Function Lecture Notes
Function Lecture Notes
                                    DISCLAIMER
“The content provided herein are created and owned by various authors and licensed
to Sorting Hat Technologies Private Limited (“Company”). The Company disclaims all
rights and liabilities in relation to the content. The author of the content shall be solely
responsible towards, without limitation, any claims, liabilities, damages or suits which
may arise with respect to the same.”
                                                                                               
                       Function
Definition of Set:
A set is a collection of distinct objects, considered
as an object in its own right.
Ex.
      A = {1, 2, 3, 4};       B = {a, e, i, o, u}.
Note:
1. A set is generally represented by a capital           Know the facts
   letter.
2. The elements of set are written within the
                                                         There is no set like {1, 2, 1}.
   braces.
3. The numbers 2, 4 and 6 are distinct objects
   when considered separately, but when they
   are considered collectively, they form a single
   set of size three, written {2, 4, 6}.
4. No element in the set is repeated.
5. Set is a collection in which order of elements
   is not important.
Roster form
Representation of a set that lists all the elements in
the set, separated by commas, within braces.
Ex. {–3, –2, –1, 0, 1, 2}
           Ex.
                 {x|x is a vowel} → Set Builder form
                 {a, e, i, o, u} → Roster form.
                 Both sets are same.
           Ordered Pair
                 An ordered pair (a, b) is a pair of objects. The
                 order in which the objects appear in the pair is
                 significant.
           Note:
           1. The ordered pair (a, b) is different from the ordered
              pair (b, a) unless a = b.
           2. It can be understood if the pair is taken as a point.
           3. Here, (1, 2) and (2, 1) represent different points, so
              cannot be considered equal.
                                                                                Point to Remember!!!
           Cartesian product
           It is product of 2 sets.                                                (
                                                                                n A ×B
                                                                                 =
                                                                                            )       n (A)
                                                                                                    
                                                                                                              ×      n (B)
                                                                                                                     
                                                                                no of elements   no of elements   no of elements
           A
             × B = {( a,b ) | a  A and b  B}                                   in set A ×B        in set A         in set B
                                                                                                                                   2.
 Note:
    It can be seen that all elements of
    A × B and B × A are not equal.
    ∴ A×B ≠ B×A
Function
Definition:
A relation from a set A to a set B is called a function if
(i)	Each element of set ‘A’ is associated with some
      element in set ‘B’.
(ii)	Each element of set ‘A’ has unique image in set ‘B’.
Ex.
      ∴ f ≡ {(1, a), (2, b), (3, c)}
      So, it can be said that f ⊂ A × B.
                                                                                                 3.
           Ex.
                 f = {(a, 1), (b, 2), (c, 3), (d, 4)}
                 A = {a, b, c, d}, B = {1, 2, 3, 4, 5}
                 f: A → B
Ex.
            (i)                                          is a function.
                                                         Every element in A has a unique image in B.
            (ii)                                         is a function.
                                                         Every element in A has a unique image in B.
                                                                                                       4.
Domain, Codomain and Range
  A = {a, b, c, d}, B = {1, 2, 3, 4, 5}
  Domain          ® {a, b, c, d}
  Codomain        ® {1, 2, 3, 4, 5}
  Range 		        ® {1, 2, 3, 4}
      If
Ex.
      Domain → {a, b, c, d}
      Codomain → {1, 2, 3, 4}
      Range → {1, 2, 3}
           Find domain of
  Q.       (i) y = x
                                                                               5.
           Q.   (ii) y = 2x – 1
           A.   Domain ≡ x ∈ R
                M-1: For range, it can be seen from graph
                   ∴ Range ≡ y ∈ R
                M-2: y = 2x – 1
                    Since x ∈ (–∞, ∞)
                    y = 2(–∞, ∞) – 1
                      = (–∞, ∞) –1
                      = (–∞, ∞).
                ∴ y ∈ R.
Q. (iii) y = 3x + 4
           A.   Similarly,
                Domain ≡ x ∈ R
                Range ≡ y ∈ R
                So, In general, for y = ax + b
                			                (linear, a ≠ 0) ,
                Domain ≡ x ∈ R
                Range ≡ y ∈ R.
y≠0
                                                             6.
     ∴ Range: y ∈ R – {0}
                                     1
         Alternate Method: x =         ⇒y≠0
                                     y
         So, graph of xy = 1 or xy = c2 is given:
Q.   (ii) y =
                   1
                 2x − 1
A.   Domain: 2x − 1 ≠ 0
                                           1
                                or x  R −  
                                           2
     For range,
          1 1        1                            1
     y x −  = ⇒ YX =                Y = y; X = x − 
          2 2        2                            2
     So, using shifting of origin, it can be seen that
     function is similar to xy = c2
     ∴ Range: y ∈ R – {0}
                   1
Q.   (iii) y =
                 3x + 4
A.   3x + 4 ≠ 0 ⇒ x ≠
                          −4
                           3
                                                              Point to Remember!!!
                        −4 
     ∴ Domain: x  R −  
                       3                                                           1
                                                              Range of f ( x ) =          , (a ≠ 0)
                                                                                   ax + b
         Similarly, range: y ∈ R – {0}
                                                              will always be R– {0}.
Q. (iv) y = x
                                                                                                      7.
                                                              Point to Remember!!!
Point to Remember!!!
Q. (v) y = 2x − 1
           A.     2x − 1 ≥ 0 ⇒ x ≥
                                        1
                                        2
                              1    
                  Domain: x   , ∞ 
                               2   
                                              1   
                  Trick for range:          2  , ∞ − 1
                                              2 
                  =   1, ∞ ) − 1 =    0, ∞ ) = 0, ∞ )
                  So, range ≡ [0, ∞)
Q. (vi) y = 3x + 4
           A.                  −4 
                  Domain: x   , ∞ 
                              3    
                  Range: y  0, ∞ )
Function
                                                                                                          8.
                                                                            Point to Remember!!!
                      1
 Q.      (vii) y =
                       x
 A.      Here, it is similar to
                                    1
                                         .
                                  ax + b
         So ax + b > 0
         ∴ Domain: x ∈ (0, ∞)
                                     1             1                
             Range: y ∈ (0, ∞)                →           → ( 0, ∞ ) 
                                   (0, ∞ )       (0, ∞ )             
                         1
 Q.      (viii) y =
                       3x − 4
 A.                             4 
         Similarly, Domain: x   , ∞ 
                                3                                                                    1
             Range: y ∈ (0, ∞) or R+                                                                  3x–4
                                                                                                             9.
                 Again, both functions should be real at the same time. So, the domain
                 is set of all the values of x common to both of their domain.
                                                                                   f
           (iii) Let f and g be functions with domain D1 and D2, then the function   ( x )
                                                                                   g
                                 f (x)       f         f (x)
                 is defined as         i.e.,   ( x ) =
                                g (x)        g         g (x)
                 Domain:
                 D1 ∩ D2 : {x | g ( x ) ≠ 0} or
D1 ∩ D2 − {x | g ( x ) = 0}
           Ex.
                 f(x) = x;		              g(x) = x2-1
                 Df = R;			               Dg = R
                 f         x
                   (x) = 2
                  g
                        x   −1
                 x2 – 1 ≠ 0      ⇒        x ≠ 1, –1.
                             f
                 ∴ Domain of   ( x ) is x ∈ R – {1, –1}.
                             g
           (iv) Let f and g be functions with domain D1 and D2, then the function fg is
                defined as
                ( fg ) ( x ) = f ( x ) .g ( x ) ;		 Domain: D1 ∩ D2
Q. f(x) = x3 + 2x2 and g(x) = 3x2 – 1. Find domain of f ± g,fg and f/g.
             A.         Df = R;		        Dg = R
                        Df ∩ Dg = R
                        (i) f ± g : Df ∩ Dg    ⇒ Domain = R ∩ R = R
                        (ii) fg    : Df ∩ Dg   ⇒ Domain = R ∩ R = R
                        (iii) f/g  : Df ∩ Dg   ⇒ Denominator ≠ 0
                                                     1
                        			                    ⇒x≠±
                                                     3
                                       1 
                        ∴ Domain: R − ±  
                                        3
Function
                                                                                               10.
Continuous Functions
If graph of a function can be drawn without taking up the pen, then function
is continuous.
Ex.
(i) Graph of sin x is continuous ∀ x ∈ R
                                                     π
(ii) Graph of tan x, is discontinuous at ( 2n + 1)     ,n∈I
                                                     2
             sinx                           π
    tanx =        ⇒ cosx ≠ 0 ⇒ x ≠ ( 2n + 1) , n ∈ I
             cosx                           2
                                                                                     Function
                                                                               11.
           Domain, Range and Graph of Trigonometric Functions
           (i) y = sin x
               Domain : x ∈ R; Range ∈ [–1, 1]
Point to Remember!!!
                                                                         y
                                                                sinθ =
                                                                         r
                                                     π
              Maximum value of y = sin x is 1 at x =   .
                                                     2
                                                      3π
              Minimum value of y = sin x is –1 at x =    .
                                                       2
              Domain: x ∈ R
              Range: y ∈ [–1, 1]
(ii) y = cos x
Point to Remember!!!
                                                                             x
                                                                  cosθ =
                                                                             r
                                                                                         12.
(iii) y= tan x
                                π
    Domain: x ∈ R − ( 2n + 1)     ; n∈I
                                2
Range: R
(iv) y = cot x
             cosx
    cotx =
             sinx
    ⇒  sin x ≠ 0
⇒ x ≠ nπ, n ∈ I
∴ Domain: x ∈ R – nπ, n ∈ I
Range: R
(v) y = cosec x
    Graph can be constructed by observing the
    graph of y = sin x.
                         1
    Since cosecx =          , sin x ≠ 0
                       sinx
    ∴  x ≠ nπ
    Domain: R – nπ
	From graph it can be seen that
    range ∈ (–∞, –1] ∪ [1, ∞)
                                                      Function
                                                13.
           (vi) y = sec x
              Similarly, like cosec x, graph of sec x can be drawn by the help from
              graph of cosx.
                               1                            π
              Since secx =        , cosx ≠ 0 ⇒ x ≠ ( 2n + 1) , n ∈ I
                             cosx                           2
                                               π
              ∴  Domain: x ∈ R − ( 2n + 1)       ,nI
                                               2
              Range: (–∞, –1] ∪ [1, ∞)
             Q.     Find range of y :
                    (i) y = sin (2x)
A. x ∈ (- ∞ , ∞ )
                    ⇒ 2x ∈ (- ∞ , ∞ )
                    	As different values of x are used in sin(2x), input moves from (- ∞ , ∞ ).
                        So, sin(x) ∈ [-1, 1]
Function
                                                                                                   14.
Q.   (ii) y = sin (x2)
A. x ∈ (- ∞ , ∞ )
⇒ x2 ∈ [0, ∞ )
Q. (iii) y = sin ( x )
A.   x ∈ [0, ∞ )
         Input for sin x is [0, ∞ )
         ∴ Range is [–1, 1]
                      x        x
Q.   (iv) y = cos4
                      2
                        − sin4
                               2
A.             x      x     x      x
     y =  cos2 − sin2   cos2 + sin2 
               2      2     2      2 
                 x      x 
         =  cos2 − sin2 
                 2      2
                x
         = cos  2·  = cos x.
                2
         Range of cos x is [–1, 1]
         So, y ∈ [–1, 1]
A.   sin x ∈ [–1, 1]
         sin x + 2 ∈ [1, 3]
         (sin x + 2)2 ∈ [1,9]
         y = (sin x + 2)2 +1 ∈ [2, 10]
                                                  Function
                                            15.
             Q.      (vi) y = 4 tan x cos x
                                                                                                        16.
Ex. y = x3 + 2x2 – 7x + 3
    as x → ∞ ; y → ∞                                      Point to Remember!!!
   as x → −∞ ; y → - ∞
                                                                                     D     
                                                         Range of parabola (a > 0):  −  , ∞
   Since, polynomial is continuous, the range is                                     4a    
   (- ∞ , ∞ )
                                                         y = ax2 + bx + c
                                                                                         D
                                                         If a < 0, than range is  −∞, −
                                                                                         4a 
Ex. y = 2x100 + 76
    x → + ∞ ;y → + ∞
   x → - ∞ ;y → + ∞
   Here, since leading coefficient is positive, y
   can not assume the value of ‘– ∞ ‘. Hence, its
   graph will be:
   This graph has a minima. so, range is subset
   of R.
                                                                                                  17.
           Ex. f ( x ) =    x2 + 1
                 Domain : x2 + 1 ≥ 0
                 Since x2 ∈ [0, ∞ ), x2 + 1 ∈ [1, ∞ ) So, x2 + 1 ≥ 0 is true for all real x.
                 ∴ Domain: (– ∞ , ∞ )
                 Range: [1, ∞ )
             Q.          f(x) =   x2 + ax + 4
                         (a) Find ‘a’ if range is [2, ∞).
                         (b) Find ‘a’ if domain is all real.
           Ex.
                       2x4 − x2 + 1
                 f(x)=              ; D = {x|x ≠ ± 2}
                         x2 − 4
                 Here, denominator ≠ 0
                 x2 – 4 ≠ 0
                 x ≠ 2, -2
Function
                                                                                               18.
Definition of Exponential Function
A function f(x) = ax (a > 0, a ≠ 1, x ∈ R) is
called an exponential function.
Ex.
                                                                    Point to Remember!!!
      y = 2x
                                                                    Graph of ax
      x        -∞        -2         -1       0         1   2    ∞
                                                                    base a > 1
                         1          1                               Domain: x ∈ (- ∞ , ∞ )
      y        0+                            1         2   4    ∞
                         4          2
      As x increases, y increases.
      As x decreases, y decreases.
                              1   1   1
      as x → - ∞ , y =          ×   ×   ×…=O+
                              2   2   2
      So, if ax > ay ⇒ x > y
Ex.
               x
         1                                                         Point to Remember!!!
      y=  
         2
                                                                     Graph of ax :
  X       -∞        -2         -1        0       2         ∞
                                                                     base 0 < a < 1
  Y        ∞        4          2         1       1/4       0+
      As x increase, y decreases
      So, if ax > ay ⇒ x < y
      Domain: (–∞, ∞)
      Range: (0, ∞ )
                                                                                                   Function
                                                                                             19.
           Ex.
x -2 -1 0 1 2
2x 1/4 1/2 1 2 4
3x 1/9 1/3 1 3 9
Ex.
x -2 -1 0 1 2
           Ex.
           (i) y = 2     x
                 Domain: x ≥ 0
                   x ≥ 0 ⇒ 2       x
                                        ≥ 1
                 Range: [1, ∞ )
                         2
           (ii) y = 2x       +1
                 Domain: x ∈ R
                 x2 +1 ∈ [1, ∞ )
                 ∴ Range: [2, ∞ )
Function
                                                                    20.
Definition of Logarithmic function
                                                       Point to Remember!!!
   y = logax; x > 0, a > 0, a ≠ 1
      y = log a x ⇒ a y = x                            Graph of y = logax
                       
                       + ve                            base a > 1
  ∴  a > 0 and x > 0                                   Domain: (0, ∞ )
	If a = 1 and x = 1, then log11 has more than         Range: (- ∞ , + ∞ )
  one value.
  So, it will not be a function.
	If a = 1 and x ≠ 1, then logax will have no
      solution.
      ∴  a ≠ 1.
Ex.
      y = log2x
x 0+ 1/4 1/2 1 2 4 ∞
y –∞ -2 -1 0 1 2 ∞
      d2 y   −1
           =    < 0 ∀ x ∈ R+
      dx2 x2
      So, graph is always increasing as well as
      concave down.
Point to Remember!!!
                                                       Graph of y = logax
                                                       base 0 < a < 1
                                                       Domain: x ∈ ( 0, ∞ )
                                                       Range: (- ∞ , ∞ )
                                                                                    Function
                                                                              21.
           Q.1   Find the domain and range of y =        lnx
                 ln x ≥ ln1
                 Since base is greater than 1, graph is increasing.
                 ∴ x ≥ 1
                 ∴ Domain: [1, ∞ )
                     Since ln x ≥ 0,           lnx ≥ 0
                 ∴ Range: [0, ∞ )
           A.    Domain conditions:
                 (i) x-1 > 0 ⇒ x ∈ ( 1, ∞ )
                 (ii) log 1/3 ( x − 1) ≥ 0
                 ⇒ log 1/3 ( x − 1) ≥ log 1/3 1
                 ⇒ x–1≤1
                   (from graph of logax, 0 < a < 1)
                 ⇒ x≤2
                 ∴ from (i) and (ii), domain: (1,2]
                     Range: x ∈ (1,2] ⇒ (x -1) ∈ (0, 1]
                 ⇒ log 1/3 ( x − 1) ∈ [0, ∞ )
                 ∴ Range: [0, ∞ )
           A.    Domain:
                 log3(cos(sinx)) ≥ 0
                 ⇒ log3(cos(sinx)) ≥ 0 = log31
                 ⇒ cos(sinx) ≥ 1
                 Since cos θ ∈ [–1, 1], there is only one case
                 where above situation is possible, i.e, cos
Function
(sinx) = 1
                                                                      22.
     ⇒ sinx = 2n π , n ∈ I.
         sinx= 0, ±2 π , ±4 π , ± 6 π , …
         But sin x ∈ [-1, 1]. So, sinx = 0 is only
     solution.
     ∴ x = n π , n ∈ I.
         Range:
         sinx = 0 ⇒ cos(sinx) = 1
     ⇒ log3cos(sinx) = log 1 = 0
     ∴ Range: {0}
        This function can also be called many-one
     function.
Q.   (iii) y =
                  1
                 lnx
A.   Domain:
     Condition are:
     (i) x > 0
     (ii) lnx ≠ 0 ⇒ x ≠ 1
     ∴ Domain:              x ∈ (0, 1) ∪ (1, ∞ ).
         Range:
         lnx ∈ (–∞, 0) ∪ (0, ∞).
            1
     ∴         ∈ (- ∞ , 0) ∪ (0, ∞ )
          ln x
                                    1
         (Similar to function y = )
                                   x
Q.
                  1
     (iv) y = e x
A.   Domain: x ≠ 0
     ⇒ x ∈ (– ∞ , 0) ∪ (0, ∞ )
         Range:
          1
            ∈ ( −∞, 0 ) ∪ ( 0, ∞ )
          x
     ⇒ e1/x ∈ ( 0, 1) ∪ ( 1, ∞ )
     ∴ Range: (0, 1) ∪ (1, ∞).
                                                           Function
or (0, ∞ ) – {1}
                                                     23.
             Q.     (v) y = log10 (log10(1+x3))
             A.     Domain:
                          log 10 ( 1 + x3 ) > 0
                     ⇒ 1 + x3 > 1
                     ⇒ x3 > 0 ⇒ x > 0
                    ∴ Domain: x ∈ (0, ∞ )
                    Range:
                                (
                          log10 log 10 ( 1 + x3 )
                                
                                                     )
                                      ( 0,   ∞)
                     ⇒ y ∈ ( −∞, ∞ )
                          (∴ log(0+) = –∞ and log(∞) = ∞)
                                    1− x                   2x 
             Q.3    If f(x) = log e      , x < 1 , then f 
                                    1+ x
                                                                 2 
                                                            1+ x 
                                                                     is equal to:
                                             2x 
                                         1−
             A.       
                     f
                        2x   
                           2 
                                       
                               = log e     1 + x2 
                                                   
                      1+ x            1 + 2x 2 
                                           1+x 
                                  ( 1 − x )2 
                          = loge             
                                  ( 1 + x )2 
                                             
                                    1− x
                          = 2 loge          
                                    1+ x
                          = 2f(x)
                      x if x ≥ 0
               y= x =
                     −x if x < 0
              Domain: R;         Range: [0, ∞)
           Ex. |-2| = 2
               |+2| = 2
               |0| = 0
Function
                                                                                          24.
Ex.                                                  Know the facts
      y – 2 = |x – 3|
                                                   Shifting of origin:
            + ( x − 3 ) ; x ≥ 3                  y – b = f(x – α)
      y–2 =                                       Take (0, 0) point of graph to ( α, β ).
              − ( x − 3 ) ; x < 3
                                                   In this case, draw the graph y = f(x)
          x − 1 x ≥ 3                             where X = x – α and Y = y - β
      ⇒ y=
          5 − x x < 3                             At x = α , X = 0 and at y = β , Y = 0
                                                   So, at ( α , β ), X = 0 and Y = 0.
                                                   So, draw the graph Y = f(X) at ( α, β )
 Now, if graph of both functions,
	
 y = |x| and y-2=|x-3| is compared, then it        as if ( α, β ) was origin.
 appears as if graph is shifted from origin
 to (3, 2).
Ex.
      y + 2 = |x-1|
      b = –2
   α=1
Sol. y-(-2) = |x-1|
      ∴ α = 1 and b = –2
      So, shift the graph of y = |x| to (1, –2).
                                                                                                 Function
                                                                                           25.
           Ex.
                             ( x − 1) , x ≥ 1
                 y = |x–1|= 
                             − ( x − 1) , x < 1
                 ( α =1; β =0)
                 So, graph shifted to (1, 0)
           (iii) y = -1+|x|
                y-(-1) = |x|
                graph shifted to (0, -1)
             A.        y – 1 = |x – 1|; α = 1 and β = 1
                           Graph shifted to (1, 1)
                           Domain: R
                           Range: [1, ∞ )
Function
                                                                                                            26.
                                                   1
Q.   Which of the following graph represents y =
                                                   x
                                                     ?
(A) (B)
(C) (D)
A.   Domain: |x| ≠ 0
     ∴ x≠0
     ∴ Domain: R – {0}
     Range:
        x = 0+		    y = ∞.
           x = 0–		        y= ∞
           x = –∞          y = 0+
           x=+∞            y = 0+
           |x| ∈ (0, ∞),   (|x| ≠ 0)
           1
     ∴       ∈ ( 0, ∞ )
           x
     ∴ Range: (0, ∞)
     So, from domain, graphs (A) and (D) are eliminated.
     from Range, graph (B) can be eliminated. Graph (C) is the correct answer.
                                                                                       Function
                                                                                 27.
           Definition of Signum Function
           A function y = f(x) = sgn(x) is defined as follows:
                              1 for x > 0
                             
               y = f ( x ) =  0 for x = 0
                             −1 for x < 0
                             
              Domain: R
              Range: {–1, 0, 1}
           Note:
              Hollow circle at (0, 1) and (0, –1) indicates that
              these points are excluded.
                                                                   Know the facts
              Solid circle at (0, 0) show that this point is
              included.                                                          x
                                                                                  , x≠0
                                                                        sgn(x) =  x
                                                                                  0, x = 0
                                                                                 
             A.          1 ; x2 − 1 > 0
                        
                    y =  0 ; x2 − 1 = 0
                        −1 ; x2 − 1 < 0
                        
                         1 ; x ∈ ( −∞, −1) ∪ ( 1, ∞ )
                        
                    y = 0 ;          x = 1, −1
                        −1 ;        x ∈ ( −1, 1)
                        
                    Domain: x ∈ R
                    Range: {-1, 0, 1}
∴ Range: y = {0}
                                                                                              28.
  Q.     y = sgn (ln(x2 – x + 2))
                               −D 
  A.     Range for quadratic: 
                               4a
                                   , ∞
                                      
                        7    
         ∴ x2 – x + 2 ∈  , ∞ 
                        4 
                                                      7
         ∴ minimum value of ln (x2–x+2) is ln
                                                      4
                 7
            ln     > ln1 which is 0.
                 4
                 7
            ln     is positive
                 4
            So, sgn (ln(x2 – x + 2)) will always give the value ‘1’.
         ∴ Range: y = {1}
            Domain: x ∈ R.
                                                                                               29.
           Definition of Greatest integer function
              The function y = f(x) = [x] is called the
              greatest integer function, where [x] denotes
              the greatest integer less than or equal to x.
                 R = I + f, here I is [R].
           Ex. [7.6] = 7
               7.6 is not an integer. The integers less than
               7.6 are {7, 6, 5, 4, …}. Among these integers,
               greatest integer is 7. So, [7.6] = 7.
Ex.
            -1 ≤ x < 0            ⇒      [x] = - 1
            0 ≤ x<1               ⇒      [x] = 0
            1 ≤ x<2               ⇒      [x] = 1
            2 ≤ x<3               ⇒      [x] = 2
             and so on.
             For f(x) = [x], domain is R and range is I.
             Here, [0.1] = 0
           		        [0.3] = 0
           		        [0.7] = 0
             or      y = [x] = 0 ∀ x ∈ [0, 1)
           Ex.
                                  1
                 For f ( x ) =       , find the domain and range.
                                 [ ]
                                  x
                 (where [.] denotes greatest integer function)
           Sol. Domain of [x] is R.
                                1
              In case of y =        , f(x) ≠ 0.
                             f (x)
                 So, in above example, [x] ≠ 0.
                 ⇒ x ∉ [0,1)
                 ∴ Domain: x ∈ R – [0, 1)
                                1 1 1 1 1
                 Range: y = …,    , , , , , … and so on.
                               −2 −1 1 2 3
                            1                         
                 ∴ Range: =  : I is an integer, I ≠ 0 
Function
I 
                                                                    30.
Property:
   (a)    [x] ≤ x < [x] + 1
   (b)    x – 1 < [x] ≤ x
Proof:
   (a)        0 ≤ x – [x] < 1
		            ⇒ [x] ≤ x < [x] + 1
  (b)         x–[x] < 1
		            ⇒ x – 1 < [x]
		            x – [x] ≥ 0
		            ⇒ x ≥ [x]
Property:
   (c)    [x + m] = [x] + m, where m is an integer.
      From the number line, it can be seen that greatest integer on the left
      side of x + m is I + m, i.e., [x] + m.
Ex.
      [10.7] = 10
      [10.7 + 2] = [12.7] = 12 = 10 + 2 = [10.7] + 2.
Property:
                                0 if x is an integer
      (d)     [x]   + [ −x ] = 
                               −1     otherwise
Proof:
Case-I:  x = integer.
		       [x] = x, [–x] = -x
   ∴     L.H.S = x – x = 0 = R.H.S.
Case-II: x = I + f; f ∈ (0, 1), I is an integer.
		       LHS = [I + f] + [–I – f]
			               = I + [(–I – 1) + (1 – f)], 1 – f ∈ (0, 1)
			               = I + (–I – 1)
			               = –1 = RHS
Ex. [2.3] + [–2.3] = 2 + (–3) = –1
                                                                                     Function
                                                                               31.
           Q.1   Let [x] represents the greatest integer less than or equal to x. If all the values of
                                                1    1
                 x, such that the product x −  x +  is prime, belongs to the set [x1, x2) ∪
                                                2    2
                 [x3, x4), find the value of x21 + x22 + x32 + x42 .
                          1               1
           A.    Let x -
                         2
                             = R. Then x + = R + 1.
                                          2
                        1      1                                               1
                 ∴   x −  x +  = [R] [R +1] = I (I+1); where [R] = x −              =I
                        2      2                                               2 
                 I (I + 1) is prime.
                 It is only possible in 2 cases.
                 Case I:              I (I + 1) = 1·2; I =1
                 Case II: 		          I (I + 1) = (–2)·(–1); I = – 2
                                        1                      1
                 ∴           1 ≤ x–        < 2 or –2 ≤ x –       <–1
                                        2                      2
                                   3       1  3 5 
                 ⇒           x ∈ − , −  ∪  , 
                                     2    2   2 2 
                                     3           1        3      5
                 ∴           x 1 = − ; x2 = − ; x3 = ; x4 =
                                     2          2         2      2
                                                44
                    So, x21 + x22 + x32 + x42 =      = 11.
                                                 4
           A.    Let [x] = I.
                 ∴         I2 + 2 (I + 2) –7 = 0		             (  [x + I] = [x] + I)
                 		         I2 + 2I –3 = 0
                 		         I = 1 or –3
                 ∴          x ∈ [1, 2) ∪ [–3, -2)
                 		         So, equation has infinite solutions.
                 		         So, (B) is the correct option.
Function
                                                                                                        32.
Definition of Fractional part function
  It is defined as:
                                                          Know the facts
		        g(x) = {x} = x – [x]
      or     x = [ x ] + {x}         y = x – [x] = {x}   The period of this function is 1. For
                  
                   I         f
                                                         f(x) = {x}, domain is R and range is
                  x − 0         ;    x ∈ [0, 1)        [0, 1).
                                                   
                   x − 1       ;    x ∈ [ 1, 2 ) 
                                                    
		           y = x − 2          ;   x ∈ [2, 3) 
                  x + 1         ;   x ∈ [ −1, 0 ) 
                                                  
                                               
      The graph will have parallel lines and it will be discontinuous at all
      integers.
Ex.
                                                          Know the facts
      (i) The fractional part of the number 2.1 is
           2.1 – 2 = 0.1
                                                         Graph of y={x} is periodic with
      (ii) The fractional part of –3.7 is 0.3.
                                                         length of period 1.
Property:
(i) {x + n} = {x} ; n∈ I
    Proof:
    {x + n} = (x +n) – [x + n]
		          = x + n – ([x] + n)
		          = x – [x] = {x}
Ex. {–1.5} = {–0.5} = {0.5} = 0.5
                                                                                                  Function
                                                                                            33.
                             0        ,   x∈ I
           (ii) {x} + {−x} = 
                             1        ,   x ∉I
           Proof:
           Case-I:      x is an integer
           		           {x} + {-x} = 0 + 0 = 0.
           Case-II:     x is not an integer
           		           Let x = I + f ; f ≠ 0, f∈ (0, 1)
           		 {x} + {-x} = {I + f} + {-I + (-f)}
           			        = f + {(-I-1) + (1-f)}
           			        =f+1–f
           			= 1		Hence proved.
           Ex.
                 {2.8} + {–2.8}
                 = 0.8 + 0.2 = 1
                                                                                                         34.
Q.    (ii) f(x) = log10 {x}, ({.} denotes fractional part function)
Q.    (iii) y = [sin{x}]
      (where [.] denotes greatest integer function and {.} denotes
      fractional part function)
A.    Domain: x ∈ R
      {x} ∈ [0, 1)
      ∴ sin {x} ∈ [sin 0, sin1) = [0, sin1)
      1 C ≈ 57 ° . So, 0 < sin1 < 1.
A.    [x]–1 ≥ 0           ⇒ [x] ≥ 1
      4–[x] ≥ 0           ⇒ [x] ≤ 4
      So, 1 ≤ [x] ≤ 4
      So, domain: x ∈ [1, 5)
      (  [x] = 4 for x ∈ [4 ,5))
      For range, firstly [x] = 1, 2, 3 or 4
      Putting these values in y,
      we get     3 , 1+    2 , 1+      2 and    3
      respectively.
      ∴ Range contains only two values,             3 and 1+     2.
      y ∈ { 3,1 +       2 }.
                                                                                 Function
                                                                           35.
           Q.3   Find domain of y =             − 2 [ x ] − x − {x}
(where [.] denotes greatest integer function and {.} denotes fractional part function)
A. |f(x)| ≥ 0 ⇒ – |f(x)| ≤ 0
                     =             0 × 63                      +         1 × 100              +    2 × 72
                     = 0 + 100 + 144 = 244
Function
                                                                                                            36.
Q.5   Find the range:
                                        x              x                       x 
      f ( x ) = [ 1 + sinx ] + 2 + sin    +   3 + sin  3   + ... +    n + sin  n   ;
                                        2                                      
      x ∈ [0, π] (where [.] denotes greatest integer function)
A.                                            x 
          (1 + 2 + 3 + 4 +…n) + [sinx] + sin    +
                                                                         x 
                                                                    sin  3   + ... +
                                                                                                   x 
                                                                                              sin  n  
                                              2                                            
                             x     π
          Since x ∈ [0, π ],   ∈ 0, 
                             3     3
                x      3
        So, sin   ∈ 0,  
                3  2 
           x
      ∴ sin  = 0 only.
           3 
                                    x      x         x
          Similarly, value of sin  , sin  , … and sin  will always be 0.
                                   4       5         n
                       n + 1                x
          So, f(x) = n       + [sinx ] + sin 
                         2                  2 
                                      x               n + 1
          At x = π , [sinx]=0 and sin  = 1 ⇒ f(x) = n       +1
                                      2                2 
                 π                    x                 n + 1
          At x =    , [sinx]=1 and sin  = 0 ⇒ f(x) = n       +1
                 2                    2                  2 
                                                              x               n + 1
          At all other values in (0, π ), [sin x] = 0 and sin  = 0 ⇒ f(x) = n      
                                                              2                2 
                                                    n2 + n + 2     n2 + n
          So, f(x) can assume only two values,                 and        .
                                                        2            2
                n2 + n n2 + n + 2 
      ∴ Range =       ,           
                 2         2      
Point to Remember!!!
                                                                1             2                  n − 1
                                                  [x] + x +        +
                                                                         
                                                                         x + n  + ... +
                                                                                              
                                                                                              x + n  = [nx ]
                                                               n 
                                                  We can also use it to solve the previous question.
                                                                                                                         Function
                                                                                                                   37.
           Definition of Constant function
                 Constant function is a function whose (output)
                 value is the same for every input value.
           Ex.
                 For example, the function given is a constant
                 function because the value is 4 regardless of the
                 input value (see diagram)
                 In this type of function, domain is (-∞, ∞), while
                 range contains only a single value. In above
                 example, range is {4}
           Ex. f(x) = x
               Domain = R
               Range is (- ∞, ∞ )
                 This is an increasing function.
                 it is also represented by Ix.
                                                                                 38.
Q.
                        4 − 3x                 x ( x + 8)
     (ii)     (0.625)              − ( 1.6 )
A.
            4 − 3x          x ( x + 8)
     5              8
                   ≥ 
     8              5
            3x − 4          x2 + 8x
     8              8
                   ≥ 
     5              5
     ⇒ 3x – 4 ≥ x2 + 8x		                                     (  ax, a > 1 is an increasing
     function)
     ⇒ x2 + 5x + 4 ≤ 0
     ⇒ (x + 1) (x + 4) ≤ 0
       x ∈ [-4, -1] (domain)
Q.                             (
     (iii) f ( x ) = log x − 1 − x                  )
A.   x− 1−x ≥0                           and            1–x ≥ 0
     ⇒ x ≤ 1		                           and            x ≥   1−x
            Case I: x ≤ 0
       LHS = Negative, RHS = Positive
     ∴ Not possible
            Case II: x > 0
            Square both sides
            x2 ≥ 1 – x
            x2 + x – 1 ≥ 0
                        −1 ± 5
            Roots are
                           2
                 −1 − 5        −1 + 5  
            x −           x −            ≥0
                    2             2  
                −1 − 5   −1 + 5 
     ⇒ x ∈  −∞,        ∪       , ∞
                   2     2        
                                                                                               39.
           Q.   (iv) f ( x ) = sinx + 16 − x2
           A.   sin x ≥ 0 and 16 – x2 ≥ 0
                x2 ≤ 16
                x ∈ [–4, 4]
                (from 2nd condition)
                by graph, y = sinx
                Since sinx ≥ 0,
                x ∈ [-4, - π ] ∪ [0, π ]
                                  x−2
           Q.   (v) f ( x ) =
                                  x−3
           A.    x−2
                     ≥ 0 and x –2 ≥ 0
                 x−3
                      Case I:     x − 2 =0
                      x = 2, x – 3 = – 1
                       0
                ⇒        =0≥0                So, no problem.
                      −1
                      x = {2}
                      Case II:    x−2 > 0
                ⇒ x>2
                  in this case, x – 3 must be positive.
                  So,     x>3
                ∴ x ∈ {2} ∪ (3, ∞ )
           Q.   (vi) f(x) =      (x   2
                                          − 3x − 10 ) ln2 ( x − 3 )
⇒ x ∈ {4} ∪ [5, ∞ )
                                                                                40.
                          1                                      1           1
Q.   (vii) f ( x ) =
                         [ ]
                          x
                             + log 1−{x} ( x2 − 3x + 10 ) +
                                                              2− x
                                                                     +
                                                                         sec ( sinx )
                                                                                        , where [·] denotes
Q. (viii) f(x) = 7x − 1
A.   7x – 1 ≥ 0
     ⇒ 7x ≥ 1
     ⇒ 7x ≥ 7°
     ⇒ x ≥ 0 (  increasing function as base > 1)
         Domain: x ∈ [0, ∞)
Q. (ix) f(x) = 7x + 1 − 1
A.   7x + 1 ≥ 1
     x+1≥0
     x≥-1
     Domain: x ∈ [-1, ∞)
Q.   (x) f(x) :
                        1 − 5x
                       7−x − 7
A.    1 − 5x
             ≥0
     7−x − 7
     ⇒ 7x
             (5   x
                       − 1)
                               ≥0
                                                                                                              Function
             7   x+1
                       −1
                                                                                                        41.
                        7x is always positive.
                        5x – 1 ≥ 0     ∀x≥0
                        7x + 1 – 1 ≥ 0 ∀ x + 1 ≥ 0
                     ∴	Sign scheme of ‘5x-1’ and ‘x’ is same. Same is true for ‘7x+1 -1’ and ‘x+1’
                     ∴ We can write the inequality as
                          x
                                ≥ 0 ⇒ x ∈ (-∞, - 1) ∪ [0, ∞)
                        x+1
           Cr as a function
           n
                                                                                    n!
               n
                Cr is the number of combinations function, defined as nCr = r! n − r ! ,
                                                                              (     )
               where n and r are non-negative integer. (n ≥ r)
               A.    Simplifying, we get
                                         x     x      x      x
                         f(x)    =  cos2 − sin2   cos2 + sin2 
                                        5      5      5      5 
                                        2x
                                 = cos      · 1
                                        5
                     ∴ Range ∈ [-1, 1]
A. Range: [-1, 1]
Q. (iii) f(x) = 3 – 2x
               A.    y = 3 – 2x
                         2x ∈ (0, ∞)
                         3-2x ∈ (3 - ∞, 3 – 0)
                     ∴ y ∈ (–∞, 3)
Function
                                                                                                      42.
Q.   (iv) f(x) = sin (log2x)
A.   log2x ∈ (-∞, ∞)
     ∴ sin(log2x) ∈ [–1, 1]
                                                              
     ⇒ Range:  − 2, 2 
                       tan ( π [ x − π])
Q.   (vii) f ( x ) =
                        x2 − 3x + 4
                                           where [·] denotes greatest integer function.
Q.                              π
     (viii) f ( x ) = cot 2  x − 
                                 4
                            
A.           π
     cot  x −  ∈ (-∞, ∞)
             4
                 π
     ∴ cot2  x −  ∈ [0, ∞)
                4
                                                                                                Function
                                                                                          43.
                                     x2 − x + 1
           Q.   (ix) f ( x ) =
                                     x2 + x + 1
                                                =y
           A.   ⇒ x2 – x + 1 = x2y + xy + y
                ⇒ x2 (1-y) – x (1+y) + 1 -y = 0
                   If y is a value in range, then this equation contains solution.
                   So, D ≥ 0, y ≠ 1 (for y = 1, check separately)
                ∴ (y + 1)2 ≥ 4(1 – y)2
                ⇒ (3 – y) (3y – 1) ≥ 0
                                        1
                ⇒    ( y – 3)  y –     ≤0
                                       3
                      1 
                ⇒ y ∈  , 3
                      3 
                             x − [x ]
           Q.   (x) y =
                       1 + x − [x ]
                                    , where [·] denotes greatest integer function.
                   1 + x − [x ]        1
           A.   y=              −
                   1 + x − [x ] 1 + x − [x ]
                                1
                ⇒ y = 1-
                             1 + {x}
                     {x} ∈ [0, 1) ⇒ 1 + {x} ∈ [1, 2)
                            1     1          1
                     ⇒          ∈  , 1 ⇒ y ∈ 0, 
                         1 + {x}  2         2
                                         π
                (xi) f ( x ) = tan  {x} ×  , where {·} denotes fractional part function.
           Q.                            4
                        π  π
                {x} ×    ∈ 0, 
           A.           4  4 
                ∴ Range: [0, 1)
                                π              
           Q.   (xii) f(x)= tan  sgn ( x2 − 1) 
                                4              
                sgn(x2-1) ∈ {–1, 0, 1}
           A.                           π             π
                ∴ Range includes tan  −  , tan 0, tan  
                                        4             4
Function
                                                                                             44.
Q.   (xiii) f(x)=|x2 – x – 6|
A.                 −D 
     x2 − x − 6 ∈      , ∞
                   4a     
                        −25 
     ∴ x2 − x − 6 ∈         , ∞
                        4      
     ⇒ |x2 – x - 6| ∈ [0, ∞ )
                         1
Q.   (xv) y =
                      x +x+1
                      2
A.   x2 + x + 1 ∈ 
                    −D 
                        , ∞
                    4a    
                        3 
         x2 + x + 1 ∈  , ∞ 
                        4 
             1      1    1 
     ∴             ∈ ,
          x + x + 1  ∞ 3 / 4 
              2
            4
     ⇒ y ∈  0, 
            3
                            1
Q.   (xvi) y =
                      sin x + cos4 x
                          4
A.   y=
                1
                        =
                                           1
          sin x + cos x   ( sin x + cos x ) − 2sin2xcos2x
                  4  4         2       2   2
                      1                    1
          =                       =
                 1                     1
             1 − ( 4sin2 xcos2 x ) 1 − ( sin2x )
                                                 2
                 2                     2
               1        2      1        1   
          1 − ( sin2x ) ∈ 1 − × 1, 1 − × 0
              2                2        2   
                  1               1
                    ( sin2x ) ∈  , 1
                             2
     ⇒ 1−
                  2              2 
                                                                  Function
∴ y ∈ [1, 2]
                                                            45.
             Q.      (xvii) f(x) = [sinx], where [·] denotes greatest integer function.
             A.      sin x ∈ [-1, 1]
                     ⇒ sin x ∈ [-1, 0) ∪ [0, 1) ∪ {1}
                     ⇒ [sin x] ∈ {-1, 0, 1}
Q. (xviii) f(x) = 2 – [sinx] – [sin x]2 = y, where [·] denotes greatest integer function.
             A.        case I: [sin x] = –1
                       y = 2- (-1) – (-1)2 = 2 + 1 – 1 = 2
                       Case II: [sinx] = 0, y = 2 – 0 – 0 = 2
                       Case III: [sinx] = 1
                       y=2–1–1=0
                     ∴ y ∈ {0, 2}
           Remainder theorem
               The polynomial remainder theorem states that
               the remainder of the division of a polynomial
               f(x) by a linear polynomial x – α is equal to
               f(α).
               In particular, x – α is a divisor of f(x) if and
               only if f(α)=0, a property known as the factor
               theorem.
           			                   D = (d × q) + R
               where, D = dividend, d = divisor, q = quotient,           Point to Remember!!!
               R = remainder.
                                                                        (i) If f(x) = g(x), where f(x) and g(x) are
           Ex. x3 + 4x2 – 7x + 6 when divided by x – 1                       polynomials, then coefficients
               Remainder → 13 + 4 · 12 – 7 · 1 + 6 = 4                       of all different powers of x are
                                                                             equal on both sides.
           Ex. x3 + x = (x - 1) ( Q ( x ) ) +      2
                                                                       (ii) If polynomial is divided by
                                         Remainder
                                  Quotient                                   quadratic, the remainder is a
                                                                             linear.
           Ex. x2 + 2x – 3 = Ax2 + Bx + c                                   If divided by a cubic, remainder
               ⇒ A = 1, B =2, C = – 3                                       is a quadratic.
                                                                            If divided by a biquadratic,
                                                                            remainder is a cubic and so on.
Function
                                                                                                                46.
 Q.          ax4 + bx3–x2 + 2x+3 when divided by x2 + x – 2 gives remainder 4x + 3. Find
             a and b.
Ex.
      f(x) = x and g(x) =   x2 are not identical function as Df = Dg but Rf = R,
      Rg = [0, ∞)
      Overall, it can be said that graph of f(x) and g(x) must be same everywhere
      for two functions to be identical.
Ex.
      f(x) = sinx; g(x)= cos x
      Df = Dg = R
      Rf = Rg = [-1, 1]
      But sinx ≠ cos x everywhere.
      ∴ graph is not same. So, f(x) and g(x) are not identical.
 A.          Domain of ln x2 : x2 > 0
             ⇒ x≠0
               Domain of 2lnx → x > 0
             ∴ Domain not same. So not identical.
                                                                                                 Function
                                                                                           47.
                                              1
           Q.   (ii) y = cosec x ; y =
                                            sinx
                              1
           A.   cosec x =
                            sinx
                Graph is same
                ∴ both functions are identical.
                                              1
           Q.   (iii) f(x) = tanx; g(x) =
                                            cotx
                       sinx
           A.   f(x)=
                      cosx
                              , cosx ≠ 0
                            1
                g(x) =
                         cosx 
                               
                         sinx 
                sinx ≠ 0 because denominator will not be defined.
                also, cos x ≠ 0
                as denominator will become 0.
                ∴	f(x) and g(x) are not identical because domain are not same.
                                               1
           Q.   (iv) f(x) = secx; g(x) =
                                             cosx
A. Identical
           A.   x2 + 1 > 0 ∀ x ∈ R
                ∴ f(x) = 1 ∀ x ∈ R
                    g(x) = 1 ∀ x ∈ R
                ∴ Both are identical.
Function
                                                                                  48.
Q.   (vii) f(x) = tan2x. sin2x; g(x) = tan2x – sin2x
A. Identical
A.   f(x) = 1 ∀ x ∈ R. - ( 2n + 1)
                                     π
                                       ,n∈I
                                     2
       g(x) = 1 ∀ x ∈ R
       So, domain is not same.
     ∴ Not identical
                                    1
Q.   (ix) f(x) = logxe ; g(x) =
                                  log e x
A.   Df : (0, 1) ∪ (1, ∞)
     Dg : (0, 1) ∪ (1, ∞)
     Domain is same.
     Also, f(x) = g(x)
     ∴ Identical
                                    1
Q.   (x) f(x) = logex ; g(x) =
                                  log xe
A.   Df : x > 0
     Dg : x > 0, x ≠ 1
     ⇒ Df ≠ Dg
     ∴ Not Identical
A.   Df : x2 – 1 ≥ 0
     ⇒ x ∈ (-∞, -1] ∪ [1, ∞)
       Dg :x – 1 ≥ 0 ⇒ x ≥ 1
       x + 1 ≥ 0 ⇒ x ≥ -1
     ⇒ Dg : x ≥ 1
     ⇒ Df ≠ Dg
     ∴ Not Identical
                                                              Function
                                                        49.
           Q.   (xii) f ( x ) =    1 − x2 ; g ( x ) =        1 − x. 1 + x
           A.   Df : 1 – x2 ≥ 0
                x ∈ [-1, 1]
                Dg : 1- x ≥ 0 ⇒ x ≤ –1
                1 + x ≥ 0 ⇒ x ≥ –1
                ⇒ Dg : x ∈ [-1, 1]
                ⇒ Df = Dg ⇒ Identical
           Q.   (xiii) f ( x ) = elne ; g ( x ) = ex
                                       x
           A.   f(x) = ex = g(x)
                     (⸪ a(logaN) = N )
                  Df = Dg
                ∴ Identical
           Q.   (xiv) f(x) =
                                   1 − cos2 x
                                              ; g ( x ) = sinx
                                        2
           A.   Df : x + 2 > –0      ⇒x>-2
                     x – 3 > 0 		        ⇒x>3
                ∴ Df : (3 ∞)
                     Dg : x2 - x - 6 > 0
                ⇒ (x -3) (x + 2) > 0
                ⇒ x ∈ (-∞ , – 2) ∪ (3, ∞)
                ⇒ Df ≠ Dg
                ∴ Not identical
                                   1                    x
           Q.   (xvi) f(x) =
                                     1
                                           ; g (x) =
                                                       1+x
                                  1+
                                     x
           A.   Df : x ≠ 0, – 1
                Dg : x ≠ -1
                ⇒ Df ≠ Dg
Function
∴ Not Identical
                                                                             50.
 Q.        (xvii) f(x) = [{x}] ; g(x) = {[x]}
 A.        f(x) = 0 = g(x)
           Df = Dg = (-∞, ∞)
           ∴ Identical.
Classification of Functions
1. Definition of One-one (injective Mapping)
   f: A → B such that different elements of A have
   different f images in B.
   or     x1, x2 ∈ A and f(x1), f(x2) ∈ B,
		        f(x1) = f(x2) ⇒ x1 = x2
      or     x1 ≠ x2 ⇒ f(x1) ≠ f(x2)
Ex.
Ex.
                                                               51.
           Q.   (ii) y = |x|
Q. (iii) y = ex
           A.   dy
                dx
                   = ex > 0
                ⇒ Increasing function ∀ x ∈ R
                  (continuous also)
                ⇒ at any two different x, y can’t be same
                ⇒ One-one function
Q. (iv) y = x3
           A.   dy
                   = 3x2
                dx
                     dy
                ∴       ≥0
                     dx
Q. (v) y = sinx
           A.   Many-one function
                Horizontal line cuts at more than one point
Function
                                                                                                      52.
            Find whether the given function are one one or not:
  Q.                 1 1
            [x], {x}, , 2 cosx, tanx, sgn(x)
                     x x
                                                                           53.
           4. Definition of Into function
               f: A → B such that at least one element in B
               (co-domain) is NOT the f image of any element
               in domain A.
                                                                                                          54.
Many one onto function
 Q.     Classify as one one onto, one one into, many one onto or many one into:
        f:[-1, 1] → [-1, 1] f(x) = sin2x
 A.     x ∈ [–1, 1]
        y ∈ [–1, 1]
        ∴ Range = codomain ⇒ onto function
           Horizontal line cuts at 2 points
        ⇒ Many-one function.
        ∴ f(x) = sin 2x is many one onto function.
 Q.     Classify as one one onto. one one into. many one onto or many one into:
                                2x2 − x + 5
           f: R → R; f ( x ) =
                               7x2 + 2x + 10
 A.     Method-1:
                                                                           dy
        Find minimum and maximum values by finding critical points where      =0
                                                                           dx
        Method-2:
        Numerator and denominator are both positive ∀ x ∈ R as D < O
        ∴ f(x) > 0 ⇒ Range ≠ Codomain
        ∴ function is into
                    5   2x2 − x + 5
           f (0) =    =
                   10 7x2 + 2x + 10
        ⇒ 7x2 + 2x + 10 = 4x2 – 2x + 10
                                                                                         Function
                                                                                   55.
                    ⇒ 3x2 + 4x = 0
                                 4                              −4 
                    ⇒ x = 0 or − 		              ⇒    f(0) = f     
                                 3                              3 
                    ⇒ Many-one function.
                    ∴ f(x) is Many-one into function.
            A.      f’(x) = 2x – 4 ≥ 0 ∀ x ≥ 2
                    Also, f(x) = (x-2)2 +1
                    ⇒ Range: [1, ∞ )
                    ⇒ f(x) is one-one for x ∈ [2, ∞)
                    ⇒ Since f(x) is onto, Range = codomain.
                      So, option (B) is correct answer.
                                                                                                        56.
∴ Total no of one-one function
  = 5 × 4 × 3 × 2 × 1 = 5!                          Point to Remember!!!
   Case-2:
   When number of elements in A (domain) is
   more than B
                                                                                    57.
           Ex.
                 Number of ways to distribute 5 elements of A
                                           5!            1 
                 among 4 elements of B is              ×  × 4!
                                           2 ! ( 1!) 3
                                                         3 ! 
                                          
                 Case-3:
                 Number of elements in codomain (B) is more
                 than that in A
                 =
                            6
                             C4             ×       4
                                                     !
                     selection of 4 output       distribution
           Composite Functions
             Let f: A → B and g : B → C be two functions.
             Then the function gof : A → C defined by
             (gof) (x) = g(f(x)) ∀ x ∈A is called the composite
             of the two functions.
                            
                 g  f ( x )  = h(x)
Function
                   
                    input 
                                                                   58.
Q.1   If f(x) = x2 and g(x) = x-7. Find: (i) gof (ii) fog
(B) gof = g ( x ) = 2 − x
A.              ( x) = x = x
      (C) fof = f                             1/4
n times
      fof(x): ( x    ) = x fofof ( x ) = ( x ) = x
                    2 2         4                       4 2   8
                                                                                        59.
                                  x
           Q.6     f (x) =                    ; g(x)=fofofo…fof(x) (f written ‘n’ times), g(x) =?
                             (1 + x )
                                   n 1/n
                                                                x
                                      f                   (1 + x )  n 1/n
                                                                                           x
           A.      fof(x) =                       =                               =
                               (1 + f )   n 1/n
                                                                                      ( 1 + 2x )
                                                                            1/n                n 1/n
                                                            x     n
                                                      1 +        
                                                          1 + xn 
                                              x
                   f(f(f(x))) =
                                      ( 1 + 2x )  n 1/n
                                                                =
                                                                             x
                                                                    ( 1 + 3x )
                                                          1/n                     n 1/n
                                         x      n
                                  1 +       n 
                                      1 + 2x 
                   By observation, it can be said that
                                             x
                   fff…f(x) n times =
                                      ( 1 + nxn )
                                                  1/n
           Q.7              1 + x if 0 ≤ x ≤ 2
                   f (x) =                     . Find fof.
                           3 − x if 2 < x ≤ 3
           A.                 1 + f; 0 ≤ f ≤ 2
                   f(f(x)) = 
                             3 − f; 2 < f ≤ 3
                             1 + (1 + x ) ;          0 ≤ x ≤ 2 0 ≤ 1 + x ≤ 2 ⇒ x ∈ [0, 1 ]
                            
                             1 + (3 − x ) ;          2 < x ≤ 3 0 ≤ 3 − x ≤ 2 ⇒ x ∈ (2, 3]
                          = 
                             3 − (1 + x ) ;          0 ≤ x ≤ 2 2 < 1 + x ≤ 3 ⇒ x ∈ (1, 2]
                            3 − ( 3 − x ) ;         2<x≤3                       2 < 3 − x ≤ 3 ⇒ x ∈φ
                               2 + x; x ∈ [0, 1]
                               
                   ∴ f(f(x)) = 4 − x; x ∈ ( 2, 3]
                               2 − x; x ∈ ( 1, 2]
                               
Function
                                                                                                         60.
             1 − x if x ≤ 0                            −x if x < 1
Q.8   f(x) =  2
              x    if x > 0
                             and g(x) =                
                                                       1 − x if x ≥ 1
                                                                       .
Find (fog)(x)
                1 − g ( x ) ; g ( x ) ≤ 0
A.    f(g(x)) =           2
                  g ( x ) ; g ( x ) > 0
                         1 − ( −x ) ;     x ∈ [0, 1)
                        
      		            = 1 − ( 1 − x ) ; x ∈ [ 1, ∞ )
                                  2
                          ( − x ) ;     x ∈ ( −∞, 0 )
      (This time solved directly using the graph of g(x)).
                           1
                
                ( f − 1 ) 3 ; f < 0
A.    g(f(x)) =           1
                ( f + 1) 2 ; f ≥ 0
                
               (   (      )       )
                1 + x3 − 1 1/3 ; x ∈ ( −∞, −1)
                2
                    (
                ( x − 1) − 1 ;    )
                                     1/3
                                               x ∈ [0, 1)
             = 
                ( 1 + x3 + 1) ;
                                   1/2
                                              x ∈ [ −1, 0 )
               
               (                )
                x2 − 1 + 1 ;      1/2
                                              x ∈ [ 1, ∞ )
                       x             ; x ∈ ( −∞, −1)
                 2
                ( x − 2)
                             1/3
                                         ; x ∈ [0, 1)
      g(f(x)) = 
                 ( x 3 + 2)
                             1/2
                                        ; x ∈ [ −1, 0 )
                 
                      x                ; x ∈ [ 1, ∞ )
                                                                                                       Function
                                                                                                 61.
           Q.10   Find number of distinct real c satisfying f(f(f(c))) = 3 where f(x) = x2 – 2x
           A.     |[x]| ∈ [-3,2]
                  ⇒ |[x]| ∈ [0, 2]   (⸪ |x| is always non-negative)
                  ⇒ [x] ∈ [-2, 2]
                  ⇒ x ∈ [-2, 3)
Function
                                                                                                  62.
     Functional Equations
        ∑2     a +k
                      = 16 ( 2n − 1) 		⇒   2a ∑2k = 16 ( 2n − 1)
        k =1                                          k =1
        ⇒ 2 .2 ( 2 − 1) = 16 ( 2 − 1)
                 a      n         n
                                             ⇒  2 a+1
                                                        = 24
        ⇒ a=3
                                                                                                       Function
                                                                                                 63.
            Q.4       f (x) =
                                   ax
                                      , a > 0 . Find
                                                     2n− 1
                                                     ∑
                                                             r 
                                                           f .
                                a + a                 r = 1  2n 
                                 x
            A.              1         2       3 
                     (i) f   + f   + f   + ... + f 
                                                                   2n − 1 
                                                                           =S
                            2n        2n      2n             2n 
                             2n − 1       2n − 2             1 
                     (ii) f            + f          + ... + f   = S
                             2n          2n                2n 
                           
                                      1           2
                                1−          1−
                                     2n          2n
                              aα      a 1−α
                          f( α ) + f(1- α ) =
                                 +
                          a α + a a 1−α + a
                              aα         a
                     			 = α     +
                          a + a a + a aα
                                                         aα     a
                     			 =                                  +        =1
                                                      a + a
                                                       α
                                                              a + aα
                       So, sum of terms equidistant from beginning and end is 1.
                     ∴ 1 + 1 + 1 +…1(2n – 1 times) = 2S
                            2n − 1
                     ∴ S=
                              2
            A.       T1=6, T2 = 5, T3 = 4…., T6 = 1
                     From observation = f(x) = 7-x for x = 1, 2, 3, 4, 5 and 6
                     or f(x) – (7-x) = 0 ∀ x ∈ {1, 2, 3, 4, 5, 6}
                     ⇒ f(x) – 7 + x = 4 (x -1) (x -2) (x -3) (x -4) (x -5) (x -6)
                     ⇒ f(x) = 4(x -1) (x -2) (x -3) (x -4) (x -5) (x -6) + 7-x
                     ⇒ f(7) = 4·6·5·4·3·2·1 + 7-7 = 2880
                                                                                                                 64.
Q.      Find the inverse of the following:
        (i) y = 2x 		         (ii) y = x – 1		      (iii) y = 4-x
                   x                    1
        (iv) y =     		       (v) y =
                   4                    x
     Ex. y = f(x) = ex
         f-1(x) = lnx
         Graph can be understood by concept that (b, a) is
         image of (a, b) about line y = x
                                                              Know the facts
                                                                                              65.
           Q.1   Compute the inverse: f: R → R+, f(x) = 10x+1
           A.    y = 10x+1
                 x = 10y+1
                 ⇒ log 10 x = y + 1
                 ⇒ log 10 x − 1 = y
                 ⇒ f −1 ( x ) = log 10 x − 1
           A.    y = 1 + ln(x + 2)
                 ⇒ x = 1 + ln (y + 2)
                 ⇒ x -1 = ln (y + 2)
                 ⇒ y + 2 = ex-1
                 ⇒ y = f-1(x) = ex-1 – 2
                                                                   2x
           Q.3   Compute the inverse: f: R → (0, 1), f ( x ) =
                                                                 1 + 2x
           A.    y =
                           2x
                         1 + 2x
                               2y               1
                 ⇒     x=             = 1−
                             1+2   y
                                            1 + 2y
                           1
                 ⇒              =1–x
                        1 + 2y
                                      1
                 ⇒     1 + 2y =
                                   1−x
                                1             x
                 ⇒     2y =           −1=
                              1−x           1−x
                                               x 
                 ⇒     y = f −1 ( x ) = log 2     
                                              1− x
                                                                             66.
      ⇒     y 2 + 1 = ex − y
      ⇒ y2 + 1 = y2 + e2x – 2y ex
             e2x − 1
      ⇒ y=           = f-1(x)
              2ex
                                   ex + e− x
Q.6   f: [0, ∞) → [1, ∞); f(x) =
                                      2
                                             . Find f-1(x).
A.    x=
            ey + e− y
               2
      2xe = e2y + 1
          y
      e2y – 2xey + 1 = 0
                2x ± 4x2 − 4
      ⇒ ey =
                     2
                  (
      ⇒ y = ln x ± x2 − 1      )
           Range of f-1 will be [0, ∞)
                      (
      ∴ f-1(x) = ln x + x 2 − 1     )
              x  if   x<1
Q.7           2
      f(x) =  x  if 1 ≤ x ≤ 4 . Find f-1(x)
             8 x if   x>4
             
A.    When
             x < 1, f ( x ) ∈ ( −∞, 1) 
                                          
            1 ≤ x ≤ 4, f ( x ) ∈ [ 1, 16] Range
              x > 4, f ( x ) ∈ ( 16, ∞ ) 
                                                                                        67.
                                   
                                    x, x ∈ ( −∞, 1 )
                                   
                      So, f-1(x) =  x , x ∈ [1, 16 ]
                                     2
                                     x , x ∈ ( 16, ∞)
                                     64
                                     3       7
             Q.8                                     
                      A function f :  , ∞  →  , ∞  defined as f(x) = x2 – 3x + 4.
                                     2       4 
                      Solve the equation f(x) = f-1(x).
⇒x=2
           Ex.
                 y = f(x) = 4-x
                 f-1(x) = 4 – x
                 ⇒ f(x) = f-1(x) have infinite solution here.
                 While f(x) = x has only 1 solution.
                 So, always check the graph.
                                                                                            68.
Ex. f(x,y) = ax2 + 2hxy + by2
    f(tx, ty) = a(tx)2 + 2h (tx) (ty) + b(ty)2
			
                      = t2 (ax2 + 2hxy + by2)
    ⇒ Homogeneous equation of degree 2.
                                x x
  Q.     Find if f ( x, y ) =    ln   is homogeneous or not?
                                y y
                          tx  tx 
  A.     f ( tx, ty ) =     ln  
                          ty  ty 
                            x x
                     = t0    ln   = t0 f ( x, y )
                            y y
         ⇒ Homogeneous function of degree 0.
                      tany
Ex. 2xy + x2 + siny +        = 0 → Implicit
                      x2 + 1
   (It is not solved for y)
  A.     y2 – 2y = x
         ⇒  y2 – 2y + 1 = 1 + x
         ⇒ (y - 1)2 = 1 + x
         ⇒ y -1 = ±       1+x
         ⇒y=1± 1 + x (2 branches ⇒ 2 functions)
         ⇒1+x≥0⇒x≥–1
         ⇒ Domain: x ∈ [-1, ∞)
                                                                       Function
                                                                 69.
           Note:
              y2 = x is not a function
                          y=x
                   ⇒             it represents 2 separate function.
                         y = −x 
            Same is the case for x2 + y2 = 1
           				y2 = 1 – x2
⇒ y= 1 − x2
=– 1 − x2
                                                                                                         70.
(viii) y = sgnx → bounded
       as range is finite {-1, 0, 1}
                                                                                                                71.
                   (b)   Let h(x) = f(x) – f(–x)
                 		      h(–x) = f(–x) – f(x) = –h(x).
                 		      So, it is odd function.
                   Sum of both of above functions is f(x). Hence f(x) can be divided into
                   sum of even and odd function.
           A.          ex + e− x 
                 ex =            +
                                              e x − e− x 
                                                         
                            2
                                      2
                                              
                         even function        odd function
           Q.2   Identify given below functions as odd, even or neither odd nor even.
                               1− x
                 (i) f(x) = ln      = ln (1-x) – ln (1+x)
                               1+ x
           A.               1+ x
                 f(-x) = ln      = ln (1+x) – ln (1-x) = –f(x)
                            1− x
                 So, it is odd function.
           Q.                       (
                 (ii) f(x) = ln x + 1 + x2           )
           A.    f(–x) = ln (-x+ 1 + x2 )
                 f(x) + f(–x) = ln ((1+x2)- x2) = ln1 = 0
                 ⇒ f(-x) = –f(x), so f(x) is odd function.
Q. (iii) f(x) = 1 + x + x2 − 1 − x + x2
A. f ( −x ) = 1 − x + x2 − 1 + x + x2 = − f ( x ) → odd
           Q.    (iv) f ( x ) = x
                                    2x + 1
                                    2x − 1
                                                 1 + 2x 
                                                         
           A.                   2 + 1 −x
                 f ( −x ) = −x  − x                  2x 
                                          = −x 
                                2 − 1         1−2 
                                                        x
                                                         
                                                 2x 
                             1 + 2x       2x + 1 
                      = − x       x 
                                       = x x          = f(x) → even
                            1−2           2 − 1 
Function
                                                                                            72.
                      (1 + 2 )   x 2
Q.   (v) f ( x ) =
                           2x
A.   f ( −x )   =
                  (1 + 2 )−x 2
                           1 + 2.2− x + 2−2x
                                  =
                  2− x            2− x
                           22x + 2.2x + 1
          = 2x + 2 + 2-x =                 = f (x)
                                 2x
          So, it is even function.
                      1 + 2x
Q.   (vi) f ( x ) =
                      1 − 2x
                   1 + 2− x 2x + 1
A.   f ( −x ) =            =
                   1 − 2− x 2x − 1
                                   = −f ( x ) → odd
A.   f (x) =      (
                    [a ] − 5 [a ] + 4 ) x + (6 {a} − 5 {a} + 1) x + xtanx
                      2                  3           2
                                                                    
                                                                    even part
                                         odd part
                                                                                     73.
           Note:
Point to Remember!!!
             Common periodic functions sinx, cosx, tanx, {x} , |sinx|, |cosx|, sin2x
             			               Period → 2p    2p    p    1       p       p      p
Function
                                                                                                                 74.
Ex. f(x) = sinx. Find period.
                                                          Know the facts
Sol. f(x + T) = f(x)
                                                         LCM of rational and          irrational
    ⇒  sin (x + T) – sin(x) = 0                          number is not defined.
                                                                                      p 
                                                         LCM of rational numbers       ,  and
             T         T                                                            q m
    ⇒  2 sin   cos  x +  = 0
             2         2
                                                         r   LCM of p,  and r
           T     T                                         =
    ⇒  sin   =0⇒   = np , n∈ I                           s   HCF of q,mand s
           2     2
    ⇒  T = 2n π but T should be smallest
                                                          Know the facts
       positive value
                                                         In case of f(ax + b), let period of f(x)
    ⇒  T = 2π                                            is T and f(ax + b) be T’.
                                                         f(a(x + T’) + b) = f(ax + b)
                                                         ⇒ f(ax + b + aT’) = f(ax + b)
                                                                             T
                                                         ⇒ aT’ = T ⇒ T’ =       .
                                                                             a
                                                         But since period must be positive,
                                                             T
                                                         T’=
                                                             a
Examples on Periodic Functions
  A.       Period of cosx = 2 π
                         2     2π
           Period of cos  x  =    = 3π
                         3  2/ 3
                                     4     2π     5π
           Similarly, period of sin  x  =       =
                                      5   4 / 5   2
                            5π
           LCM of 3 π and        is 15 π
                             2
           So, period is 15π.
                                                                                                     Function
                                                                                               75.
           Q.   (ii) f(x) = cos (sinx)
           A.   Period of sinx = 2 π
                But f(x) is a composite in trigonometric function.
                                   T T T
                So, period may be , ,        .i.e., also.
                                   2 4 8
                So, we must check.
                 T
                    = π ⇒ f(x+π) = cos (sin (x+ π )) = cos (-sinx) = cos (sinx)
                 2
                ∴  π can be period.
                              T π
                Now check for   =
                              4 2
                             π 
                cos  sin  x +   = cos (cosx) ≠ f(x)
                             2 
                    π
                so,    is not the period.
                    2
                ∴ π is the period.
           A.   f(x) = 1 −
                          1
                            ( sin2x )
                                      2
                          2
                          1  1 − cos4x 
                f(x) = 1 −             
                          2       2    
                                                          2π π
                Period of f(x) = period of cos (4x) =       =
                                                          4   2
Function
                                                                                  76.
Q.    (v) If period of sin ( πkx ) is 2, find k.
A.    Period of sinx = 2 π
                                       2π
      ∴ Period of sin ( πkx ) =           =2
                                       πk
      ⇒ |k| = 1		
      ⇒ k = 1, -1
A.    f(x) = {x}
      ∴ Period = 1
Q.2 f(x) = sinx + cos ax is a periodic function. Then prove that ‘a’ must be rational.
A.    LCM of two numbers will only exist if either both numbers are rational, or
      they are same type of irrational.
      Period of sin x = 2π
      Period of cos x = 2π
                           a
                         2π
      LCM of 2π and          is possible only when ‘a’ is rational.
                         a
      Note:
      (i) f(x) = cos x ; and sinx + {x} are aperiodic.
      (ii) f(x) = xsinx is aperiodic
      (iii) f(x) = sin (x + sinx) is periodic
      Proof: x → x + 2 π
           f (x + 2 π )= sin ((x + 2 π ) + sin (x + 2 π ))
           = sin (2 π + x + sinx) = sin (x + sinx) = f(x)
      ∴    f(x) is periodic with period 2 π .
                    1              1
A.    T1 = 1 T2 =
                    2
                            T3 =
                                   3
                        1     1
      T = LCM of 1,       and
                        2     3
      T=1
                                                                                                 Function
                                                                                           77.
                                      x  x 
           Q.    (ii) f ( x ) = {x} +   +  
                                      2 3
           A.    T1 = 1; T2 = 2; T3 = 3
                 T = LCM of 1, 2 and 3
                 T=6
                                                               (n ) (n + 1 )
           Q.    (iii) f(x) = [x] + [2x] + [3x] + …+[nx] -
                                                                    2
                                                                               x
           A.    By functional Rule, x → x + 1
                 ⇒ f(1 + x) + f(2 + x) = 0
                     Subtracting given equation
                     f(2 + x) – f(x) = 0 ⇒ f(x + 2) = f(x) ⇒ T = 2
           A.    x → x+2
                 ⇒ f (x + 4) + f(x) = f(x + 2)
                    Add both equations.
                 ⇒ f (x + 4) + f(x – 2) = 0
                 ⇒ x → x+2
                 ⇒ f(x + 6) = –f(x)
                    Now x → x + 6
                 ⇒ f(x + 12) = -f(x+6)
                 ⇒ f(x+12) = – (–f(x))		              (from previous equation)
                 ⇒ f(x) = f(x+12)
                 ⇒ T = 12
A.    f(x + 4) = f(x)
      f(5) = f(1) = 1
      f(7.1) = f(3.1) = f(-0.9) = f(0.9) = 0.9
      f(-1) = f(1) = 1; f(-7) = f(-3) = f(1) = 1
      f (2019) = f(-1 + 505 × 4) = f(-1) = 1
A.    f’(x) = 3x2 – 4x + 5
      a > 0, D < 0
      ⇒ f’(x) > 0 ∀ x ∈ R ⇒ f(x) is one-one.
      Since f(x) is odd degree polynomial, its range is R which is codomain.
      ⇒ f is also onto. so (A) is correct.
                                                                                 79.
           Q.10   f: [3, ∞) → [a, ∞), f(x) = 2x3 – 6x2 – 18x + 80 is an onto function, find a.
           Q.11   f(x) = x2 + bx + 3 is not injective for x ∈ [0, 1], then the set of b is:
                  (A) (0, ∞)		        (B) (-2, 0)		          (C) (0, 2)		           (D)(2, ∞)
           A.     f is upward facing parabola. It will only be true if minima lies in interval (0, 1)
                                               −b
                  x-coordinate of minima =
                                                2
                          −b
                  ⇒ 0<       < 1 ⇒ b ∈ (-2, 0)
                           2
Function
                                                                                                        80.
81.
82.