Series Editor: Leon 0.
Chua
         BIFURCATION THEORY
          AND APPLICATIONS
                                     Tian Ma
                             Sichuan university, China
                            Shouhong Wang
                               Indiana university, USA
                                > World Scientific
NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • H O N G K O N G • TAIPEI • CHENNAI
                             Contents
Preface                                                                vii
1.   Introduction to Steady State Bifurcation Theory                    1
     1.1 Implicit Function Theorem                                      1
     1.2 Basics of Topological Degree Theory                            2
         1.2.1 Brouwer degree                                           2
         1.2.2 Basic theorems of Brouwer degree                         4
         1.2.3 Leray-Schauder degree                                    5
         1.2.4 Indices of isolated singularities                        7
     1.3 Lyapunov-Schmidt Method                                        8
         1.3.1 Preliminaries                                            8
         1.3.2 Lyapunov-Schmidt procedure                               9
         1.3.3 Normalization                                           12
     1.4 Krasnosel'ski Bifurcation Theorems                            13
         1.4.1 Bifurcation from eigenvalues with odd multiplicity .    13
         1.4.2 Krasnosel'ski theorem for potential operators . . . .   14
     1.5 Rabinowitz Global Bifurcation Theorem                         17
     1.6 Notes                                                         19
2.   Introduction to Dynamic Bifurcation                               21
     2.1 Motivation                                                    21
     2.2 Semi-groups of Linear Operators                               23
         2.2.1 Introduction                                            23
         2.2.2 Strongly continuous semi-groups                         25
         2.2.3 Sectorial operators and analytic semi-groups            26
         2.2.4 Powers of linear operators                              28
x                      Bifurcation Theory and Applications
     2.3 Dissipative Dynamical Systems                                   29
     2.4 Center Manifold Theorems                                        32
         2.4.1 Center and stable manifolds in Rn                         32
         2.4.2 Center manifolds for infinite dimensional systems . .     34
         2.4.3 Construction of center manifolds                          37
     2.5 Hopf Bifurcation                                                38
     2.6 Notes                                                           40
3.   Reduction Procedures and Stability                                  41
     3.1 Spectrum Theory of Linear Completely Continuous Fields .        41
         3.1.1 Eigenvalues of linear completely continuous fields . .    41
         3.1.2 Spectral theorems                                         44
         3.1.3 Asymptotic properties of eigenvalues                      50
         3.1.4 Generic properties                                        53
     3.2 Reduction Methods                                               56
         3.2.1 Reduction procedures                                      56
         3.2.2 Morse index of nondegenerate singular points . . . .      62
     3.3 Asymptotic Stability at Critical States                         66
         3.3.1 Introduction to the Lyapunov stability                    66
         3.3.2 Finite dimensional cases                                  67
         3.3.3 An alternative principle for stability                    70
         3.3.4 Dimension reduction                                       72
     3.4 Notes                                                           74
4.   Steady State Bifurcations                                           75
     4.1 Bifurcations from Higher-Order Nondegenerate Singularities 75
         4.1.1 Even-order nondegenerate singularities                75
         4.1.2 Bifurcation at geometric simple eigenvalues: r = 1 . 83
         4.1.3 Bifurcation with r = k = 2                            85
         4.1.4 Reduction to potential operators                      90
     4.2 Alternative Method                                          92
         4.2.1 Introduction                                          92
         4.2.2 Alternative bifurcation theorems                      94
         4.2.3 General principle                                     98
     4.3 Bifurcation from Homogeneous Terms                         100
     4.4 Notes                                                      103
5.   Dynamic Bifurcation Theory: Finite Dimensional Case                105
                                 Contents                             xi
     5.1 Introduction                                                105
         5.1.1 Pendulum in a symmetric magnetic field                105
         5.1.2 Business cycles for Kaldor's model                    110
         5.1.3 Basic principle of attractor bifurcation              112
     5.2 Attractor Bifurcation                                       114
         5.2.1 Main theorems                                         114
         5.2.2 Stability of attractors                               116
         5.2.3 Proof of Theorems 5.2 and 5.3                         119
         5.2.4 Structure of bifurcated attractors                    123
         5.2.5 Generalized Hopf bifurcation                          127
     5.3 Invariant Closed Manifolds                                  129
         5.3.1 Hyperbolic invariant manifolds                        129
         5.3.2 S 1 attractor bifurcation                             132
     5.4 Stability of Dynamic Bifurcation                            138
     5.5 Notes                                                       149
6.   Dynamic Bifurcation Theory: Infinite Dimensional Case           151
     6.1 Attractor Bifurcation                                       152
         6.1.1 Equations with first-order in time                    152
         6.1.2 Equations with second-order in time                   154
     6.2 Bifurcation from Simple Eigenvalues                         160
         6.2.1 Structure of dynamic bifurcation                      160
         6.2.2 Saddle-node bifurcation                               163
     6.3 Bifurcation from Eigenvalues with Multiplicity Two   ....   165
         6.3.1 An index formula                                      165
         6.3.2 Main theorems                                         169
         6.3.3 Proof of main theorems                                172
         6.3.4 Case where k > 3                                      184
         6.3.5 Bifurcation to periodic solutions                     184
     6.4 Stability for Perturbed Systems                             188
         6.4.1 General case                                          188
         6.4.2 Perturbation at simple eigenvalues                    191
     6.5 Notes                                                       194
7.   Bifurcations for Nonlinear Elliptic Equations                   197
     7.1 Preliminaries                                               197
         7.1.1 Sobolev spaces                                        197
         7.1.2 Regularity estimates                                  200
xii                      Bifurcation Theory and Applications
            7.1.3 Maximum principle                                    201
      7.2   Bifurcation of Semilinear Elliptic Equations               202
            7.2.1 Transcritical bifurcations                           202
            7.2.2 Saddle-node bifurcation                              207
      7.3   Bifurcation from Homogenous Terms                          209
            7.3.1 Superlinear case                                     209
            7.3.2 Sublinear case                                       210
      7.4   Bifurcation of Positive Solutions of Second Order Elliptic
            Equations                                                  213
            7.4.1 Bifurcation in exponent parameter                    214
            7.4.2 Local bifurcation                                    222
            7.4.3 Global bifurcation from the sublinear terms          231
            7.4.4 Global bifurcation from the linear terms             236
      7.5   Notes                                                      240
8. Reaction-Diffusion Equations                                       241
      8.1 Introduction                                             241
          8.1.1 Equations and their mathematical setting           241
          8.1.2 Examples from Physics, Chemistry and Biology . . . 243
      8.2 Bifurcation of Reaction-Diffusion Systems                246
          8.2.1 Periodic solutions                                 246
          8.2.2 Attractor bifurcation                              248
                                 m
      8.3 Singularity Sphere in 5 -Attractors                      251
          8.3.1 Dirichlet boundary condition                       251
          8.3.2 Periodic boundary condition                        256
          8.3.3 Invariant homological spheres                      258
      8.4 Belousov-Zhabotinsky Reaction Equations                  259
          8.4.1 Set-up                                             259
          8.4.2 Bifurcated attractor                               260
      8.5 Notes                                                    265
9. Pattern Formation and Wave Equations                               267
      9.1 Kuramoto-Sivashinsky Equation                               267
          9.1.1 Set-up                                                267
          9.1.2 Symmetric case                                        268
          9.1.3 General case                                          271
          9.1.4 S1-invariant sets                                     273
      9.2 Cahn-Hillard Equation                                       275
                              Contents                              xiii
         9.2.1 Set-up                                              275
         9.2.2 Neumann boundary condition                          276
         9.2.3 Periodic boundary condition                         286
         9.2.4 Saddle-node bifurcation                             290
   9.3   Complex Ginzburg-Landau Equation                          291
         9.3.1 Set-up                                              291
         9.3.2 Dirichlet boundary condition                        293
         9.3.3 Periodic boundary condition                         296
   9.4   Ginzburg-Landau Equations of Superconductivity            297
         9.4.1 The model                                           297
         9.4.2 Attractor bifurcation                               302
         9.4.3 Physical remarks                                    315
   9.5   Wave Equations                                            322
         9.5.1 Wave equations with damping                         322
         9.5.2 System of wave equations                            324
   9.6   Notes                                                     325
10. Fluid Dynamics                                                 327
   10.1 Geometric Theory for 2-D Incompressible Flows               327
        10.1.1 Introduction and preliminaries                       327
        10.1.2 Structural stability theorems                        327
   10.2 Rayleigh-Benard Convection                                  330
        10.2.1 Benard problem                                       330
        10.2.2 Boussinesq equations                                 331
        10.2.3 Attractor bifurcation of the Rayleigh-Benard problem 335
        10.2.4 2-D Rayleigh-Benard convection                       341
   10.3 Taylor Problem                                              343
        10.3.1 Taylor's experiments and Taylor vortices             343
        10.3.2 Governing equations                                  343
        10.3.3 Stability of secondary              flows            349
        10.3.4 Taylor vortices                                      354
   10.4 Notes                                                       365
Bibliography                                                       367
Index                                                              373