 32).
pounds does not occur readily due to the low nucleo-
R2
philicity of organic group on boron atom. However, R2 R’-BX2
the nucleophilicity of organic group on boron atom I
I
R1
)
Pd(0)
OR
Table 2. Cross-Coupling Reaction of “Ate” Complexes
(Eq 30) 20
yield, % (18/19)
R
Although the cross-coupling reaction with organic
Pd(PPh3)4 PdCl2(dppf) halides generally requires the assistance of bases,
c4h9 81 82 allylic phenoxides and cinnamyl acetate react with
ch3ch=ch 85 (45/55) 95 (53/47)
1-alkenylborates under neutral conditions to yield the
c4h9c=c 98 (71/29) 81 (95/5)
Ph 79 (38/62) 92 (53/47) corresponding 1,4-dienes, 75% and 12%, respectively
(eq 33).656’78 Thus, the (.T-allylphenoxo)- and (71-
Reactions of Organoboron Compounds Chemical Reviews, 1995, Vol. 95, No. 7 2463
observed on the alkenyl-alkenyl coupling reaction Rel. rale: MeO (0.7), Me (0.9), H (1.0), F (1.7), MeCO (2.6)
(eq 34). The (alkoxo)palladium(II) complexes are
stable enough to be isolated if substituted with
ing that electron-withdrawing substituents accelerate
electron-withdrawing groups (21b), otherwise 13- the reaction (eq. 38 and Figure 3).
elimination occurs very quickly to give the hydri- These electronic effects are consistent with the Se2
dopalladium(II) species and carbonyls.79 The isolated (coord) mechanism involving a coordination of the
21b easily reacts with 1-alkenylborates precipitating
alkoxy ligand to the boron atom at the the rate-
palladium black, whereas the corresponding chloro determining step. As a result of complex formation,
complex (21a) is quite inert even at the refluxing the transfer of an activated organic group from boron
temperature of THF.65b The (hydroxo)palladium to palladium then takes place82 (Figure 4). Such
complex recently reported by Alper80 also gives a complexation prior to migration is one of the crucial
cross-coupling product (70%) together with biphenyl steps essential in all ionic reactions of organoboron
(15%) (eq 35).
compounds; namely, the well-known intramolecular
1,2-migration from the organoborane/electrophile
3a(R'="Bu)
RCH=CHCH2OX
—-
"BuCH=CHCH2CH=CHR (33) complex.
Pd(PPh3)4 For the transmetalation between optically active
benzene, reflux
(l-phenylethyl)silicate10d,e or -tin83 and palladium(II)
X=COMe; R=Ph (12%), X=Ph; R=H (75%) halides, the Se2 (cyclic) or Se2 (open) mechanism
which takes place with retention or inversion of the
Cl Cl configuration at benzylic carbon atom is proposed.
3a (R1="Hex) CU Unfortunately, these stereochemical features have
PdX(PPh;j)2 _-i y^
^
"Hex (34) not yet been established for organoboron compounds
Cl Cl because their coupling reactions are still limited to
21a: X=CI
21 b- X=OMe X=CI (0%), X=OMe (79%) primary alkylboranes.
Finally, it is of interest to note the possibility of
involvement of the (alkoxo)palladium intermediate
OO"
/=\ /=\ 20 in the palladium/base-induced cross-coupling re-
?ph3 p-MeOCeH48(OH)2
Ph-Pd-OH/,2 -
(35)
THF, rt action (eq 39).
70%
It is known that the halogen ligand on organopal-
ladium(II) halide is readily displaced by alkoxy,
hydroxy, or acetoxy anion to provide the reactive Pd-
Tsuji and co-workers have shown that propargylic OR complexes (20),84 which have been postulated as
carbonate 22 oxidatively adds to the palladium(O)
complex to provide an (alkoxo)palladium intermedi-
ate 23 with elimination of carbon dioxide (eq 36).81
Thus, the reaction of 22 with alkylboranes, 1-al-
kenyl-, 1-alkynyl and arylboronic acids or their esters
gives 24 in high yields under neutral conditions.72
Pd(0)
Me Hex Bu
A
Hex—(—CsC-Bu
0C02R
22
T Me
23
Pd-OR
R1BX2
Hex Bu Hex Bu
_1_ H=< Pd-R',-^sT* )=*=<R1, (36)
T
robx2
Me >
Pd(0)
Me
gives a slightly positive p value (+ 0.73), demonstrat- Figure 4. Se2 (coord) transition state.
2464 Chemical Reviews, 1995, Vol. 95, No. 7 Miyaura and Suzuki
& NaOR
R2
r1bx2
R2
| 1
Pd
-^p N*
Pd
1
OR
ROBX2
rj
1
R1
T" Pd(0)
(39)
20
hydroxo-, or acetatopalladium(II) intermediate should Figure 6. Cross-coupling with (alkoxy)diboron (eq 6).
be considered to be one of the crucial transmetalation
processes in the base/palladium-induced cross-cou- the diboron is proposed as a key step. The acetoxy
pling reactions. anions do not act as a base to coordinate with boron
The reaction of 1-alkenylboronates with haloenones atom under the given reaction conditions. The
shows a characteristic feature for the (alkoxo)palla- catalytic cycle is shown in the Figure 6.
dium mechanism (eq 40).86 The cross-coupling reac- A similar (methoxo)platinum intermediate has
tion with haloenones is accelerated by exceptionally been recently reported for the transmetalation be-
weak bases such as NaOAc or even EtaN, when tween a cationic platinum(II) complex and potassium
methanol is used as a solvent. The results cannot teraphenylborate (eq 42).89
be explained by the ate-complex mechanism shown
Me
in eq 27, and can be best understood by the formation
of (alkoxo)palladium(II) intermediate (28) since 27 Ls + /,°Me PhB< k + ,
V- U+
Pt -
Pt Pt (42)
readily exchanges the halogen ligand with methanol . / ,
/
Ph
i
/ SPh
due to its strong trans effect of the electron-poor
alkenyl group (eq 41).
B. Other Catalytic Process by Transition-Metal
Complexes
Recently, transition-metal complexes have been
reported as efficient catalysts for the addition of
metal reagents, including magnesium, aluminum,
silicone, zinc, germanium, and tin compounds to
alkenes and alkynes.90 Although the related reac-
tions of boron compounds are not yet well developed,
the Rh-, Pd-, or Ni-catalyzed hydroboration of al-
kenes91 and alkynes27 (eqs 43—46) has been exten-
sively studied since the catalyst allows the reaction
under very mild conditions and often can direct the
The palladium-catalyzed cross-coupling reaction of course of the addition of borane to a different
(alkoxy)diboron derivatives provides the first one-step selectivity than the uncatalyzed reaction (eq 43).91m
procedure for arylboronic esters from aryl halides (eq Asymmetric hydroboration of styrene is achieved
6).87 Potassium acetate is one of the best bases to using a bidentate chiral ligand (eq 44).911 Hydrobo-
achieve a selective cross-coupling, and stronger bases ration of 1,3-butadiene stereoselectively affords a (Z)-
such as potassium carbonate or phosphate give biaryl crotylboronate with a palladium(O) complex (eq 45).91k
byproducts arising from further coupling of the The PdCl2(dppf) and NiCl2(dppe) or -(dppp) complexes
product with aryl halides. afford good results for the hydroboration of alkynes
The treatment of the phenylpalladium(II) bromide (eq 46).27b
with KOAc gives a £rcms-PhPdOAc(PPh3)2 (29)87,88 The Pd(0)-catalyzed addition of the B—S bond to
which exhibits high reactivity toward (alkoxy)diboron terminal alkynes regio- and stereoselectively pro-
derivatives selectively giving the phenylboronate at duces (Z)-2-(organothio)-1 -alkenylboron reagents (eq
room temperature (Figure 5). Thus, the transmeta- 47) 92 addition of (alkoxy)diboron to alkynes to
lation involving formation of 29 and its reaction with give cis-bis(boryl)alkenes (diboration) is catalyzed by
a platinum(O) catalyst47 (eq 23).
PtiBr The additions proceed regioselectively in favor of
terminal boron adducts to produce (Z)-l-alkenylboron
Pd(PPh3)«
compounds through a syn addition of the X-B bond
(RO)2BB{OR)2 to 1-alkynes. The mechanism is fundamentally dif-
ferent from the uncatalyzed process and is postulated
fPh3
Ph-Pd-Br
KOAc (j>Ph3
Ph-Pd-OAc _L_ to proceed through the oxidative addition of the X-B
PPh3
DMSO
r.t PPh3
benzene
r.t T
Pd(0)
PhB(OR)2
bonds (X= H, RS, Y2B) to the transition-metal
29 complex [M(0)] to form X-M—BY2 species (32), fol-
Figure 5. Formation of palladium(II) acetate and its lowed by the migratory cis insertion of alkenes or
transmetalation. alkynes into the X-M bond, and finally the reductive
Reactions of Organoboron Compounds Chemical Reviews, 1995, Vol. 95, No. 7 2465
OSifBu)Ph2 Pd(OAc)2
3c
Vr (48)
—
Pd(0)
OSi('Bu)Ph2 OSi('Bu)Ph2
H transfer from
BnO' 'Y' 'Y' 'OH + BnO^rN^CIH (43)
solvent
R
Pd(ll)B(Sia), Pd(ll)H
Rh(BINAP)* PhCH=CH2
PhCH=CH2 + 2a -
96%ee
Ph-CH
’•vU (44) ArB(OH)2
Pd(OAo)2 / NaOAc
AoOH, 25 “C
PhCH=CHPh
34
(49)
Pd(0)
ch2=chch=ch2 +
„
2a --
Pd(PPh3)4
\=/ /"OCD (45)
PhCH=CH2
81% [ Ar-Pd(ll)-B(OH)2]
R2
NlCfe(dppo) The mechanism for the carbonylative cross-cou-
R’SCsCR2 + 2a
R’s'A!P'lf*! (46)
pling reaction for synthesis of ketones is discussed
30 in section VI. The mechanisms for alkoxycarbon-
ylation and dimerization of organoboron compounds,
R’CsCH + R2s *=*- which require a reoxidant of palladium similar to the
-<D R„r 31
<D
(47)
Wacker process, is discussed in section VII.
MejSiCsCH
9-BBN
MejSiCHjCH
0 ArCHO 36 + 41
69 %
(61)
Entry Alkenylboron Reagent Alkenyl Halide Reaction Conditions, Product Yield/% Ref
_catalyst/base/solvenlAemp._
Pd(PPh3)4/NaOEt 86 (>98) 98
C,He^<0 /benzene/reflux
CeH„
2
Br-^j Pd(PPh3)4/NaOEt X = Sia 49 (>98) 102
C4H„
C«Hi3 /benzene/reflux
3 X = OPt' 97 (>99) 99
C3H7v^kB(c_Hx)j
Br^* Pd(PPh3)4/aq.NaOH 40 (-) 113a,b
/THF/reflux
ch3
Ph ch3 Ph
C4Hj
\
Br'Y Pd(PPh3)4/NaOEt
/benzene/reflux
87 (-) 117
Q" CHj
Pd(PPh3)4/aq. NaOH
Br"^SPh benzene, reflux
91 (>98) 118
Si
O,
11 PdfPPh^aOEt 52 (-) U6
/benzene/reflux
B(Sia)2
OBn
Figure 9. The coupling reactions induced by T10H. /3-Halo-a,/?-unsaturated ketones and esters are
highly susceptible to Sn2 displacement at the carbon
difficulty of purification of a geometrical mixture, the attached to halogen, thus strong bases are undesir-
stereodefined syntheses might be essential for such able for such substrates.86’128-131 However, relatively
trienes. As discussed previously, the coupling reac- weak bases, such as sodium acetate and even tri-
tion is carried out more efficiently by 1-alkenylbo- ethylamine, are effective when the reaction is con-
ronic acids or esters; however, l-alkenyl(disiamyl)- ducted in alcohol solvents (eqs 40 and 64).86 Sodium
boranes have been often used as a coupling reagent acetate suspended in methanol, and aqueous or solid
since hydroboration of alkynes having allylic or carbonate in ethanol give best results for ha-
loenones86 and haloesters,129 respectively. PdCl2-
propargylic hydroxy functional groups does not afford
good results with catecholborane. Aqueous lithium (PPli3)2 or a combination of Pd(OAc)2 plus PPI13 (4
hydroxide is shown to be one of the best bases that equiv) is desirable to achieve high yields. The cis/
avoids the C—B bond breaking during the cross- trans isomerization is rarely observed in the pal-
coupling (eq 62).126 ladium-catalyzed cross-coupling, but the reaction
with (Z)-yd-bromoacrylate gives a mixture of stereo-
A reverse combination of 1-alkenylboronates and isomers. PdCl2(dppf) is effective for carrying out the
1-halo-1,3-alkadienes is expected to lead to the same reaction at room temperature in order to depress the
trienes, but this combination is generally not recom- isomerization during the coupling (eq 65).129
mended because of the synthetic problems of unstable Conjugated enynes are of importance in them-
dienyl halides and the side reaction eliminating selves, as well as in their utilization for synthesis of
hydrogen halides with bases to produce the corre- conjugated dienes. The cross-coupling reaction of
sponding enyne. However, the thallium base allows l-alkenyl(disiamyl)boranes (3c) with 1-bromo-l-
Reactions of Organoboron Compounds Chemical Reviews, 1995, Vol. 95, No. 7 2469
Pd(OAc)2*dppf 20 24 73 ( 5/95)
0^-B(OHfe +x-0 I
Z
benzene, reflux
OO
Z
I
<72>
C03 suspended in toluene works well for base- boronic acid) 2,6-dimethoxy (125), 2-F (77), 2-C1 (59),
sensitive reactants.149 The coupling is also carried 2-MeO (11), 4-MeO (4.2), 2-Me (2.5), 3-F (2.3), 3-Me
out in an aqueous medium by using water-soluble (2), 4-F (1.7).155 For example, the coupling of
phosphine ligand (/n-Na03SC6H4PPh2).101 Although 2-formylphenylboronic acid with 2-iodotoluene at 80
the conditions using such bases are not entirely °C using an aqueous Na2C03 in DME gives only 54%
compatible with the functional groups present in the of biaryl with benzaldehyde (39%). The yield can be
desired reactants, the extremely mild conditions improved to 89% by using the corresponding ester of
using CsF or BU4NF (eq 31) allow the synthesis of boronic acid and anhydrous K3PO4 suspended in
various functionalized biaryls (eq 73).77 DMF (eq 76).151 However, Negishi’s coupling using
corresponding arylzincs5 or Stille’s coupling using
Ph-B(OH)2 + Br C HjCOCHj arylstannanes8e is perhaps a more general alternative
in such cases.
Pd(PPh3)4
An aryl-aryl exchange between the palladium
CsF/DME at 100 °C
CHjCOCHj (73) center and phosphine ligands in palladium(II) com-
85% plexes is enhanced by electron-donating substitu-
ents.156 The synthesis of biaryls substituted with
Phosphine-based palladium catalysts are generally electron-donating groups results in contamination of
used since they are stable on prolonged heating; the coupling product with the aryl group on phos-
however, extremely high coupling reaction rate can phine ligand. Tris(2-methoxyphenyl)phosphine is
be sometimes achieved by using palladium catalysts effective in reducing the formation of such by-product
without a phosphine ligand such as Pd(OAc)2, [(??3- while maintaining a high yield of the desired product
C3H5)PdCl]2, and Pd2(dba)3-C6H6.75’150 Phosphine- (eq 77).157
free palladiums are approximately 1 order of mag-
nitude more active than ArPdIII*PPh3)2, both of which +
Pd(PArj)4
Br
are in turn markedly more active than Pd(PPh3)4 (eq B(OH)2
aq. Na2C 03
DME
74). MeO OMe
catalyst
PhB(OH)2 + I N02 (74) (77)
aq. K2C O3
acetone
65 °C MeO OMe
catalyst:
Pd(PPha)4 (8 h, 23%); PhPdl(PPh3)2 (0.33 h, 53%); Pd(OAc)2 (0.75 h, 98%) Ar = Ph 54% 27%
Ar=o-MeOC6H5 79% 3%
Although steric hindrance of aryl halides not a
major factor for the formation of subsituted biaryls, The cross-coupling reaction of arylboronic acids is
low yields are resulted in when using ortAo-disub-
largely unaffected by the presence of water, tolerating
stituted arylboronic acids. For example, the reaction a broad range of functionality, and yielding nontoxic
with mesitylboronic acid proceeds only slowly because
of steric hindrance during the transmetalation to byproducts. The reaction offers an additional great
advantage of being insensitive to the presence of
palladium(II) halide. The addition of strong bases, (W/io-functional groups or heteroaromatic rings.
e.g., aqueous NaOH or Ba(OH)2, both in benzene and Gronowitz has shown that unsymmetrically substi-
DME exerts a remarkable effect on the acceleration tuted bithienyls141158 and thienylpyridines159 can be
of the coupling rate (eq 75).151-153 Although weak
bases give better results for less hindered arylboronic
regioselectively synthesized by the cross-coupling
reaction of thienylboronic acids (eq 78). Arylation of
acids, the order of reactivity for mesitylboronic acids 5-bromonicotinates is demonstrated by Thompson160
corresponds to the basic strength: Ba(OH)2 > NaOH (eq 79). Diethyl(3-pyridyl)borane synthesized by
> > >
K3PO4 Na2C03 NaHCOg.151 Terashima147 is a unique air-stable reagent for the
heteroarylation (eq 80).
-q
Pd(PPfr)4
B{OH)2 + Ar-X
aq. 8a(OH)2
DME, 80 °C
0"Ar (75)
Q"0 CHO
* *x
PflPPha),
KaP04
DMF, 80 "C
CHO
(76)
(79)
3. H+
Ar-Br
Pd(PPh3)4
aq. Na20O3
<> (81)
H00c
ME, reflux Planar Poly(p-phenylene)
Water-Soluble Poly(p-phenylene)
PfaSiO'
1-naphthylB(OH)2
Pr,SiO' (83)
PdCfe(PPh3)2
aq. NasC O3
THF, reflux
75%
3-02NC6H4B(0H)2
(84)
Pd(PPt*)4
aq. Na^ 03/ LiCl
DME, reflux
tionalized alkylboranes or organic halides. The reac- tion of 9-alkyl-9-BBN with a-iodoenones. It is rec-
tion can be carried out by powdered K2CO3 or K3PO4 ognized that cesium carbonate in the presence of
suspended in DMF at 50 °C in the presence of PdCl2- water extremely accelerates the coupling reaction
(dppf) catalyst.185’186 Pd(PPh3)4 catalyst works well carried out at room temperature (eq 86).194
when aqueous NaOH in benzene or K3PO4 in dioxane
are used.185 The characteristic features of both
catalysts are that PdCUidppf) is used well in polar .(M.02C(CH2)e).9.BBN
solvents (e.g., THF and DMF), but Pd(PPh3)4 gives QT1 PdCla(dppf)/P^As
good results in nonpolar solvents, such as benzene TBDMSO-'
DMF/THF/H2O
TBDMStf
and dioxane. M.
0
One of primary alkyl groups in trialkylboranes
,(CH2)6C02H
participates in the coupling, and the reaction with J (86)
secondary alkyl is very slow.185 Thus, representative
hydroboration reagents, such as 9-BBN, disiamylbo-
rane, dicyclohexylborane, and borane, can be used as
hydroboration reagents for terminal alkenes. How-
ever, 9-BBN is most accessible due to its ease of use, 9-Methyl and 9-[(trimethylsilyl)methyl]-9-BBN are
high selectivity on hydroboration, and high reactivity easily synthesized by the reaction of the correspond-
on the cross-coupling reaction. ing lithium reagents with 9-methoxy-9-BBN. Un-
The hydroboration coupling approach for the con- fortunately, such derivatives are spontaneously flam-
mable in air, making them particularly hazardous
struction of carbon skeletons affords several advan- to handle for isolation. However, selective oxidation
tages (eq 85).185 The high stereoselectivity of hy- with anhydrous trimethylamine AT-oxide converts
droboration provides a stereodefined alkyl center on them to air stable borinate esters (eq 87) which are
boron. The hydroboration occurs chemoselectively at efficient reagents for methylation195196 of haloalkenes
the less hindered C19-C20 double bond. In addition, or syntheses of allylic and propargylic silanes197 (eq
the alkyl group thus constructed can be readily cross-
88).
coupled with alkenyl or aryl halides under mild
conditions. R
/
B
Me3NO
(87)
45a: R=Me
45b: R=CH2SiMe3
Pd(PPh3>4
45b + C3H7 Br [ c^|7 CH2SiMe3
\=J aq. NaOH \=/ (88)
THF, reflux 97%
»
2a precursors. The ready availability of triflates from
Me-C-CH2CH2CH=CH2 Mb-C-(CH2)4b'
carbonyl compounds now offers a valuable tool for
o RhCI(PPh3)3 C
Q
toluene, 0 °C annulation of ketones (eq 93).206 Since the synthesis
of the compounds having a metal and a leaving group
Br-
C 02M 8 in the same molecule is rather difficult by other
Me-C-(CH2)4
PdCI2(dppf)
O
C 02M 0 (90) methods, the hydroboration-coupling approach pro-
TI2C03 68% vides an efficient way for such cyclization via the
THF, 50 "C
intramolecular coupling.
The coupling with triflates often fails to proceed
D. Coupling with Triflates due to the decomposition of catalysts, precipitating
Although the cross-coupling reaction with organic palladium black at the early stage of reaction.206’207
halides have been studied predominantly, it has been Presumably, triphenylphosphine used as a ligand of
most recently discovered that trifluoromethane- palladium reacts with triflates to give phosphonium
sulfonates (triflates) undergo a clean coupling with salts (eq 94).208 Addition of 1 equiv of lithium or
organoboron compounds, similar to organostan- potassium bromide is effective in preventing such a
nanes8,201 aluminum202 and zinc203 compounds. The decomposition of the catalyst, which is known to
triflates are valuable as partners for the cross- convert the labile cationic palladium(II) species to
coupling reaction, in part due to the easy access from organopalladium(II) bromide.209 Lithium chloride or
phenols or carbonyl enolates which allow the selective potassium chloride is less effective, though LiCl has
formation of aryl and 1-alkenyl electrophiles.204 The been used in most cases.184’207
cross-coupling reaction of organic triflates is previ-
LiBf
ously reviewed.205 R0Tf (R-Pd(l)] p~fO]'»Ln -
R-Pd-8r»L2 (94)
Although relatively strong bases such as aqueous
NaOH and NaOEt in ethanol have been used for the PhaP
(91)
Ready availability of cycloalkenyl triflates from
ketone precursors is superior to the synthesis of
corresponding halides. The syntheses of arylated
cycloalkenes184’210 and 2-substituted carbapenem (eq
96)211 have been achieved in excellent yields by the
(92)
reaction with triflates.
-CP
1. 9-BBN
2. Pd(PPh3)4
(93)
K3PO4
CO^e dioxane, 85 °C 76% CQ2Me
"BuCsCH + PhS
o Pd(PPh3)4 "0(j
y^i
PhS
49
(102)
Me2CsCHMgBr "Bu
_
(99) r.L
NiCls(dppp)
ether, rt
kJk, 49 + MeOH
PhS
>= (103)
'
87% (3Z)/(3E)=87/13
Pd(PPha)4 "Bu>
49 + BrCsCBu" (104)
The sequential double cross-coupling of vinylbor- aq. KOH PhS Bu"
onates and vinylmagnesium reagents provides an THF, 50 “C
70%
alternative method for synthesis of conjugated poly-
enes (eq 99).118 Unfortunately, a mixture of stereo-
isomers is given on the latter nickel-catalyzed reac-
49 + C5H,,CHO THF
H2O
w
PhS OH
reflux
tion.214 The possibility of improving catalytic con- 80%
ditions has not yet been explored. HgCfe "Bu,
(105)
The ready availability of 2-(organothio)-l-alkenyl- CH3CN/ HjO v^x"^A5^11
O
boron compounds obtained by catalytic hydroboration 85%
of l-(organothio)-l-alkynes (eq 100)27b or thiobora-
tion92 of 1-alkynes (eq 102) now offers more flexible The vinylborane 49 has unusually high nucleophi-
and reliable routes to such stereodefined alkenyl licity due to the activation by an electron-donating
sulfides in combination with the cross-coupling reac- /?-organothio group. Consequently, protodeborona-
tion with organic halides. tion proceeds instantaneously with methanol to
Reactions of Organoboron Compounds Chemical Reviews, 1995, Vol. 95, No. 7 2475
ch2=ch-ch-ch2 -- o Figure 2.
Pd*
"Bu
Pd(0Ac);/BH3
3a + ICH=CHPh
EtsN (5 equiv)
>= (117)
PhCH=CH
DMF, 80 °C
61%
As discussed in the previous section, propargylic
carbonates couple with aryl, 1-alkenyl-, 1-alkynyl-, The reaction is catalyzed by palladium black pre-
or alkylboron compounds under neutral conditions pared in situ by the reduction of Pd(OAc)2 in the
using palladium catalyst to provide allenes in high presence of an excess of triethylamine in DMF. The
yields (eq A similar coupling reaction of
36).72 use of phosphine-based palladium complexes and
organoboron compounds with 2,3-alkadienyl carbon- strong bases such as NaOEt, NaOH, and NaOAc may
ates produces 2-substituted 1,3-butadiene derivatives improve the formation of “head-to-head” coupling
in the absence of base (eq 113).228 The coupling may product (Table 1).
occur through an (alkoxo)palladium(II) intermediate The intramolecular reaction affords a convenient
formed via oxidative addition by Sn2' type displace- method for the synthesis of (exomethylene)cycloal-
ment with Pd(0), thus allowing the reaction under kenes (eqs 118 and 119).233
neutral conditions.
1 *naphthylB(OH)2
(113)
Pd(PPhs)4
benzene, reflux
(116)
RCsC '\J/ Pd(PPh3)4
THF, reflux Figure 13. Mechanism for carbonylative cross-coupling.
Reactions of Organoboron Compounds Chemical Reviews, 1995, Vol. 95, No. 7 2477
Among a variety of organometallics, organoboron ficiently slower than that of carbon monoxide inser-
compounds were first used by Kojima for the syn- tion by changing the organometallic reagents. The
thesis of alkyl aryl ketones (eq 120).235 The action reaction of organoboron reagents can be controlled
of Zn(acac)2 in this reaction is ascribed to the forma- by choosing an appropriate base and a solvent to
tion of RCOPdn(acac) species (eq 121) which under- permit the selective coupling even under an atmo-
goes transmetalation without assistance of bases (eq spheric pressure of carbon monoxide (eq 126).240
32).
PhB(OH)2/CO(1 atm)
CO ArX
PdCl2(PPh3)2 R-C-Ar PdCI2(PPh3)2 / base, anisole, 80 °C
1 + + (120)
Zn(acac)2 O
THF-HMPA, SO °C
Me-C C-Ph (126)
6 O
53
51 + Zn(acac)2 (121)
Base (53*4)= K2C03 (88/12), CsjC03 (75/25), KjPO* (65/35)
OMOM OMOM
(127)
cx
1. 9-BBN C02Me
(124)
2. CO (1 atm) \
PdOj(PPh3)2
benzene, rt 74% a9-[Me02CCMe2(CH2)3]-9-BBN / CO (1 atm) /
Pd(PPh3)4 / K3P04 / benzene, rt under irradiation of light
ou
SiMe3 CO {1 atm) SiMe3
9-BU-9-BBN MeOH
(128) 'Buvs^ls (131)
CO (1 atm) CO,Ms
PdCfe
Pd(PPh3)4 O' NaOAc
K3PO4
"Bu
55 p-benzoquinone / UCI 87%
benzene, rt
under irradiation of light 77% (E/Z=8/92)
eqs. 14 and 15
CaCH
f^B(OH)2
Ph
CO (1 atm)
MeOH
'4^u02Me (132)
PdCfe
NaOAc Ph
70% (Z>94%)
p-benzoquinone / UCI
Pd(OAc)2«4PPh3
3a or 3c R1 (133)
(129) Cu(OAc)2
+ ArX
Pd(PPha)4
R-C-Ar
VIII. Conclusion
B' (130)
1^04 II
The cross-coupling reaction of organoboron re-
.
cycle.248 Since the palladium-catalyzed cross-cou- Organic Synthesis; Harwood Academic Pub.: Amsterdam, 1983.
Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic:
pling reaction of allylic metals or halides often suffers New York, 1988.
from poor regioselectivity, the corresponding cross- (13) Gardner, J. H.; Borgstrom, P. J. Am. Chem. Soc. 1929, 51, 3375.
coupling reaction of organocopper reagents can be a Snyder, H. R.; Kuck, J. A.; Johnson, J. R. J. Am. Chem. Soc.
1938, 60, 105. Johnson, J. R.; Van Campen, M. G.; Grummitt,
more general alternative. Primary iodoalkanes couple 0. J. Am. Chem. Soc. 1938, 60, 111. Brown, H. C.; Verbrugge,
with alkyl-, 1-alkenyl-, and arylboron reagents, but C.; Snyder, C. H. J. Am. Chem. Soc. 1961, 83, 1002.
(14) Kondo, K.; Murahashi, S. Tetrahedron Lett. 1979, 1237.
secondary and tertiary iodoalkanes are limitedly used (15) Srebnik, M. Tetrahedron Lett. 1991, 32, 2449. Oppolzer, W.;
for the carbonylative cross-coupling. The cross- Radinov, R. N. Helv. Chim. Acta 1992, 75, 170. Oppolzer, W.;
coupling of 1-alkynylboron compounds has been used Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593. Agrios, K.
A. ; Srebnik, M. J. Organomet. Chem. 1993, 444, 15. Langer, F.;
much less frequently as the direct cross-coupling Waas, J.; Knochel, P. Tetrahedron Lett. 1993, 34, 5261.
reaction of terminal alkynes with aryl and alkenyl (16) Koster, R.; Benedikt, G. Angew. Chem. 1962, 74, 589. Binger,
halides in the presence of a palladium catalyst, P.; Koster, R. Angew. Chem. 1962, 74, 652. Stefani, A. Helv.
Chim. Acta 1973, 56, 1192. Giacomelli, G.; Menigagi, R.; Ca-
copper(II) iodide, and a secondary or tertiary amine porusso, A. M.; Lardicci, L. J. Org. Chem. 1978, 43, 1790.
(Sonogashira reaction)249 is more convenient in most (17) George, T. A.; Lappert, M. F. J. Chem. Soc., Chem. Commun.
cases. 1966, 463.
(18) Yamamoto, Y.; Yatagai, H.; Moritani, I. J. Am. Chem. Soc. 1975,
97, 5606. Yamamoto, Y.; Yatagai, H.; Sonoda, A.; Murahashi,
S. J. Chem. Soc., Chem. Commun. 1976, 452. Miyaura, N.; Itoh,
References
M.; Suzuki, A. Tetrahedron Lett. 1976, 255. Miyaura, N.; Itoh,
(1) (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. M.; Suzuki, A. Synthesis 1976, 618. Yamamoto, Y.; Yatagai,
1972, 94, 4374. (b) Tamao, K.; Kiso, Y.; Sumitani, K.; Kumada, Maruyama, K.; Sonoda, A.; Murahashi, S. J. Am. Chem. Soc.
M. 1972, 94, 9268. (c) Tamao, K.; Zembayashi, M.; Kiso, Y.; 1977, 99, 5652. Sasaki, N.; Miyaura, N.; Itoh, M.; Suzuki, A.
Kumada, M. J. Orgamnomet. Chem. 1973, 55, C91. (d) Hayashi, Tetrahedron Lett. 1977, 173. Miyaura, N.; Yano, T.; Suzuki, A.
T.; Konishi, M.; Fukushima, M.; Mise, T.; Kagotani, M.; Tajika, Bull. Chem. Soc. Jpn. 1980, 53, 1471. Campbell, J. B.; Brown,
M.; Kumada, M. J. Am. Chem. Soc. 1982,104, 180. (e) Hayashi, H. C. J. Org. Chem. 1980, 45, 549. Brown, H. C.; Campbell, J.
T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, B. J. Org. Chem. 1980, 45, 550. Brown, H. C.; Molander, G. A.
K. J. Am. Chem. Soc. 1984, 106, 158. For a review, see: (£) J. Org. Chem. 1981, 46, 645.
Kumada, M. Pure Appl. Chem. 1980, 52, 669. (19) Ainley, A. D.; Challenger, F. J. Chem. Soc. 1930, 2171. Torsell,
(2) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. K. Acta Chem. Scand. 1959, 13, 115. Kuivila, H. G.; Muller, T.
C. J. Am. Chem. Soc. 1962, 84, 377. Matteson, D. S.; Bowie, R.
1972, 144.
(3) (a) Tamura, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487. A. J. Am. Chem. Soc. 1964, 87, 2587. Matteson, D. S.; Allies, P.
(b) Tamura, M.; Kochi, J. K. Synthesis, 1971, 303. (c) Neumann, G. J. Am. Chem. Soc. 1970, 92, 1801. Larock, R. C.; Brown, H.
S. M.; Kochi, J. K. J. Org. Chem. 1975, 40, 599. (d) Kwan, C. L.; C. J. Organomet. Chem. 1971, 26, 35. Buhler, J. D.; Brown, H.
C. J. Organomet. Chem. 1972, 40, 265. Larock, R. C.; Brown, H.
Kochi, J. K. J. Am. Chem. Soc. 1976, 98, 4903. For a review,
see: (e) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351. C. J. Organomet. Chem. 1972, 36, 1. Matteson, D. S.; Allies, P.
(4) Yamamura, M.; Moritani, I.; Murahashi, S. J. Organomet. Chem. G. J. Organomet. Chem. 1973, 54, 35. Larock, R. C. J. Orga-
1975, 91, C39. nomet. Chem. 1973, 61, 27.
(5) Aluminum: (a) Negishi, E.; Baba, S. J. Chem. Soc., Chem. (20) A part of this work was previously reviewed: (a) Suzuki, A. Acc.
Commun. 1976, 596. (b) Baba, S.; Negishi, E. J. Am. Chem. Soc. Chem. Res. 1982,15, 178. (b) Suzuki, A. Pure Appl. Chem. 1985,
1976, 98, 6729. Zinc: (c) Negishi, E.; King, A. 0.; Okukado, N. 57, 1749. (c) Miyaura, N.; Suzuki, A. J. Synth. Org. Chem. Jpn.
J. Org. Chem. 1977, 42, 1821. (d) King, A. O.; Okukado, N.; 1988, 46, 848. (d) Miyaura, N.; Suzuki, A. J. Synth. Org. Chem.
Negishi, E. J. Chem. Soc., Chem. Commun. 1977, 683. (e) Jpn. 1993, 51, 1043. (e) Suzuki, A. Pure Appl. Chem. 1991, 63,
Negishi, E.; King. A. O.; Okukado, N. J. Org. Chem. 1977, 42, 419. (f) Suzuki, A. Pure Appl. Chem. 1994, 66, 213.
1821. King, A. O.; Negishi, E. J. Org. Chem. 1978, 43, 358. (21) Gerrard, W. The Chemistry of Boron; Academic: New York, 1961.
Zirconium: (f) Negishi, E.; Van Horn, D. E. J. Am. Chem. Soc. Muetterties, E. L. The Chemistry of Boron and its Compounds;
1977, 99, 3168. (g) Van Horn, D. E.; Negishi, E. J. Am. Chem. Wiley: New York, 1967. Nesmeyanov, A. N.; Sokolik, R. A.
Soc. 1978, 100, 2252. (h) Negishi, E.; Takahashi, T.; Baba, S.; Methods of Elemento-Organic Chemistry; North-Holland: Am-
Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, sterdam, 1967; Vol. 1. Koster, R. Houben-Wey Methoden der
2393. For reviews, see: (i) Negishi, E. Aspects of Mechanism and Organischen Chemie; Georg Thieme: Verlag Stuttgart, 1984.
Organometallic Chemistry; Brewster, J. H., Ed.; Plenum Press: Matteson, D. S. The Chemistry of the Metal-Carbon Bond;
New York, 1978; p 285. (j) Negishi, E. Acc. Chem. Res. 1982,15, Hartley, F., Patai, S., Eds.; Wiley: New York, 1987; Vol. 4, p
340. (k) Negishi, E. Current Trends in Organic Synthesis; 307 and ref 12.
Nozaki, H., Ed.; Pergamon: Oxford, 1983; p 269. (22) Matteson, D. S.; Liedtke, J. D. J. Am. Chem. Soc. 1965,87,1526.
(6) Murahashi, S.; Yamamura, M.; Yanagisawa, K.; Mita, N.; Kondo, (23) Brown, H. C.; Cole, T. E. Organometallics 1983,2, 1316. Brown,
K. J. Org. Chem: 1979, 44, 2408. H. C.; Bhat, N. G.; Srebnik, M. Tetrahedron Lett. 1988,29, 2631.
(7) Kosugi, M.; Simizu, Y.; Migita, T. Chem. Lett. 1977, 1423. Brown, H. C.; Rangaishenvi, M. V. Tetrahedron Lett. 1990, 49,
Kosugi, M. Hagiwara, I.; Migita. T. Chem. Lett. 1983, 839. 7113, 7115.
(8) (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979,101, 4992. (24) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, in
(b) Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, press.
106, 4630. (c) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, (25) Brown, H. C. Organic Syntheses via Boranes; Wiley: New York,
108, 3033. (d) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1975 and ref 12.
1987,109, 5478. For a review, see: (e) Stille, B. J. Angew. Chem., (26) Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1971, 93, 1816.
Int. Ed. Engl. 1986, 25, 508. Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1972, 94, 4370.
(9) Alexakis, N. J. A.; Normant, J. F. Tetrahedron Lett. 1981, 22, Lane, C. F. Tetrahedron 1976, 32, 981.
959. (27) (a) Mannig, D.; Noth, H. Angew. Chem., Int. Ed. Engl. 1985,
(10) (a) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918. (b) 24, 878. (b) Gridnev, I. D.; Miyaura, N.; Suzuki, A. Organome-
Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1989, 54, 268. (c) tallics 1993,12, 589. (c) Gridnev, I. D.; Miyaura, N.; Suzuki, A.
Hatanaka, Y.; Matsui, K.; Hiyama, T. Tetrahedron Lett. 1989, J. Org. Chem. 1993, 58, 5351. For a review, see: (d) Burgess,
30, 2403. (d) Hatanaka, Y.; Hiyama, T. J. Am. Chem. Soc. 1990, K. ; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
112, 7793. For a review, see: (e) Hatanaka, Y.; Hiyama, T. (28) Brown, H. C.; Ravindran, N.; Kulkami, S. U. J. Org. Chem. 1980,
Synlett 1991, 845. 45, 384. Brown, H. C.; Campbell, J. B. J. Org. Chem. 1980, 45,
(11) General reviews: (a) Kochi, J. K. Organometallic Mechanisms 389. Brown, H. C. Bhat, N. G.; Somayaii, V. Organometallics
and Catalysis; Academic: New York, 1978. (b) Heck, R. F. 1983, 2, 1311.
Palladium Reagents in Organic Syntheses; Academic: New York, (29) Soundararajan, R.; Matteson, D. S. J. Org. Chem. 1990,55, 2274.
1985. (c) Hartley, F. R.; Patai, S. The Chemistry of Metal-Carbon (30) Colberg, J. C.; Rane, A.; Vaquer, J.; Soderquist, J. A. J. Am.
Bond; Wiley: New York, 1985; Vol. 3. (d) McQuillin, F. J.; Chem. Soc. 1993, 115, 6065.
Parker, D. G.; Stephenson, G. R. Transition Metal Organome- (31) Vaultier, M.; Truchet, F.; Carboni, B.; Hoffman, R. W.; Denne,
tallics for Organic Synthesis; Cambridge University Press: 1. Tetrahrdron Lett. 1987, 28, 4169. Martinez-Fresneda, P.;
Cambridge, 1991. (e) Tamao, K. Comprehensive Organic Syn- Vaultier, M. Tetrahedron Lett. 1989, 30, 2929. Narasaka, K.;
thesis; Trost, B. M., Fleming, I., Pattenden, G., Eds.; Perga- Yamamoto, I. Tetrahedron 1992, 48, 5743. Rassat-Deloge, C.;
mon: New York, 1991; Vol. 3, p 435. (f) Hegedus, L. S. Martinez-Fresheda, P.; Vaultier, M. Bull. Soc. Chim. Fr. 1992,
Organometallics in Organic Synthesis; Schlosser, M., Ed.; 129, 285; 1994, 131, 919.
Wiley: New York, 1994; pp 383. (32) Kamabuchi, A.; Moriya, T.; Miyaura, N.; Suzuki, A. Synth.
(12) Onak, T. Organoborane Chemistry; Academic: New York, 1975. Commun. 1993, 23, 2851.
Mikhailov, B. M.; Bubnov, Yu. N. Organoboron Compounds in (33) Brown, H. C.; Imai, T. Organometallics 1984, 3, 1392.
2480 Chemical Reviews, 1995, Vol. 95, No. 7 Miyaura and Suzuki
(34) Campbell, J. B., Jr.; Molander, G. A. J. Organomet. Chem. 1978, (72) Moriya, T.; Miyaura, N.; Suzuki, A. Synlett 1994, 149.
156, 71. Brown, H. C.; Somayaji, V. Synthesis 1984, 919. (73) Organolithium reagent (1 equiv) was added to a solution of
(35) Brown, H. C.; Basavaiah, D.; Kulkami, S. U. J. Org. Chem. 1982, tributylborane in THF at -78 °C. After being stirred for 1 h at
47, 3808. Brown, H. C.; Imai, T.; Bhat, N. G. J. Org. Chem. 1986, room temperature, the reaction mixture was treated with Phi
51, 5277. (1 equiv) and a palladium catalyst (3 mol %) for 3 h at the reflux
(36) Moriya, T.; Miyaura, N.; Suzuki, A. Chem. Lett. 1993, 1429. temperature.
(37) General review for haloboration: Suzuki, A. Pure Appl. Chem. (74) Farina, V.; Krishnan, X. J. Am. Chem. Soc. 1991, 113, 9585.
1986, 58, 629. Suzuki, A.; Hara, S. J. Synth. Org. Chem., Jpn. (75) Wallow, T. I.; Novak, B. M. J. Org. Chem. 1994, 59, 5034.
1985, 43, 100. Hara, S. J. Synth. Org. Chem., Jpn. 1990, 48, (76) Norrild, J. C.; Eggert, H. J. Am. Chem. Soc. 1995, 117, 1479.
1125. (77) Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org. Chem.
(38) Satoh, Y.; Serizawa, H.; Miyaura, N.; Hara, S.; Suzuki, A. 1994, 59, 6095.
Tetrahedron Lett. 1988, 29, 1811. (78) Sasaya, F.; Miyaura, N.; Suzuki, A. Bull. Korean Chem. Soc.
(39) Hyuga, S.; Chiba, Y.; Yamashina, N.; Hara, S.; Suzuki, A. Chem. 1987, 8, 329.
Lett. 1987, 1767. Hyuga, S.; Yamashina, N.; Hara, S.; Suzuki, (79) Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc., Dalton Trans.
A. Chem. Lett. 1988, 809. Mazal, C.; Vaultier, M. Tetrahedron 1976, 993.
Lett. 1994, 3089. (80) Grushin, V. V.; Alper, H. Organometallics, 1993, 12, 1890.
(40) Hara, S.; Suzuki, A. Unpublished results. Recently, J. A. (81) Tsuji, J.; Watanabe, H.; Minami, I.; Shimizu, I. J. Am. Chem.
Soderquist informed us of the same concept. Soc. 1985, 107, 2196. Minami, I.; Yuhara, Y.; Watanabe, H.;
(41) Matteson, D. S.; Jesthi, P. K. J. Organomet. Chem. 1976, 110, Tsuji, J. Organometal. Chem. 1987,334, 225. Tsuji, J.; Sugiura,
25. Matteson, D. S.; Moody, R. J. J. Org. Chem. 1980, 45, 1091. T.; Minami, I. Tetrahedron Lett. 1986,27, 731. Tsuji, J.; Sugiura,
Matteson, D. S.; Moody, R. J. Organometallics 1982, 1, 20. T.; Yuhara, M.; Minami, I. J. Chem. Soc., Chem. Commun. 1986,
(42) Matteson, D. S.; Majumdar, D. Organometallics 1983, 2, 230. 922. Mandai, T.; Ogawa, M.; Yamaoki, H.; Nakata, T.; Mu-
(43) Matteson, D. S.; Tripathy, P. B. J. Organomet. Chem. 1974, 69, rayama, H.; Kawada, M.; Tsuji, J. Tetrahedron Lett. 1991, 32,
53. Matteson, D. S.; Hagelee, L. J. Organomet. Chem. 1975, 93, 3397. Mandai, T.; Suzuki, S.; Ikawa, A.; Murakami, T.; Kawada,
21. M.; Tsuji, J. Tetrahedron Lett. 1991, 32, 7687.
(44) Suzuki, A. Top. Curr. Chem. 1983,112, 67. Suzuki, A.; Dhillon, (82) The kinetics of the related cleavages of substituted phenylboronic
R. S. Top. Curr. Chem. 1986, 130, 25 and ref 12. acids with HgX2, halogens, and water demonstrated that all the
(45) Mikhailov, B. M.; Bubnov, Yu. N.; Korobeinikova, S. A.; Frolov, reactions are accelerated by electron-donating groups: Abraham,
S. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1968, 1923. Frolov, S. M. H.; Grellier, P. L. Heterolytic Cleavage of Main Group Metal-
I. ; Bubnov, Yu. N.; Mikhailov, B. M. Izv. Akad. Nauk SSSR, Ser. Carbon Bond in The Chemistry of the Metal-Carbon Bond;
Khim. 1969, 1996. Hartley, F. R., Patai, S., Eds.; Wiley: New York, 1985; Vol. 2, p
(46) Guennouni, N.; Rasset-Deloge, C.; Carboni, B.; Vaultier, M. 25. The present results can be interpreted by a mechanism
Synlett. 1992, 581. Kamabuchi, A.; Miyaura, N.; Suzuki, A. where the coordination of boron to an alkoxy oxygen or the
Tetrahedron Lett. 1993, 34, 4827. cleavage of the B-C bond after complexation is the rate-
(47) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. determining step: Bassindale, A. R.; Eaborn, C.; Taylor, R.;
Soc. 1993, 115, 11018. Thompson, A. R.; Walton, D. R. M.; Cretney, J.; Wright, G. J. J.
(48) Nozaki, K.; Wakamatsu, K.; Nonaka, T.; Tuckmantel, W.; Chem. Soc. B 1971, 1155. Bee, B.; Eaborn, C.; Walton, D. R. M.
Oshima, K.; Utimoto, K. Tetrahedron Lett. 1986, 27, 2007. J. Organomet. Chem. 1974, 82, 327.
(49) Sharma, S.; Oehlschlager, A. C. Tetrahedron Lett. 1988,29, 261. (83) Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 669.
(50) Hoffmann, R. W.; Dresely, S. Synthesis 1988, 103. Waas, J. R.; Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129.
Sidduri, A. R.; Knochel, P. Tetrahedron Lett. 1992, 33, 3717. (84) Maitlis, P. M. The Organic Chemistry of Palladium; Academic:
(51) Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994, 116, New York, 1971; Vol. 2, pp 119-120.
6985. (85) Anderson, C. B.; Burreson, B. J.; Michalowski, T. J. J. Org.
(52) Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10, 434. Chem. 1976, 41, 1990. Blackburn, T. F.; Schwartz, J. J. Chem.
(53) Kramer, A. V.; Osborn, J. A. J. Am. Chem. Soc. 1974, 96, 7832. Soc., Chem. Commun. 1977, 157. Zask, A.; Helquist, P. J. Org.
(54) (a) McCrindle, R.; Ferguson, G.; Arsenault, G. J.; McAlees, A. Chem. 1978, 43, 1619.
J. ; Stephanson, D. K. J. Chem. Res. (S) 1984, 360. (b) Amatore, (86) Satoh, N.; Ishiyama, T.; Miyaura, N.; Suzuki, A. Bull. Chem.
C.; Jutand, A.; M’Barki, M. A. Organometallics 1992, 11, 3009. Soc. Jpn. 1987, 60, 3471.
(c) Ozawa, F.; Kubo, A.; Hayashi, T. Chem. Lett. 1992, 2177. (d) (87) Treatment of PhPdBr(PPh3)2 with AgOAc gave an authentic
Amatore, C.; Jutand, A.; Suarez, A. J. Am. Chem. Soc. 1993, sample 29: Ishiyama, T.; Murata, M.; Miyaura, N. Unpublished
115, 9531. (e) Amatore, C.; Carre, E.; Jutand, A.; M’Barki, M. results.
A. Organometallics 1995, 14, 1818. (88) Amatore, C.; Jutand, A.; McBarki, M. A. Organometallics 1992,
(55) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585. 11, 3009.
(56) Gillie, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4933. (89) Siegmann, K.; Pregosin, P. S.; Venanzi, L. M. Organometallics
(57) (a) Ozawa, F.; Ito, T.; Yamamoto, A. J. Am. Chem. Soc. 1980, 1989, 8, 2659.
102, 6457. (b) Ozawa, F.; Ito, T.; Nakamura, Y.; Yamamoto, A. (90) Mg-C: Takahashi, T.; Seki, T.; Nitto, Y.; Saburi, M.; Rousset,
Bull. Chem. Soc. Jpn. 1981, 54, 1868. (c) Ozawa, F.; Kurihara, C. J.; Negishi, E. J. Am. Chem. Soc. 1991, 113, 6266. Knight,
K. ; Yamamoto, T.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1985, K. S.; Waymouth, R. M. J. Am. Chem. Soc. 1991, 113, 6268.
58, 399. (d) Ozawa, F. Hidaka, T.; Yamamoto, T.; Yamamoto, A. Hoveyda, A. H.; Morken, J. P.; Houri, A. F.; Xu, Z. J. Am. Chem.
J. Organomet. Chem. 1987, 330, 253. (e) Ozawa, F. Kurihara, Soc. 1992,114, 6692. Mg-Si: Hayami, H.; Sato, M.; Kanemoto,
K. ; Fujimori, M.; Hidaka, T.; Toyoshima, T.; Yamamoto, A. S.; Morizawa, Y.; Oshima, K.; Nozaki, H. J. Am. Chem. Soc.
Organometallics 1989, 8, 180. 1983,105, 4491. Okuda, Y.; Morizawa, Y.; Oshima, K.; Nozaki,
(58) (a) Yamamoto, A. Organotransition Metal Chemistry-Fundemen- H. Tetrahedron Lett. 1984, 25, 2483. Mg-Sn: Matsubara, S.;
tal Concepts and Applications; Wiley: New York, 1986. (b) Hibino, J.-I.; Morizawa, Y.; Oshima, K.; Nozaki, H. J. Orga-
Ozawa, F.; Yamamoto, A. Chem. Soc. Jpn. 1987, 773. nomet. Chem. 1985, 285, 163. Al-C: Negishi, E. Pure Appl.
(59) Stang, P. J.; Kowalski, M. H. J. Am. Chem. Soc. 1989, 111, 3356. Chem. 1981, 53, 2333. Zweifel, G.; Miller, J. A. Org. React, 1984,
(60) Dieck, H. A.; Heck, R. F. J. Org. Chem. 1975, 40, 1083. 32, 375. Si-H: Ojima, I. The Chemistry of Organic Silicon
(61) Davidson, J. M.; Triggs, C. J. Chem. Soc., A 1968, 1324. Compounds; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons:
(62) Miyaura, N.; Suzuki, A. Unpublished results. Chichester, 1989. Hiyama, T.; Kasumoto, T. Comprehensive
(63) Honeycutt, J. B.; Riddle, J. M. J. Am. Chem. Soc. 1959, 81, 2593. Organic Synthesis; Trost, B. M., Ed.; Pergamon: New York,
Honeycutt, J. B.; Riddle, J. M. J. Am. Chem. Soc. 1960,82, 3051. 1991; Vol. 8, Chapter 3.12. Sakakura, T.; Lautenschlager, H.-
Larock, R. C.; Brown, H. C. J. Am. Chem. Soc. 1970, 92, 2467. J. ; Tanaka, M. J. Chem. Soc., Chem. Commun. 1991, 40. Si—
Larock, R. C. J. Organomet. Chem. 1974, 67, 353. Larock, R. C. CN: Chatani, N.; Hanafusa, T. J. Org. Chem. 1987, 52, 4408.
J. Organomet. Chem. 1974, 72, 35. Chatani, N.; Hanafusa, T. J. Org, Chem. 1991, 56, 2166. Si—Si:
(64) Brown, H. C.; Hebert, N. C.; Snyder, C. H. J. Am. Chem. Soc. Watanabe, H.; Kobayashi, M.; Higuchi, K.; Nagai, Y. J. Orga-
1961, 83, 1001. nomet. Chem. 1980, 186, 51. Murakami, M.; Andersson, P. G.;
(65) (a) Miyaura, N.; Yamada, K.; Suzuki, A.; Tetrahedron Lett. 1979, Suginome, M.; Ito, Y. J. Am. Chem. Soc. 1991, 113, 3987. Si-
20, 3437. (b) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, Sn: Chenard, B. L.; Van Zyl, C. M. J. Org. Chem. 1986,51, 3561.
A. J. Am. Chem. Soc. 1985, 107, 972. Mitchell, T. N.; Wickenkamp, R.; Amamria, A.; Dicke, R.;
(66) Heck, R. F. Org. React. 1982, 27, 345. Schneider, U. J. Org. Chem. 1987, 52, 4868. Sn-H: Kikukawa,
(67) Larock, R. C.; Riefling, B. J. Org. Chem. 1978, 43, 1468. K. ; Umekawa, H.; Wada, F.; Matsuda, T. Chem. Lett. 1988, 881.
(68) Hallberg, A.; Westerlund, C. Chem. Lett. 1982, 1933. Ikenaga, Zhang, H. X.; Guibe, F.; Balavoine, G. J. Org. Chem. 1990, 55,
K. ; Kikukawa, K.; Matsuda, T. J. Chem. Soc., Perkin Trans. 1 1857. Sn-Sn: Mitchell, T. N.; Amamria, A.; Killing, H.; Rut-
1986, 1959. Karabelas, A.; Hallberg, A. J. Org. Chem. 1989, 54, schow, D. J. Organomet. Chem. 1983, 241, C45. Killing, H.;
1773. Mitchell, T. N. Organometallics, 1984, 3, 1318. Mitchell, T. N.;
(69) Busacca, C. A.; Swestock, J.; Johnson, R. E.; Bailey, T. R.; Musza, Amamria, A.; Killing, H.; Rutschow, D. J. Organomet. Chem.
L. ; Rodger, C. A. J. Org. Chem. 1994, 59, 7553. 1986, 304, 257.
(70) Miyaura, N.; Suzuki, A. J. Organomet. Chem. 1981, 213, C53. (91) (a) Burgess, K.; Jaspars, M. Organometallics 1993,12, 4197. (b)
(71) Miyaura, N.; Tanabe, Y.; Suginome, H.; Suzuki, A. J. Organomet. Westcott, S. A.; Marder, T. B.; Baker, R. T. Organometallics
Chem. 1982, 233, C13. 1993, 12, 975. (c) Burgess, K.; van der Donk, W. A.; Westcott,
Reactions of Organoboron Compounds Chemical Reviews, 1995, Vol. 95, No. 7 2481
S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. J. Am. Chem. (124) Evans, D. A.; Ng, H. P.; Rieger, D. L. J. Am. Chem. Soc. 1993,
Soc. 1992, 114, 9350. (d) Westcott, S. A.; Blom, H. P.; Marder, 115, 11446.
T. B.; Baker, R. T. J. Am. Chem. Soc. 1992,114, 8863. (e) Evans, (125) Kurosawa, H. Comprehensive Organometallic Chemistry, Wilkin-
D. A.; Fu, G. C.; Anderson, B. A. J. Am. Chem. Soc. 1992, 114, son, G., Ed.; Pergamon: New York, 1982; Vol. 1, p 725.
6679. (f) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. (126) Kobayashi, Y.; Okamoto, S.; Shimazaki, T.; Ochiai, Y.; Sato, F.
Soc. 1992,114, 6671. (g) Matsumoto, Y.; Naito, M.; Hayashi, T. Tetrahedron Lett. 1987, 28, 3959. Avignon-Tropis, M.; Treihou,
Organometallics 1992,11, 2732. (h) Burgess, K.; van der Donk, M.; Lebreton, J.; Pougny, J. R. Tetrahedron Lett. 1989,30, 6335.
W. A.; Jarstfer, M. B.; Ohlmeyer, M. J. J. Am. Chem. Soc. 1991, (127) Kobayashi, Y.; Shimazaki, T.; Sato, F. Tetrahedron Lett. 1987,
113, 6139. (i) Evans, D. A.; Fu, G. C. J. Am. Chem. Soc. 1991, 28, 5849. Kobayashi, Y.; Shimazaki, T.; Taguchi, H. T.; Sato, F.
113, 4042. (j) Satoh, M.; Miyaura, N.; Suzuki, A. Tetrahedron J. Org. Chem. 1990, 55, 5324.
Lett. 1990, 31, 231. (k) Satoh, M.; Nomoto, Y.; Miyaura, N.; (128) de Lera, A. R.; Torrado, A.; Iglesias, B.; Lopez, S. Tetrahedron
Suzuki, A. Tetrahedron Lett. 1989, 30, 3789. (1) Hayashi, T.; Lett. 1992, 33, 6205.
Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1989, 111, 3426. (m) (129) Mavrov, M. V.; Urdaneta, N. K.; Hao, N. K.; Serebkyakov, E. P.
Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1988, Izv. Akad. Nauk SSSR, Ser. Kim. 1987, 2633.
110, 6917. (n) Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1988, (130) Yanagi, T.; Oh-e, T.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc.
53, 5178. (o) Wilczynski, R.; Sneddon, L. G. J. Am. Chem. Soc. Jpn. 1989, 62, 3892.
1980, 102, 2857. For a review, see: ref 27d. (131) Mavrov, M. V.; Urdaneta, N. K.; Serebkyakov, E. P. Bioorg.
(92) Ishiyama, T.; Nishijima, K.; Miyaura, N.; Suzuki, A. J. Am. Khim. 1990, 16, 711. Urdaneta, N.; Ruiz, J.; Zapata, A. J. J.
Chem. Soc. 1993, 115, 7219. Organomet. Chem. 1994, 464, C33. Beckstrom, P.; Jacobsson,
(93) Ishiyama, T.; Matsuda, N.; Murata, M. Suzuki, A. Miyaura, N. U. ; Norin, T.; Unelius, R. Tetrahedron 1988, 44, 2541.
Submitted to Organometallics. (132) Kaga, H.; Ahmed, Z.; Gotoh, K.; Orito, K. Synlett 1994, 607.
(94) Vedejs, E.; Week, P. D. Tetrahedron Lett. 1974, 3207. Sokolov, (133) Negishi, E.; Lew, G.; Yoshida, T. J. Chem. Soc., Chem, Commun.
V. I.; Bashilov, V. V.; Reutov, O. A. J. Organomet. Chem. 1975, 1973, 874.
97, 299. (134) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979,
(95) Miyaura, N.; Suzuki, A. Main Group Met. Chem. 1987, 295. 866.
(96) Yatagai, H. Bull. Chem. Soc. Jpn. 1980, 53, 1670. (135) Tidwell, J. H.; Peat, A. J.; Buchwald, S. L. J. Org. Chem. 1994,
(97) Cho, C. S.; Uemura, S. J. Organomet. Chem. 1994, 465, 85. 59, 7164. (135) Miyachi, N.; Yanagawa, Y.; Iwasaki, H.; Ohara,
(98) Miyaura, N.; Suzuki, A. Org. Synth. 1990, 68, 130. Y.; Hiyama, T. Tetrahedron Lett. 1993, 34, 8267.
(99) Miyaura, N.; Satoh, M.; Suzuki, A. Tetrahedron Lett. 1986, 27, (136) Newkome, G. R.; Paudler, W. W. Contemporary Heterocyclic
3745. Chemistry, Wiley: New York, 1982.
(100) Satoh, M.; Miyaura, N.; Suzuki, A. Chem. Lett. 1986, 1329. (137) Miyaura, N.; Maeda, K.; Suginome, H.; Suzuki, A. J. Org. Chem.
(101) Casalnuovo, A. L.; Calabrese, J. C. J. Am. Chem. Soc. 1990,112, 1982, 47, 2117.
4324. (138) Satoh, M.; Miyaura, N.; Suzuki, A. Synthesis 1987, 373.
(102) Miyaura, N.; Suginome, H.; Suzuki, A. Tetrahedron Lett. 1981, (139) Hegedus, L. S.; Toro, J. L.; Miles, W. H.; Harrington, P. J. J.
22, 127. Org. Chem. 1987, 52, 3319.
(103) Brown, H. C.; Molander, G. A. J. Org. Chem. 1986, 51, 4512. (140) Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11,
513.
(104) Ichikawa, J.; Moriya, T.; Sonoda, T.; Kobayashi, H. Chem. Lett.
1991, 961. (141) Gronowitz, S.; Bobosik, V.; Lawitz, K. Chem. Scr. 1984,23, 120.
(105) Rivera, I.; Soderquist, J. A. Tetrahedron Lett. 1991, 32, 2311. (142) Alo, B. I.; Kandil, A.; Patil, P. A.; Sharp, M. J.; Siddiqui, M. A.;
(106) (a) Soderquist, J. A.; Colberg, J. C. Synlett. 1989, 25. (b) Snieckus, V. J. Org. Chem. 1991, 56, 3763.
(143) Muller, W.; Lowe, D. A.; Neijt, H.; Urwyler, S.; Herrling, P.;
Soderquist, J. A.; Colberg, J. C. Tetrahedron Lett. 1994, 35, 27.
(107) Kluge, A. F.; Untch, K. G.; Fried, J. H. J. Am. Chem. Soc. 1972, Blaser, D.; Seebach, D. Helv. Chim. Acta 1992, 75, 855.
(144) Katz, H. E.; J. Org. Chem. 1987, 52, 3932.
94, 7827. Brown, H. C.; Hamaoka, T.; Ravindran, N. J. Am.
Chem. Soc. 1973, 95, 5786. Brown, H. C.; Hamaoka, T.; Ravin- (145) Hoshino, Y.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1988,
61, 3008.
dran, N. J. Am. Chem. Soc. 1973, 95, 6456.
(146) Coleman, R. S.; Grant, E. B. Tetrahedron Lett. 1993, 34, 2225.
(108) Miyaura, N.; Suginome, H.; Suzuki, A. Tetrahedron Lett. 1983,
(147) Ishikura, M.; Kamada, M.; Terashima, M. Synthesis 1984, 936.
24, 1527. Miyaura, N.; Suginome, H.; Suzuki, A. Tetrahedron (148) (a) Mitchell, M. B.; Wallbank, P. J. Tetrahedron Lett. 1991, 32,
1983, 39, 3271. 2273. (b) Ali, N. M.; McKillop, A.; Mitchell, M. B.; Rebelo, R. A.;
(109) Rossi, R.; Carpita, A.; Quirici, M. G. Tetrahedron 1981, 37, 2617.
(110) Cassani, G.; Massardo, P.; Piccardi, P. Tetrahedron Lett. 1983,
Wallbank, P. J. Tetrahedron 1992, 48, 8117. (c) Alcock, N. W.;
Brown, J. M.; Hulmes, D. I. Tetrahedron: Asymmetry 1993, 4,
24, 2513. 743. (d) Janietz, D.; Bauer, M. Synthesis 1993, 33. (e) Achab,
(111) Bjorkling, F.; Norin, T.; Unelius, C. R.; Miller, R. B. J. Org. S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1993, 34, 2127.
Chem. 1987, 52, 292. (149) Shieh, W.-C.; Carlson, J. A. J. Org. Chem. 1992, 57, 379.
(112) Carpita, A.; Neri, D.; Rossi, R. Gazz. Chim. Ital. 1987,117, 503. (150) (a) Bumagin, N. A.; Bykov, V. V.; Beletskaya, I. P. Dok. Akad.
(113) (a) Negishi, E.; Los, F.-F. J. Org. Chem. 1983, 48, 1562. (b) Nauk SSSR 1990, 315, 1133. (b) Marck, G.; Villiger, A.;
Soderquist, J. A.; Leon-Colon, G. Tetrahedron Lett. 1991,32, 43. Buchecker, R. Tetrahedron Lett. 1994, 35, 3277. (c) Alois, G. M.;
(c) Roush, W. R.; Warmus, J. S.; Works, A. B. Tetrahedron Lett. Villiger, A.; Buchecker, R. Tetrahedron Lett. 1994, 35, 3277.
1993, 34, 4427. (151) Watanabe, T.; Miyaura, N.; Suzuki, A. Synlett 1992, 207.
(114) Ichikawa, J.; Minami, T.; Sonoda, T.; Kobayashi, H. Tetrahedron (152) (a) Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. Tetrahedron
Lett. 1992, 33, 3779. Ichikawa, J.; Ikeura, C.; Minami, T. Synlett Lett. 1993, 34, 2937. (b) Guillier, F.; Nivoliers, F.; Godard, A.;
1992, 739. Marsais, F.; Queguiner, G. Tetrahedron Lett. 1994, 35, 6489.
(115) Burns, B.; Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthalin- (153) (a) Kelly, T. R.; Garcia, A.; Lang, F.; Walsh, J. J.; Bhaskar, K.
gam, S.; Worakun, T. Tetrahedron Lett. 1989, 30,1135. Negishi, V. ; Boyd, M. R.; Gotz, R.; Keller, P. A.; Walter, R.; Bringmann,
E. ; Noda, Y.; Lamaty, F.; Vawter, E. Tetrahedron Lett. 1990, G. Tetrahedron Lett. 1994, 35, 7621.
31, 4393. (154) (a) Muller, D.; Fleury, J.-P. Tetrahedron Lett. 1991, 32, 2229.
(116) Miyaura, N.; Suginome, H.; Suzuki, A. Bull. Chem. Soc. Jpn. (b) Fukuyama, Y.; Kiriyama, Y.; Kodama, M. Tetrahedron Lett.
1982, 55, 2221. 1993, 34, 7637.
(117) Miyaura, N.; Satoh, Y.; Hara, S.; Suzuki, A. Bull. Chem. Soc. (155) Kuvilla, H. G.; Nahabedian, K. V. J. Am. Chem. Soc. 1961, 83,
Jpn. 1986, 59, 2029. 2159; 2164; and 2167. Kuvila, H. G.; Reuwer, J. F.; Mangravite,
(118) Deloux, L.; Skrzypczak-Jankun, E.; Cheesman, B. V.; Srebnik, J. A. J. Am. Chem. Soc. 1964, 86, 2666.
M. J. Am. Chem. Soc. 1994, 116, 10302. (156) Segelstein, B. E.; Butler, T. W.; Chenard, B. L. J. Org. Chem.
(119) Ishiyama, T.; Miyaura, N.; Suzuki, A. Chem. Lett. 1987, 25. 1995, 60, 12-13. Kong, K.-C.; Cheng, C.-H. J. Am. Chem. Soc.
(120) Uenishi, J.-I.; Beau, J.-M.; Amstrong, R. W.; Kishi, Y. J. Am. 1991, 113, 6313.
Chem. Soc. 1987, 109, 4756. Armstrong, R. W.; Beau, J-M.; (157) O’Keefe, D. F.; Dannock, M. C.; Marcuccio, S. M. Tetrahedron
Cheon, S. H.; Christ, W. J.; Fujioka, H.; Ham, W.-H.; Hawkins, Lett. 1992, 33, 6679.
L. D.; Jin, H.; L. D.; Kang, S. H.; Kishi, Y.; Martinelli, M. J.; (158) Gronowitz, S.; Lawitz, K. Chem. Scr. 1983, 22, 265. Yang, Y.;
McWhorter, W. W.; Mizuno, M.; Nakata, M.; Stutz, A. E.; Hornfeldt, A-B.; Gronowitz, S. Chem. Scr. 1988, 28, 275.
Talamas, F. X.; Taniguchi, M.; Tino, J. A.; Ueda, K.; Uenishi, (159) Gronowitz, S.; Lawitz, K. Chem. Scr. 1984, 24, 5.
J.-I.; White, J. B.; Yonaga, M. J. Am. Chem. Soc. 1989, 111, 7525. (160) Thompson, W. J.; Gaudino, J. J. Org. Chem. 1984, 49, 5237.
(121) Roush, W. R.; Brown, B. B. J. Org. Chem. 1993, 58, 2162. Thompson, W. J.; Jones, J. H.; Lyle, P. A.; Thies, J. E. J. Org.
(122) Roush, W. R.; Riva, R. J. Org. Chem. 1988, 53, 710. Roush, W. Chem. 1988, 53, 2052.
R.; Kageyama, M.; Riva, R.; Brown, B. B.; Warmus, J. S.; (161) (a) Sharp, M. J.; Snieckus, V. Tetrahedron Lett. 1985,26, 5997.
Moriarty, K. J. J. Org. Chem. 1991, 56, 1192. Roush, W. R.; (b) Cheng, W.; Snieckus, V. Tetrahedron Lett. 1987, 28, 5097.
Sciotti, R. J. Tetrahedron Lett. 1992, 33, 4691. Roush, W. R.; (c) Sharp, M. J.; Snieckus, V. Tetrahedron Lett. 1987, 28, 5093.
Sciotti, R. J. J. Am. Chem. Soc. 1994, 116, 6457. (d) Alves, T.; Oliveira, A. B.; Snieckus, V. Tetrahedron Lett. 1988,
(123) Nicolaou, K. C.; Ramphal, J. Y.; Palazon, J. M.; Spanevello, R. 29, 2135. (e) Siddiqui, M. A.; Snieckus, V. Tetrahedron Lett.
A. Angew. Chem., Int. Ed. Engl. 1989, 28, 587. Nicolaou, K. C.; 1988,29, 5463. (f) Fu, J.; Sharp, M. J.; Snieckus, V. Tetrahedron
Ramphal, J. Y.; Abe, Y. Synthesis 1989, 898. Nicolaou, K. C. Lett. 1988, 29, 5459. (g) Iwao, M.; Iihama, T.; Mahalanabis, K.
Angew. Chem., Int. Ed. Engl. 1991, 30, 1100. K. ; Perrier, H.; Snieckus, V. J. Org. Chem. 1989, 54, 26. (h)
2482 Chemical Reviews, 1995, Vol. 95, No. 7 Miyaura and Suzuki
Iihama, T.; Fu, J.; Bourguignon, M.; Snieckus, V. Synthesis 1989, (187) Nomoto, Y.; Miyaura, N.; Suzuki, A. Synlett 1992, 727.
184. (i) Siddiqui, M. A.; Snieckus, V. Tetrahedron Lett. 1990, (188) Abe, S.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1992,
31, 1523. (j) Zhao, B.; Snieckus, V. Tetrahedron Lett. 1991, 39, 65, 2863.
5277. (k) Alo, B. I.; Kandil, A.; Patil, P. A.; Sharp, M. J.; Siddiqui, (189) O’Connor, S. J.; Williard, P. G. Tetrahedron Lett. 1989, 30, 4637.
M. A.; Snieckus, V. J. Org. Chem. 1991, 56, 3763. (1) Wang, X.; Boehm, J. C.; Gleason, J. G.; Pendrak, I. Sarau, H. M.; Schmidt,
Snieckus, V. Tetrahedron Lett. 1991, 32, 4879. (m) Cox, P. J.; D. B.; Foley, J. J.; Kingsbury, W. D. J. Med. Chem. 1993, 36,
Wang, W.; Snieckus, V. Tetrahedron Lett. 1992, 33, 2253. (n) 3333. Bhagwat, S. S.; Gude, C.; Cohen, D. S.; Dotson, R.; Mathis,
Unrau, C. M.; Campbell, M. G.; Snieckus, V. Tetrahedron Lett. J.; Lee, W.; Furness, P. J. Med. Chem. 1993, 36, 205.
1992, 33, 2773. (o) Wang, W.; Snieckus, V. J. Org. Chem. 1992, (190) Rivera, I.; Colberg, J. C.; Soderquist, J. A. Tetrahedron Lett.
57, 424. (p) Wang, X.; Snieckus, V. Tetrahedron Lett. 1991, 37, 1992, 33, 6919.
4883. (q) Brandao, M. A. F.; de Oliveira, A. B.; Snieckus, V. (191) Uemura, M.; Nishimura, H.; Hayashi, Y. Tetrahedron Lett. 1990,
Tetrahedron Lett. 1993, 34, 2437. (r) Parsons, A. S.; Garcia, J. 31, 2319. Uemura, M.; Nishimura, H.; Minami, T.; Hayashi, Y.
M.; Snieckus, V. Tetrahedron Lett. 1994, 35, 7537. For reviews, J. Am. Chem. Soc. 1991, 113, 5402.
see: Sniekus, V. Chem. Rev. 1990, 90, 879. Snieckus, V. Pure (192) Mori, K.; Puapoomchareon, P. Liebigs Ann. Chem. 1990, 159.
Appl. Chem. 1994, 66, 2155. (193) Johnson, C. R.; Miller, M. W.; Golebiowski, A.; Sundram, H.;
(162) Larson, R. D.; King, A. O.; Chen, C. Y.; Corley, E. G.; Foster, B. Ksebati, M. B. Tetrahedron Lett. 1994, 35, 8991.
S.; Roberts, F. E.; Yang, C. Y.; Lieberman, D. R.; Reamer, R. A.; (194) Johnson, C. R.; Braun, M. P. J. Am. Chem. Soc. 1993,115,11014.
Tschaen, D. M.; Verhoeven, T. R.; Reamer, R. A.; Arnett, J. F. (195) Soderquist, J. A.; Santiago, B. Tetrahedron Lett. 1990,31, 5541.
J. Org. Chem. 1994, 59, 6391. (196) Moore, W. R.; Schatzman, G. L.; Jarvi, E. T.; Gross, R. S.;
(163) Schwartz, E. B.; Knobler, C. B.; Cram, D. J. J. Am. Chem. Soc. McCarthy, J, R. J. Am. Chem. Soc. 1992, 114, 360.
1992, 114, 10775. (197) Soderquist, J. A.; Santiago, B,; Rivera, I. Tetrahedron Lett. 1990,
(164) Knapp, R.; Rehahn, M. J. Organomet. Chem. 1993, 452, 235. 31, 4981.
(165) Beley, M.; Chodorowski, S.; Collin, J.-P.; Sauvage, J.-P. Tetra- (198) Miyaura, N.; Ishikawa, M.; Suzuki, A. Tetrahedron Lett. 1992,
hedron Lett. 1993, 34, 2933. 33, 2571.
(166) Judice, J. K.; Keipert, S. J.; Cram, D. J. J. Chem. Soc., Chem. (199) Soderquist, J. A.; Lbon, G.; Colberg, J. C.; Martinez, I. Tetra-
Commun. 1993, 1323. hedron Lett. 1995, 36, 3119.
(167) Schmidt, U.; Leitenberger, V.; Meyer, R.; Griesser, H. J. Chem. (200) Sato, M.; Miyaura, N.; Suzuki, A. Chem. Lett. 1989, 1405.
Soc., Chem. Commun. 1992, 951. (201) Rano, T. A.; Greenlee, M. L.; DiNino, F. P. Tetrahedron Lett.
(168) Brown, A. G.; Crimmin, M. J.; Edwards, P. D. J. Chem. Soc., 1990, 31, 2853. Crisp, G. T.; Scott, W. J.; Stille, J. K. J. Am.
Chem. Commun. 1992, 123. Chem. Soc. 1984, 106, 7500. Echavarren, A. M.; Stille, J. K. J.
(169) Manabe, K.; Okamura, K.; Date, T.; Koga, K. J. Org. Chem. 1993, Am. Chem. Soc. 1988, 110, 1557.
58, 6692. (202) Saulnier, M. G.; Kadow, J. F.; Tun, M. M.; Langley, D. R.; Vyas,
(170) Sawyer, J. S.; Baldwin, R. F.; Sofia, M. J,; Floreancig, P.; Marder, D. M. J. Am. Chem. Soc. 1989, 111, 8320.
P.; Saussy, D. L. Jr.; Froelich, L. L.; Silbaugh, S. A.; Stengel, P. (203) Burini, A. A.; Cacchi, S.; Delmastro, M.; Marinelli, F.; Pietroni,
W.; Cockerham, S. L.; Jackson, W. T. J. Med. Chem. 1993, 36, B. Synlett 1990, 47.
3982.
(204) Stang, P. J.; Hanack, M.; Subramanian, L. R. Synthesis 1982,
(171) Ostaszewski, R.; Verboom, W.; Reihoudt, D. N. Synlett 1992, 354. 85. Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33,
(172) Godard, A.; Rovera, J.-C.; Marsais, F.; Pie, N.; Queguiner, G. 6299.
Tetrahedron 1992, 48, 4123. Rocca, P.; Marsais, F.; Godard, A.; (205) Ritter, K. Synthesis 1993, 735.
Queguiner, G. Tetrahedron Lett. 1993, 34, 7917. Rocca, P.; (206) Oh-e, T.; Miyaura, N.; Suzuki, A. Synlett 1990, 221. Oh-e, T.;
Marsais, F.; Godard, A.; Queguiner, G. Tetrahedron 1993, 49, Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201.
3325. Rocca, P.; Marsais, F.; Godard, A.; Qubguiner, G. Tetra-
hedron 1993, 49, 49. Rocca, P.; Cochennec, C.; Marsais, F.; (207) Huth, A.; Beetz, I.; Schumann, I. Tetrahedron 1989, 45, 6679.
(208) Kowalski, M. H.; Hinkle, R. J.; Stang, P. J. J. Org. Chem. 1989,
Thomas-dit-Dumont, L.; Mallet, M.; Godard, A.; Queguiner, G. 54, 2783.
J. Org. Chem. 1993, 58, 7832.
(209) Jutand, A.; Mosleh, A. Organometallics 1995, 14, 1810.
(173) Isoflavones: Yokoe, I.; Sugita, Y.; Shirataki, Y. Chem. Pharm.
Bull. 1989, 37, 529. Furo[2,3-C]quinolines: Yang, Y. Synth. (210) Ciattini, P. G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1992,
Commun. 1989,1001. 2,3,4-Trisubstituted furans: Cristofoli, W. 33, 4815. Zheng, Q.; Yang, Y.; Martin, A. R. Tetrahedron Lett.
1993, 34, 2235.
A.; Keay, B. A. Tetrahedron Lett. 1991, 32, 5881. Maddaford, S.
P. ; Keay, B. A. J. Org. Chem. 1994, 59, 6501. Furan-3,4-diyl (211) Yasuda, N.; Xavier, L.; Rieger, D. L.; Li, Y.; DeCamp, A. E.;
oligomers and 3,4-diarylfurans: Song, Z. Z.; Wong, H. N. C. J. Dolling, U-H. Tetrahedron Lett. 1993, 34, 3211.
(212) Trost, B. M.; Hiroi, K.; Kurozumi, S. J. Am. Chem. Soc. 1975,
Org. Chem. 1994, 59, 33. Song, Z. Z.; Zhou, Z. Y.; Mak, T. C. W.;
97, 438.
Wong, H. N. C. Angew. Chem., Int. Ed. Engl. 1993, 32, 432.
(213) Durst, T. Comprehensive of Organic Chemistry, Barton, D. H.
Tripode ligand combining three pyridine rings: Wytko, J. A.;
Weiss, J. Tetrahedron Lett. 1991, 32, 7261. Phenylcalix[4]arene: R., Ed.; Pergamon Press: Oxford, 1979; Vol. 3, p 121.
Wong, M. S.; Nicoud J-F. Tetrahedron Lett. 1993, 34, 8237. (214) Okamura, H.; Miura, M.; Takei, H. Tetrahedron Lett. 1979, 43.
3-Arylpyrroles: Alvarez, A.; Guzman, A.; Ruiz, A.; Velarde, E.; Wenkert, E.; Ferreira, T. W.; Michelotti, E. L. J. Chem. Soc.,
Chem. Commun. 1979, 637. Fiandanese, V.; Marchese, G.; Naso,
Muchowski, J. M. J. Org. Chem. 1992, 57, 1653. 1-Aryl-
—carbolines: Bracher, F.; Hildebrand, D. Liebigs Ann. Chem. F.; Ronzini, L. J. Chem. Soc., Chem. Commun. 1982, 647.
1992, 1315. 3-, 5-, and 6-Arylindoles: Yang, Y.; Martin, A. R. Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. J. Chem.
Synth. Commun. 1992, 1757. Carrera, G. M.; Sheppard, G. S. Soc., Perkin Trans. 1 1985, 1115.
Synlett 1994, 93. 5-Aryltropones: Nair, V.; Powell, D. W.; Suri, (215) Foa, M.; Santi, R.; Garavaglia, F. J. Organomet. Chem. 1981,
S. C. Synth. Commun. 1987, 1897. Bis-porphyrins: Helms, A.; 206, C29.
Heiler, D.; McLendon, G. J. Am. Chem. Soc. 1992, 114, mil. (216) Corey, E. J.; Shulman, J. I. J. Org. Chem. 1970, 35, 777. Carey,
F. A.; Court, A. S. J. Org. Chem. 1972, 37, 939.
Quaterphenyls: Fischer, E.; Hess, H.; Lorenz, T.; Musso, H.;
Rossnagel, I. Chem. Ber. 1991, 783. 8-Aryl-l-naphthoates: (217) Ishiyama, T.; Mori, M.; Miyaura, N.; Suzuki, A. Unpublished
Feldman, K. S.; Campbell. R. F. J. Org. Chem. 1995, 60, 1924. results.
(174) Rehahn, M.; Schliiter, A.-D.; Wegner, G.; Feast, W. J. Polymer (218) Hoshino, Y.; Ishiyama, T.; Miyaura, N.; Suzuki, A. Tetrahedron
1989, 30, 1054; 1060. Lett. 1988,29, 3983. Ishiyama, T.; Miyaura, N.; Suzuki, A. Org.
(175) Kim, Y. H.; Webster, O. W. J. Am. Chem. Soc. 1990,112, 4592. Synth. 1992, 71, 89.
Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E. J. Am. Chem. (219) Magriotis, P. A.; Brown, J. T.; Scott, M. E. Tetrahedron Lett.
Soc. 1992, 114, 1018. 1991, 38, 5047.
(176) Wallow, T. I.; Novak, B. M. J. Am. Chem. Soc. 1991,113, 7411. (220) Ishiyama, T.; Nishijima, K.; Miyaura, N.; Suzuki, A. Unpublished
(177) Tour, J. M.; Lamba, J. J. S. J. Am. Chem. Soc. 1993,115, 4935. results.
(178) Goldfinger, M. B.; Swager, T. M. J. Am. Chem. Soc. 1994, 116, (221) Castle, P. L.; Widdowson, D. A. Tetrahedron Lett. 1986,27, 6013.
7895. (222) Yuan, K.; Scott, W. J. Tetrahedron Lett. 1989, 30, 4779.
(179) (a) Hird, M.; Gray, G. W.; Toyne, K. J. Mol. Cryst. Liq. Cryst. (223) Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992,
1991, 206, 187. (b) Wulff, G.; Schmidt, H.; Witt, H.; Zentel, R. 691.
Angew. Chem., Int. Ed. Engl. 1994, 33, 188. (224) Catellani, M.; Chiusoli, G. P.; Concari, S. Tetrahedron 1989,45,
(180) Newhouse, B. J.; Meyers, A. I.; Sirisoma, N. S.; Braun, M. P.; 5263.
Johnson, C. R. Synlett 1993, 573. (225) Miyaura, N.; Yano, T.; Suzuki, A. Tetrahedron Lett. 1980, 21,
(181) Banwell, M. G.; Cowden, C. J.; Mackay, M. F. J. Chem. Soc., 2865. Legros, J.-Y.; Fiaud, J.-C. Tetrahedron Lett. 1990,31, 7453.
Chem. Commun. 1994, 61. (226) Miyaura, N.; Suginome, H.; Suzuki, A. Tetrahedron Lett. 1984,
(182) Friesen, R. W.; Loo, R. W. J. Org. Chem. 1991, 56, 4821. 25, 761.
(183) Potter, G. A.; McCague, R. J. Org. Chem. 1990, 55, 6184. (227) Kobayashi, Y.; Ikeda, E. J. Chem. Soc., Chem. Commun. 1994,
(184) (a) Wustrow, D. J.; Wise, L. D. Synthesis 1991, 993. (b) Zheng, 1789.
Q. ; Yang, Y.; Martin, A. R. Tetrahedron Lett. 1993, 34, 2235. (228) Moriya, T.; Furuuchi, T.; Miyaura, N.; Suzuki, A. Tetrahedron
(185) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; 1994, 50, 7961.
Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314. (229) Maeda, K.; Miyaura, N. Unpublished results.
(186) Ishiyama, T.; Miyaura, N.; Suzuki, A. Synlett 1991, 687. (230) Koshino, J.; Suzuki, A. Unpublished results.
Reactions of Organoboron Compounds Chemical Reviews, 1995, Vol. 95, No. 7 2483
(231) Soderquist, J. A.; Matos, K.; Rane, A.; Ramos, J. Tetrahedron (240) Ishiyama, T.; Kizaki, H.; Miyaura, N.; Suzuki, A. Tetrahedron
Lett. 1995, 36, 2401. Lett. 1993, 34, 7595.
(232) Hunt, A. R.; Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1993, (241) Ishikura, M.; Terashima, M. J. Org. Chem. 1994, 59, 2634.
34, 3599. (242) Ishiyama, T.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1991,
(233) A mixture of alkyne and 2a (1.1 equiv) in benzene was heated 32, 6923.
for 5 h at 60 °C. After the solvent was evaporated, the residue (243) Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc.,
was dissolved in DMF and then treated with Pd(OAc)2 (5 mol
Chem. Commun. 1995, 295.
%) and EtaN (2.5 equiv) for 14 h at 80 °C: Miyaura, N. Suzuki,
(244) Vaupel, A.; Knochel, P. Tetrahedron Lett. 1994, 35, 8349.
A.; unpublished results.
(234) Tanaka, M. Tetrahedron Lett. 1979, 20, 2601. Kobayashi, T.; (245) Ishiyama, T.; Oh-e, T.; Miyaura, N.; Suzuki, A. Tetrahedron Lett.
Tanaka, M. J. Organomet. Chem. 1981,205, C27. Grove, W. F.; 1992, 33, 4465.
Wright, M. E.; Davis, P. D. Labadie, S. S.; Stille, J. K. J. Am. (246) Hegedus, L. S.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. J.
Chem. Soc. 1984, 106, 6417. Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 5800.
Am. Chem. Soc. 1988, 110, 1557. (247) Miyaura, N.; Suzuki, A. Chem. Lett. 1981, 879. Yamashina, N.;
(235) Wakita, Y.; Yasunaga, T.; Akita, M.; Kojima, M. J. Organomet. Hyuga, S.; Hara, S.; Suzuki, A. Tetrahedron Lett. 1989, 30, 6555.
Chem. 1986, 301, C17. (248) Goliaszewski, A.; Schwartz, J. Tetrahedron 1984, 40, 5779.
(236) Kondo, T.; Tsuji, J.; Watanabe, Y. J. Organomet. Chem. 1988, (249) Sonogashira, K.; Toda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
345, 387. Grigg, R.; Redpath, J.; Sridharan, V.; Wilson, D. 4467. Dieck, H. A.; Heck, R. F. J. Organomet. Chem. 1975, 93,
Tetrahedron Lett. 1994, 35, 7661. 259. Takahashi, S.; Kuvoyama, Y.; Sonogashira, K.; Hagihara,
(237) Wakita, Y.; Yasunaga, T.; Kojima, M. J. Organomet. Chem. 1985, N. Synthesis 1980, 627. Magnus, P.; Annoura, H.; Harling, T.
288, 261. J. Org. Chem. 1990, 55, 1709. Hoye, T. R.; Hanson, P. R.;
(238) Tamaru, Y.; Ochiai, H.; Yamada, Y.; Yoshida, Z. Tetrahedron Kovelesky, A. C.; Ocain, T. D.; Zhuang, Z. J. Am. Chem. Soc.
Lett. 1983, 24, 3869. 1991, 113, 9369.
(239) Ishiyama, T.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn.
1991, 64, 1999. CR940431Y