STPM 801
STPM 801
Datasheet
Features
• AEC-Q100 qualified
• Single channel
• Wide input voltage range: 4 V to 65 V
• Reverse input protection -65 V
VFQFN-32 (5x5 mm) • 2 external N-channel MOSFET pre-drivers
– One soft start feature
– One oring feature
• Quiescent current < 50 μA if WAKE low
• Integrated charge pump
• Input overvoltage protection
• Input undervoltage protection
• Output overcurrent protection
• Complies with the 16750 AC ripple test requirements (50 Hz - 25 kHz)
• Adjustable soft start with external capacitor
• Developed according to ISO 26262 to support ASIL D application
Description
Product status link STPM801 offers integrated hot swap, soft start and oring protections. It protects
loads from high voltage transients, limiting and regulating the output during an
STPM801
overvoltage event, such as load dump, by controlling the voltage drop across an
external N-channel MOSFET.
Product summary
The STPM801 also monitors the input supply to protect in case of overvoltage (OV)
Order code Package Packing
and undervoltage (UV) conditions.
STPM801 Tray
An integrated ideal diode controller drives a second MOSFET (the oring) to replace a
VFQFN-32 Tape and Schottky diode for reverse input protection and output voltage holdup. The STPM801
STPM801-TR
Reel controls the forward voltage drop across the MOSFET and minimizes reverse current
transients in case of fault like power source failure, brownout or input short.
STPM801 offers a set of features to support applications that need to fulfill functional
safety requirements as defined by automotive Safety Integrity Level (ASIL) A-B-C-D
depending on application TSR.
2 Product features
STPM801 is a controller which operates with external back-to-back connected N-channel power MOSFETs,
realizing a connection between the input voltage supply line, connected to VB, and the output supply line OUT.
STPM801 makes, therefore, available, on OUT, a voltage supply protected against high voltage transients and
high load currents. The product can be used either for 12 V or 24 V supply rails.
The two N-channel transistors driven by the device are, respectively, the hot swap and the oring MOSFETs. The
first is used as a normal power switch; the soft Start function helps to limit the inrush current during the device
power-up. The oring MOSFET is mainly used as ideal diode, but it helps also blocking the current conduction in
case of reverse battery detection.
External capacitor connected to HGATE is used to define soft start time, together with HGATE current provided by
the device.
The device regulates the forward voltage drop across the oring MOSFET, used as ideal diode (by modulating
DGATE voltage), in order to ensure smooth current transfer from one supply to the other, without oscillations. The
ideal diode turns on quickly to reduce load voltage drop during supply switch over. Reverse current transients are
minimized by means of the reverse battery detection.
Pre-driver acting on DGATE performs fast turn on/turn off, in order to withstand with fast transients pulses of
ISO 16750 standard. For driving external MOSFETS with proper timings, a charge pump with external flying and
tank capacitors is realized.
A current sense amplifier translates the voltage drop across a shunt resistor to an internal overcurrent flag.
Undervoltage (UV) and overvoltage (OV) on diagnosis on VB are present. Detection thresholds are defined by
means of an external voltage divider.
Short to GND (STG) detection on VOUT is present.
VDS comparators are present on both soft start and oring MOSFETs.
ENOUT and FLT are open drain outputs. ENOUT is activated at the startup if VB-VOUT voltage drop is lower than
VFULL_ON. FLT is asserted whenever an internal fault is detected.
A standby mode is also available, with device operating at reduced functionality, but allowing a reduction on
power dissipation.
3 Maximum ratings
STBY_ECHO - - -0.3 - 5 V -
OV - - -65 - 65 V -
UV - - -65 - 65 V -
CTANK-VB - - -3 - 15 V
C2P-C2M - - -0.3 - 65 V
C1P-C1M - - -0.3 - 65 V
VB-HGATE - - -15 - 65 V
HGATE-SOURCE - - -0.3 - 15 V No external DC forced
DGATE-SOURCE - - -0.3 - 12 V No external DC forced
VB-WAKE - - -0.3 - 65 V
VB-SOURCE - - -2 - 65 V
SOURCE-SENSE/OUT - - -65 - 2 V
SENSE-OUT - - -1 - 1 V
Charge pump can sustain maximum 105 V with respect to VB during test pulse 1 for short time (less than 100 μs,
with CPTANK = +40 V e VBP = -65 V).
SENSE and OUT pins can sustain a negative voltage with respect to GND. SENSE and OUT can drop up to 3.6 V
below GND for maximum 100 μs, and up to 4.6 V below GND for maximum 10 μs. This event is sustainable for a
limited number in the life of the device, maximum 10 times.
In case of hot swap turning off, due to High load present, VB line can increase very fast. In this case, the
maximum rating is 70 V for maximum 100 μs. In this condition CPTANK pin can sustain 77 V for less than 100 μs.
WAKE - - -0.3 - 40 V -
VB GLOBAL - -0.3 - 40 V -
HGATE - - -0.3 - 50 V -
SOURCE - - -0.3 - 40 V -
DGATE - - -0.3 - 40 V -
SENSE - - -0.3 - 40 V -
OUT - - -0.3 - 40 V -
CPTANK - - -0.3 - 50 V -
CP2P - - -0.3 - 50 V -
CP1P - - -0.3 - 50 V -
CP2M - - -0.3 - 40 V -
CP1M - - -0.3 - 40 V -
ENOUT - - -0.3 - 40 V -
GND - - -0.3 - 0.3 V -
DIS - - -0.3 - 40 V -
FLT - - -0.3 - 40 V -
STBY_IN - - -0.3 - 5 V -
STBY_ECHO - - -0.3 - 3.6 V -
OV - - -0.3 - 40 V -
UV - - -0.3 - 40 V -
1. According to AEC-Q100-011.
2. Pins are all GND connected.
3. According to AEC-Q100-004.
1. All parameters are guaranteed, and tested, in the temperature range -40 ≤ Tj ≤ 150 °C unless otherwise specified. The
device is still operative and functional at higher temperatures (up to Tj 175 °C). Device functionality at high temperature is
guaranteed by bench validation, electrical parameters are guaranteed by correlation with ATE tests at reduced temperature
and adjusted limits (if needed).
2. Not subject to production test, guaranteed by design.
3. RthJ-A value is retrieved according to Jedec JESD51-2, -5, -7 guideline with a 2s2p board.
Note: In “2s2p”, the “s” suffix stands for “signal” and the number before indicates how many PCB layers are dedicated
to signal wires. The “p” suffix stands for “power” and the number before indicates how many PCB layers are
dedicated to power planes.
TSD_hys - Hysteresis - 10 - °C -
4 Functional description
4.1.2 WAKE
A key pin (WAKE) acts as control input. Pulling WAKE pin below Turn_OFF threshold triggers the power down
sequence. At first, both hot swap and oring pre-driver outputs are turned OFF, by triggering the internal active
pull-down, for typically 1 ms power down_dly timing. After that, the device is turned off, with consequent reduction
of current absorption from VB pin. Pulling this pin above Turn_ON threshold allows the internal startup circuits
to turn the device again. A 1 ms filter time is applied on WAKE pin, on both rising and falling edges, in order to
prevent device from turning on and off in a wrong way, due to disturbances present on WAKE pin.
When the device is off (without VB or WAKE LOW), HGATE AND DGATE are kept in high impedance (turn OFF
guaranteed by the external passive components).
If VB rises up, starting from 0 V, and OUT is higher than STG threshold, VDS comparators could be set,
depending on the timing of starting profile.
User needs to size R1, R2, R3 in order to define proper detection values on VB (depending on, most of all, if
12 V or 24 V systems are used), considering that internal circuitry detects undervoltage or overvoltage conditions,
when correspondent pins are equal to the threshold values summarized in Table 10.
STG detection is present on VOUT pin with a filter time STG.flt. When short is detected, the FLT pin is asserted
low, while MOSFET driving signals HGATE/DGATE depend on the presence of other fault events at the same
time.
During device power-up, with VOUT externally shorted, blanking time STG_blank is active, STG comparator is
masked and has no impact on FLT pin. However, external MOSFET are protected by overcurrent protection
features.
4.1.5 ENOUT
ENOUT is an open-drain output, going in high impedance when the voltage at the OUT pin is above (VB -
VFULL_ON), indicating that the external MOSFETs are fully on. ENOUT pin cannot be asserted if WAKE pin
voltage is below turn off threshold.
4.1.6 FLT
FLT is an open-drain output that is asserted low when a fault is detected, after that a proper filter time is elapsed
(depending on the fault type). Fault pin cannot be asserted if WAKE pin voltage is below turn off threshold.
VB = 14 V, value referred to VB
VCP Charge pump voltage 9 11.8 15 V CPTANK
(voltage above VB)
VB = 4.5 V, value referred to VB
VCP_low Charge pump voltage 5 - - V CPTANK
(voltage above VB)
CPTANK pin falls from VB + 11 V
Charge pump
CP_UV_L to VB + 0, Value referred to VB 4 - 5 V CPTANK
Undervoltage_L
(voltage above VB)
CPTANK pin rises from VB + 0 to
Charge pump
CP_UV_H VB + 11 V, Value referred to VB 4.5 - 5.5 V CPTANK
Undervoltage_H
(voltage above VB)
The pre-driver is floating with respect to the substrate and directly referred to the external FET gate-source
terminals, allowing a better driving also during fast transient commutations, and can sustain, without being
damaged, deep negative pulses.
A capacitor (maximum value 100 nF) is connected on HGATE pin, allowing the control of soft start timing during
hot swap switching ON. This turn-on transient is, in fact, controlled by the charge at constant current IHG_PU (gate
pull-up current) of this capacitor. The more soft start timing is increased, the more the inrush current during the
power-up is reduced. On the other hand, the switching OFF is realized with a strong pull-down current.
When ENOUT is de-asserted, hot swap VDS comparator is ignored. When the full on condition (OUT > VB -
VFULL_ON, ENOUT asserted) is reached, the VDS comparator is enabled after MASK_VDS_rising_flt masking
time. Indeed, when ENOUT is de-asserted again, the VDS comparator is ignored after MASK_VDS_falling_flt
masking time. The behavior of VDS diagnostics is shown in Figure 10.
Every time hot swap driver is turned ON, the VDS comparator is masked until Hotswap_VDS mask_soft_start_flt
is expired (and the other masking conditions disappear).
The VDS comparator of oring is also masked until the full on condition (OUT > VB - VFULL_ON) is reached.
Every time the oring pre-driver is turned ON, the VDS comparator is masked until a
Oring_VDS_mask_soft_start_flt is expired (and the other masking conditions disappear).
4.1.10 DISABLE
When DIS pin is driven at high logic level, the device turns off HGATE and DGATE with internal pulldown.
Differently from WAKE, DIS assertion turns off the pre-drivers only, but the device remains supplied. When DIS
pin is driven at low logic level, the device turns on HGATE and DGATE with internal pullup.
For internal pulldown and pullup specification, refer to Section 4.1.9 Oring pre-driver.
Action for
Event Filter time HGATE DGATE FLT Latched coming back to Scenario
operating
If a reverse condition (VB < VOUT) is detected, VDS comparators of Oring and hot swap are both masked to
avoid false detection.
Pre-driver VDS diagnostic is implemented and optimized to work with a recommended bill of material (see
Table 24).
Overcurrent threshold
OC_HV_th_stand-by (VSENSE-VOUT), VOUT > STG - 22.5 27.5 35 mV SENSE, OUT
threshold
OC_HV_stand-by_flt Overcurrent filter time Guaranteed by scan 80 - 100 μs -
Overcurrent threshold
OC_HV_fast_stand-by_th (VSENSE-VOUT), VOUT > STG - 40 50 60 mV SENSE, OUT
threshold
Guaranteed by scan
OC_HV_fast_stand-by_flt Overcurrent filter time 1 - 3 μs -
and design
Guaranteed by scan
STG_flt Short to ground filter time 1 - 3 μs -
and design
CP_UV_flt CP undervoltage filter time Guaranteed by scan 0.9 - 1.2 ms -
FULL ON state
T_blank counter 0 1 2 ... threshold 0
STBY_IN PIN
Enable pattern IN
Enable pattern OUT
STAND BY state
STBY_ECHO PIN
STBY_T0 STBY_T1
After standby mode transition, the STBY_IN pin must be kept at 0 logic level. Bringing it high longer than
STBY_Exit_flt, STPM801 can come back from standby to normal mode. Behavior is reported in Figure 14.
FULL ON state
STBY_IN PIN
STAND BY state
STBY_ECHO PIN
STBY_T_Exit
When in Stand-by mode, if When the functional mode has been successfully restored,
STBY_IN pin is high for the echo is deasserted, and the FSM is ready to hear the
STBY_T_Exit, the device STBY_IN pin to return in stand-by mode.
returns in normal mode.
ENOUT
FLT
HGATE/DGATE
STBY_IN PIN
Enable pattern IN
STAND BY state
STBY_ECHO PIN
Note: If standby pattern is received before blanking time expiration it will be ignored.
ENOUT
FLT
HGATE/DGATE
STBY_IN PIN
Enable pattern IN
STAND BY state
STBY_ECHO PIN
Note: If standby pattern is received before ENOUT high logic level assertion it will be ignored.
ENOUT
FLT
HGATE/DGATE
STBY_IN PIN
Enable pattern IN
STAND BY state
STBY_ECHO PIN
STAND-BY LOGIC
STBY_IN
STBY_ECHO
DZ_GSH n = 1, 2
- - - - 3 MM5Z12VT1G
DZ_GSDn 12 V clamp
DS_H
- - - - 2 SD0805S020S1R0 -
DS_D
n = 1, 2
MOR_n - - - - 2 BUK9Y6R0-60E, 115
60 V breakdown
RSHUNT - 1 - mΩ 1 0.1%, 2 W -
RGH
- 10 - W 2 1%, 0.1 W -
RGD
The two-lines scheme is useful when a second battery supply line is recommended as auxiliary line in case the
main battery is not available anymore (under voltage condition or any other malfunction).
In this way the voltage on the output line is the OR of the supply voltages of the two single lines. The higher
voltage supply is transferred to the output line; on the other line a reverse condition is detected by STPM801,
oring MOSFET is switched OFF, avoiding current back feeding from OUT to VB.
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
Dimension in mm
Symbol
Min. Typ. Max.
Note: 4L additive corner pins are electrically floating but it is recommended to solder them towards GND in order to
guarantee the mechanical integrity of the package.
Revision history
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Product features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3.1 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Absolute maximum ratings and operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 ESD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Temperature range and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.1 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2 WAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.5 ENOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.6 FLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.10 DISABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
List of tables
Table 1. Pin functions and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Relative absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Maximum operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. ESD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Temperature range and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 7. Temperature thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 8. Power supply parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 9. WAKE input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 10. Under voltage and over voltage parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 11. Over current and short to GND parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 12. ENOUT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 13. FLT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 14. Charge pump parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 15. Hot swap and pre-driver parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 16. Oring pre-driver parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 17. DISABLE parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 18. Fault table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 19. Auto retry parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 20. Supply current in standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 21. Hot swap driver in standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 22. Overcurrent and short to GND parameters in standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 23. Standby pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 24. Reference BOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 25. VFQFN (5x5x0.9, 32+4L) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 26. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
List of figures
Figure 1. STPM801 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2. Pin out (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. 2s2p PCB with thermal vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Under voltage and over voltage detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. OV and UV - VB diagnostic simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Overcurrent digital architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. OVC timing and thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. Charge pump configuration simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Hot swap pre-driver simplified structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 10. VDS diagnostic enabling signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 11. Auto retry mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12. Overcurrent and short to GND during standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 13. Standby pattern mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 14. Standby exit sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 15. Standby pattern during blanking time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 16. Standby pattern during ENOUT low state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 17. Standby pattern during FLT assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 18. Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 19. Double line application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 20. VFQFN (5x5x0.9, 32+4L) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31