0% found this document useful (0 votes)
44 views38 pages

STPM 801

STPM801 is an automotive integrated circuit that provides high voltage hot swap, soft start, and oring protection functions. It protects loads from high voltage transients by controlling the voltage drop across an external N-channel MOSFET. It monitors the input supply for overvoltage and undervoltage conditions. It also drives a second MOSFET to provide reverse input protection and output voltage holdup, minimizing reverse current transients. Key features include AEC-Q100 qualification, wide input voltage range from 4-65V, adjustable soft start, and compliance with ISO 26262 for functional safety applications up to ASIL D.

Uploaded by

carlos.bernal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
44 views38 pages

STPM 801

STPM801 is an automotive integrated circuit that provides high voltage hot swap, soft start, and oring protection functions. It protects loads from high voltage transients by controlling the voltage drop across an external N-channel MOSFET. It monitors the input supply for overvoltage and undervoltage conditions. It also drives a second MOSFET to provide reverse input protection and output voltage holdup, minimizing reverse current transients. Key features include AEC-Q100 qualification, wide input voltage range from 4-65V, adjustable soft start, and compliance with ISO 26262 for functional safety applications up to ASIL D.

Uploaded by

carlos.bernal
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 38

STPM801

Datasheet

Automotive high voltage hot swap, soft start and oring

Features

• AEC-Q100 qualified
• Single channel
• Wide input voltage range: 4 V to 65 V
• Reverse input protection -65 V
VFQFN-32 (5x5 mm) • 2 external N-channel MOSFET pre-drivers
– One soft start feature
– One oring feature
• Quiescent current < 50 μA if WAKE low
• Integrated charge pump
• Input overvoltage protection
• Input undervoltage protection
• Output overcurrent protection
• Complies with the 16750 AC ripple test requirements (50 Hz - 25 kHz)
• Adjustable soft start with external capacitor
• Developed according to ISO 26262 to support ASIL D application

Description
Product status link STPM801 offers integrated hot swap, soft start and oring protections. It protects
loads from high voltage transients, limiting and regulating the output during an
STPM801
overvoltage event, such as load dump, by controlling the voltage drop across an
external N-channel MOSFET.
Product summary
The STPM801 also monitors the input supply to protect in case of overvoltage (OV)
Order code Package Packing
and undervoltage (UV) conditions.
STPM801 Tray
An integrated ideal diode controller drives a second MOSFET (the oring) to replace a
VFQFN-32 Tape and Schottky diode for reverse input protection and output voltage holdup. The STPM801
STPM801-TR
Reel controls the forward voltage drop across the MOSFET and minimizes reverse current
transients in case of fault like power source failure, brownout or input short.
STPM801 offers a set of features to support applications that need to fulfill functional
safety requirements as defined by automotive Safety Integrity Level (ASIL) A-B-C-D
depending on application TSR.

DS13990 - Rev 2 - November 2022 www.st.com


For further information contact your local STMicroelectronics sales office.
STPM801
Block diagram and pin description

1 Block diagram and pin description

1.1 Block diagram

Figure 1. STPM801 Block diagram

DS13990 - Rev 2 page 2/38


STPM801
Pin description

1.2 Pin description

Figure 2. Pin out (top view)

Note: Exposed pad not electrically connected to the internal substrate.


STPM801 VFQFN32 package is equipped with corner pins, which are electrically floating; it is in any case
recommended to solder them towards GND in order to guarantee mechanical robustness.

DS13990 - Rev 2 page 3/38


STPM801
Pin description

Table 1. Pin functions and description

No. Name Type Description

1 NC - Connect directly to GND


2 WAKE I Shutdown control
3 VB SUPPLY Input voltage
4 HGATE I/O Gate drive output of hot swap MOS
5 SOURCE I/O Common source input and gate drive return
6 DGATE I/O Diode controller gate drive output enabling oring function
7 NC - Connect directly to GND
8 TIE0 - Connect directly to GND
9 NC - Connect directly to GND
10 SENSE I External resistor current sense
11 OUT I External MOS drain voltage sense
12 NC - Connect directly to GND
13 TIE0 - Connect directly to GND
14 TIE0 - Connect directly to GND
15 NC - Connect directly to GND
16 CPTANK O Charge pump output. Connect a capacitor to ground. Typical value 220 nF.
17 CP2P I/O Charge pump pin for capacitor 2, positive side
18 CP1P I/O Charge pump pin for capacitor 1, positive side
19 CP2M I/O Charge pump pin for capacitor 2, negative side
20 CP1M I/O Charge pump pin for capacitor 1, negative side
21 NC - Connect directly to GND
Output enable when external MOS are fully on. Internal pulldown works as open drain output
22 ENOUT O
and external resistor pulls up the output. Typical 4.7 kW for 5 V IO line.
23 GND Ground Ground
24 DIS I Disable
25 NC - Connect directly to GND
FLT output signal when a fault is present. Internal pulldown works as open drain output and
26 FLT O
external resistor pulls up the output. Typical 4.7 kW for 5 V IO line.
27 STBY_IN I Connect directly to GND if standby mode is not used or drive it according to standby chapter
28 TIE0 - Connect directly to GND
29 STBY_ECHO O Connect directly to GND if standby mode is not used or read it according to standby chapter
30 OV I Input overvoltage protection. Overvoltage comparator input.
31 UV I Input undervoltage protection. Undervoltage comparator input.
32 NC - Connect directly to GND

DS13990 - Rev 2 page 4/38


STPM801
Product features

2 Product features

STPM801 is a controller which operates with external back-to-back connected N-channel power MOSFETs,
realizing a connection between the input voltage supply line, connected to VB, and the output supply line OUT.
STPM801 makes, therefore, available, on OUT, a voltage supply protected against high voltage transients and
high load currents. The product can be used either for 12 V or 24 V supply rails.
The two N-channel transistors driven by the device are, respectively, the hot swap and the oring MOSFETs. The
first is used as a normal power switch; the soft Start function helps to limit the inrush current during the device
power-up. The oring MOSFET is mainly used as ideal diode, but it helps also blocking the current conduction in
case of reverse battery detection.
External capacitor connected to HGATE is used to define soft start time, together with HGATE current provided by
the device.
The device regulates the forward voltage drop across the oring MOSFET, used as ideal diode (by modulating
DGATE voltage), in order to ensure smooth current transfer from one supply to the other, without oscillations. The
ideal diode turns on quickly to reduce load voltage drop during supply switch over. Reverse current transients are
minimized by means of the reverse battery detection.
Pre-driver acting on DGATE performs fast turn on/turn off, in order to withstand with fast transients pulses of
ISO 16750 standard. For driving external MOSFETS with proper timings, a charge pump with external flying and
tank capacitors is realized.
A current sense amplifier translates the voltage drop across a shunt resistor to an internal overcurrent flag.
Undervoltage (UV) and overvoltage (OV) on diagnosis on VB are present. Detection thresholds are defined by
means of an external voltage divider.
Short to GND (STG) detection on VOUT is present.
VDS comparators are present on both soft start and oring MOSFETs.
ENOUT and FLT are open drain outputs. ENOUT is activated at the startup if VB-VOUT voltage drop is lower than
VFULL_ON. FLT is asserted whenever an internal fault is detected.
A standby mode is also available, with device operating at reduced functionality, but allowing a reduction on
power dissipation.

DS13990 - Rev 2 page 5/38


STPM801
Maximum ratings

3 Maximum ratings

3.1 Operating range


Within the operating range, the part operates as specified and without parameter deviations. The device may not
properly operate if maximum operating conditions are exceeded.
Whenever the device comes back into the operating range, after being taken outside it (but without exceeding the
Absolute maximum ratings), the part will recover with no damage or degradation.
Additional supply voltage and temperature conditions are given separately at the beginning of each electrical
specification table.
All the voltages are referred to the substrate ground if not otherwise specified.

3.2 Absolute maximum ratings and operating voltage

Table 2. Absolute maximum ratings

Symbol Parameter Condition Min Typ Max Unit Note

WAKE - VB = WAKE, all pin GND -65 - 65 V -


VB GLOBAL All pin GND -65 - 65 V -
HGATE = DGATE = CPTANK,
VB = CP1P = CP2P = CP1M = CP2M = SOURCE
HGATE - -65 - 75 V -
= SENSE = OUT = 65 V,
All pin GND
SOURCE - - -65 - 65 V -
DGATE - - -65 - 75 V -
TIE0 - - -0.3 - 5 V -
-0.3 V DC testing condition. SENSE pin can sustain
a negative voltage respect GND. SENSE and OUT
SENSE - -0.3 - 65 V -
can drop maximum 3.6 V below GND for maximum
100 μs and 4.6 V below GND for maximum 10 μs
-0.3 V DC testing condition. OUT pin can sustain
a negative voltage respect GND. SENSE and OUT
OUT - -0.3 - 65 V -
can drop maximum 3.6 V below GND for maximum
100 μs and 4.6 V below GND for maximum 10 μs
Not usable as
CPTANK - - -0.3 - 75 V
external supply
C2P - - -0.3 - 75 V -
C1P - - -0.3 - 75 V -
C2M - - -0.3 - 65 V -
C1M - - -0.3 - 65 V -
No back-feed in
ENOUT - - -0.3 - 65 V
case of supply fault
GND - - -0.3 - 0.3 V -
DIS - - -0.3 - 65 V -
No back-feed in
FLT - - -0.3 - 65 V
case of supply fault
STBY_IN - - -0.3 - 40 V -

DS13990 - Rev 2 page 6/38


STPM801
Absolute maximum ratings and operating voltage

Symbol Parameter Condition Min Typ Max Unit Note

STBY_ECHO - - -0.3 - 5 V -
OV - - -65 - 65 V -
UV - - -65 - 65 V -

Table 3. Relative absolute maximum ratings

Symbol Parameter Condition Min Typ Max Unit Note

CTANK-VB - - -3 - 15 V
C2P-C2M - - -0.3 - 65 V
C1P-C1M - - -0.3 - 65 V
VB-HGATE - - -15 - 65 V
HGATE-SOURCE - - -0.3 - 15 V No external DC forced
DGATE-SOURCE - - -0.3 - 12 V No external DC forced
VB-WAKE - - -0.3 - 65 V
VB-SOURCE - - -2 - 65 V
SOURCE-SENSE/OUT - - -65 - 2 V
SENSE-OUT - - -1 - 1 V

Charge pump can sustain maximum 105 V with respect to VB during test pulse 1 for short time (less than 100 μs,
with CPTANK = +40 V e VBP = -65 V).
SENSE and OUT pins can sustain a negative voltage with respect to GND. SENSE and OUT can drop up to 3.6 V
below GND for maximum 100 μs, and up to 4.6 V below GND for maximum 10 μs. This event is sustainable for a
limited number in the life of the device, maximum 10 times.
In case of hot swap turning off, due to High load present, VB line can increase very fast. In this case, the
maximum rating is 70 V for maximum 100 μs. In this condition CPTANK pin can sustain 77 V for less than 100 μs.

Table 4. Maximum operating voltage

Symbol Parameter Condition Min Typ Max Unit Pin

WAKE - - -0.3 - 40 V -
VB GLOBAL - -0.3 - 40 V -
HGATE - - -0.3 - 50 V -
SOURCE - - -0.3 - 40 V -
DGATE - - -0.3 - 40 V -
SENSE - - -0.3 - 40 V -
OUT - - -0.3 - 40 V -
CPTANK - - -0.3 - 50 V -
CP2P - - -0.3 - 50 V -
CP1P - - -0.3 - 50 V -
CP2M - - -0.3 - 40 V -
CP1M - - -0.3 - 40 V -
ENOUT - - -0.3 - 40 V -
GND - - -0.3 - 0.3 V -
DIS - - -0.3 - 40 V -

DS13990 - Rev 2 page 7/38


STPM801
ESD data

Symbol Parameter Condition Min Typ Max Unit Pin

FLT - - -0.3 - 40 V -
STBY_IN - - -0.3 - 5 V -
STBY_ECHO - - -0.3 - 3.6 V -
OV - - -0.3 - 40 V -
UV - - -0.3 - 40 V -

3.3 ESD data

Table 5. ESD data

Symbol Parameter Test Condition Min Typ Max Unit Notes

HBM_ ESD HBM(1) All pins(2) -2 - 2 kV Class 2

CDM _ESD CDM(1) All pins -500 - 500 V Class C3

CDM_COR_ESD CDM(1) Corner pins -750 - 750 V Class C4

LUT Latch up(3) All pins -100 - 100 mA -

1. According to AEC-Q100-011.
2. Pins are all GND connected.
3. According to AEC-Q100-004.

3.4 Temperature range and thermal data

Table 6. Temperature range and thermal data

Symbol Parameter Test condition Min Typ Max Unit Notes

Operating temperature (ECU


Tamb - -40 - 125 °C -
environment)

Tj(1) Operating junction temperature - -40 - 150 °C -

Extended operating junction


Tj - -40 - 175 °C 12000 h over life time
temperature
Tsto Storage temperature - -55 - 150 °C
Homogeneous internal power
RthJ-A(2) Thermal resistance junction-to-ambient - - 35 - °C/W
distribution(3)
Thermal resistance junction-to-case- Homogeneous internal power
Rth j-cb(2) - - 4 - °C/W
bottom distribution

1. All parameters are guaranteed, and tested, in the temperature range -40 ≤ Tj ≤ 150 °C unless otherwise specified. The
device is still operative and functional at higher temperatures (up to Tj 175 °C). Device functionality at high temperature is
guaranteed by bench validation, electrical parameters are guaranteed by correlation with ATE tests at reduced temperature
and adjusted limits (if needed).
2. Not subject to production test, guaranteed by design.
3. RthJ-A value is retrieved according to Jedec JESD51-2, -5, -7 guideline with a 2s2p board.

DS13990 - Rev 2 page 8/38


STPM801
Temperature range and thermal data

Figure 3. 2s2p PCB with thermal vias

Note: In “2s2p”, the “s” suffix stands for “signal” and the number before indicates how many PCB layers are dedicated
to signal wires. The “p” suffix stands for “power” and the number before indicates how many PCB layers are
dedicated to power planes.

3.4.1 Thermal protection

Table 7. Temperature thresholds

Symbol Parameter Test condition Min. Typ. Max. Unit Note

TSD_TH Thermal shutdown - 165 175 185 °C -

TSD_hys - Hysteresis - 10 - °C -

TSD_filter Thermal filter time Guaranteed by scan 8 10 12 µs -

DS13990 - Rev 2 page 9/38


STPM801
Functional description

4 Functional description

4.1 Functional behavior in detail


In the next paragraphs all device functions, related to device power supply and the pre-drivers, are described in
detail.

4.1.1 VB power supply


VB power supply is the main power input of STPM801. VB battery line starts the power-up and the power-down
sequences by feeding the subsequent internal purpose circuitries (that is, bandgaps, monitoring units and internal
regulators control loops).
VB is compatible to 12 V and 24 V systems. The supply input ranges from 4 V to 65 V. Full functionality and
electrical parameters are guaranteed for VB in the range 4 V to 40 V; from 40 V to 60 V full functionality only.
Reverse input voltage protection is -65 V.
Device can withstand with 1a, 1b, 2a, 2b, 3a, 3b test pulse of ISO-7637 standards, provided that an appropriate
TVS protection is connected on the input battery line.
Once all internal supplies can release POR for the logic section, first of all the trimming parameters are
downloaded from OTP memory; after that all the necessary internal checks are performed (analog comparators,
clock monitor, safety off path self tests).
If at least one of these internal integrity checks is failing, pre-drivers are disabled and FLT output is asserted low,
If the results of previous checks are fine and no faults are detected, when charge pump is out of undervoltage,
the drivers are finally switched on, and FLT output goes high. When device power-up and drivers turn on are
completed, ENOUT pin is also released.
Whenever a fault is detected, the drivers are switched off, and FLT pin is asserted low. Fault and clearing
methods are reported in Table 18.

Table 8. Power supply parameters

Symbol Parameter Test condition Min. Typ. Max. Unit Pin

VB, range1 Wide range AMR Full function 4(1) 14 65 V -

VB, range2 Operating range Full parameters 4(1) - 40 V -

VB, min Mininum VB to turn on device - 6 - - V -


VB = 14 V, device
enable VOUT = VSENSE
= VSOURCE, HGATE ON,
ION Supply current at T = 25 °C DGATE regulation - 14 mA -
If VB is not present, or lower
than OUT, current is sunk
from OUT.
VB = 14 V, device
enable VOUT = VSENSE
= VSOURCE, HGATE ON,
ION_hot Supply current at T = 150 °C DGATE regulation - - 16 mA -
If VB is not present, or lower
than OUT, current is sunk
from OUT.
Supply current in shutdown at
Isd_hot VB = 14 V, device disabled - - 50 μA VB
VB = 14 V, T = 150 °C
Supply current in shutdown at
Isd VB = 14 V, device disabled - - 25 μA VB
VB = 14 V, T = 25 °C

DS13990 - Rev 2 page 10/38


STPM801
Functional behavior in detail

Symbol Parameter Test condition Min. Typ. Max. Unit Pin

Supply current in VB, UV, VB, UV,


Isdtot_hot OV, WAKE pin during device Guaranteed by design - - 55 μA OV,
shutdown at 14 V, T = 150 °C WAKE
Supply current in VB, UV, VB, UV,
Isdtot OV, WAKE pin during device Guaranteed by design - - 30 μA OV,
shutdown at 12 V, T = 25 °C WAKE
VB_Slope_fast Device OFF - - 1 V/μs VB

maximum rise slew rate of VB Device ON, driver OFF,


- - 5 V/μs VB
VB_Slope_fast_ON line VB > 8 V
Device ON, driver ON. - - 0.2 V/μs VB
VB_Slope_slow (rising
Minimum slew rate on VB line 0.5 - - V/s VB
and falling)

1. Cranking scenario. PWR_UP occurs at VB ≥ VB_min.

4.1.2 WAKE
A key pin (WAKE) acts as control input. Pulling WAKE pin below Turn_OFF threshold triggers the power down
sequence. At first, both hot swap and oring pre-driver outputs are turned OFF, by triggering the internal active
pull-down, for typically 1 ms power down_dly timing. After that, the device is turned off, with consequent reduction
of current absorption from VB pin. Pulling this pin above Turn_ON threshold allows the internal startup circuits
to turn the device again. A 1 ms filter time is applied on WAKE pin, on both rising and falling edges, in order to
prevent device from turning on and off in a wrong way, due to disturbances present on WAKE pin.
When the device is off (without VB or WAKE LOW), HGATE AND DGATE are kept in high impedance (turn OFF
guaranteed by the external passive components).
If VB rises up, starting from 0 V, and OUT is higher than STG threshold, VDS comparators could be set,
depending on the timing of starting profile.

Table 9. WAKE input parameters

Symbol Parameter Test condition Min. Typ. Max. Unit Pin

WAKE_high_th WAKE turn ON threshold - 2.1 - 2.7 V WAKE


WAKE_low_th WAKE turn OFF threshold - 1.4 - 2 V WAKE
WAKE_hys WAKE hysteresis - 0.5 - 1 V WAKE
WAKE_pd WAKE leakage WAKE < WAKE_high_th -200 mV 0.4 - 10 μA WAKE
WAKE,ft WAKE filter time Guaranteed by scan 0.9 1 1.1 ms -
Powerdown_dly Power down delay time Guaranteed by scan 0.9 1 1.1 ms -

4.1.3 UV and OV detection


An external voltage divider is present on VB pin. UV and OV pins of the device are connected to this voltage
divider. UV and OV voltages are compared with a fraction of internal bandgap reference.
When the UV pin falls below its 1 V threshold, HGATE and DGATE pins are pulled down. When the UV pin rises
above 1.2 V HGATE and DGATE pins are pulled up.
When OV is above its 1.2 V threshold, both HGATE and DGATE are turned OFF. When OV falls below 1 V, both
HGATE and DGATE pins are allowed to turn on again if there are no other faults. At power-up, an OV voltage
higher than threshold blocks turn-on of the external drivers controlled by HGATE and DGATE pins.
See also Table 18 for details.

DS13990 - Rev 2 page 11/38


STPM801
Functional behavior in detail

Figure 4. Under voltage and over voltage detection

Table 10. Under voltage and over voltage parameters

Symbol Parameter Test condition Min Typ Max Unit Note

UVth,hl Undervoltage threshold - 0.95 1 1.05 V UV


UVth,lh Undervoltage threshold - 1.14 1.2 1.26 V UV
UV,flt UV filter time Guaranteed by scan - - 100 μs -
OVth,lh Overvoltage threshold - 1.14 1.2 1.26 V OV
OVth,hl Overvoltage threshold - 0.95 1 1.05 V OV
OV,flt OV filter time Guaranteed by scan - - 10 μs -
UV,leak UV leakage - - - 1 μA UV
OV,leak OV leakage - - - 1 μA OV

Figure 5. OV and UV - VB diagnostic simplified block diagram

User needs to size R1, R2, R3 in order to define proper detection values on VB (depending on, most of all, if
12 V or 24 V systems are used), considering that internal circuitry detects undervoltage or overvoltage conditions,
when correspondent pins are equal to the threshold values summarized in Table 10.

DS13990 - Rev 2 page 12/38


STPM801
Functional behavior in detail

4.1.4 OVC and STG


Overcurrent protections act sensing the voltage drop across an external shunt resistance, connected between
SENSE and OUT pin.
The OVC thresholds and related filter time depend on the status of the output voltage, if a short to GND condition
is also detected or not.
• In case of no short to ground detected on the output voltage
– the OVC threshold voltage is OC_HV_th and the OVC filter time is OC_HV_flt.
– during overcurrent detection, while the filter time OC_HV_flt is applied, shall the current increase and
the voltage across the shunt go above the threshold OC_HV_fast_th, the filter time is shortened to the
value OC_HV_fast_flt.
• In case of short to ground detected on the output voltage:
– the OVC threshold voltage is OC_LV_th and the OVC filter time is OC_LV_flt.
– during overcurrent detection, while the filter time OC_LV_flt is applied, shall the current increase and
the voltage across the shunt go above the threshold OC_LV_fast_th, the filter time is shorted to the
value OC_HV_fast_flt.
This architecture provides additional protection in case of output shorted to GND, lowering the threshold value.
Moreover, if a strong overcurrent condition is detected (current exceeding the HV_fast or LV_fast thresholds), the
filter time is also shortened in order to limit as much as possible high current levels through external FETs (see
Figure 6). When overcurrent detection time is expired, the HGATE and DGATE external FET are driven OFF by
the internal pulldown. Auto-retry function is present, and it is described in Section 4.2.2 Overcurrent auto retry.

Figure 6. Overcurrent digital architecture

DS13990 - Rev 2 page 13/38


STPM801
Functional behavior in detail

Figure 7. OVC timing and thresholds

DS13990 - Rev 2 page 14/38


STPM801
Functional behavior in detail

STG detection is present on VOUT pin with a filter time STG.flt. When short is detected, the FLT pin is asserted
low, while MOSFET driving signals HGATE/DGATE depend on the presence of other fault events at the same
time.
During device power-up, with VOUT externally shorted, blanking time STG_blank is active, STG comparator is
masked and has no impact on FLT pin. However, external MOSFET are protected by overcurrent protection
features.

Table 11. Over current and short to GND parameters

Symbol Parameter Test condition Min Typ Max Unit Note

Overcurrent threshold (VSENSE -


OC_HV_th - 50 55 62.5 mV SENSE, OUT
VOUT), VOUT > STG threshold
Overcurrent threshold (VSENSE -
OC_LV_th - 19 25 32 mV SENSE, OUT
VOUT), VOUT < STG threshold
Overcurrent threshold (VSENSE -
OC_HV_fast_th - 90 100 110 mV SENSE, OUT
VOUT), VOUT > STG threshold
Overcurrent threshold (VSENSE-
OC_LV_fast_th - 38 50 62 mV SENSE, OUT
VOUT), VOUT< STG threshold
STG = 0, guaranteed by
OC_HV_flt Overcurrent filter time 80 - 100 μs -
scan
STG = 1, guaranteed by
OC_LV_flt Overcurrent filter time 80 - 100 μs -
scan
STG = 0, guaranteed by
OC_HV_fast_flt Overcurrent filter time 1 - 2.2 μs -
scan and design
STG = 1, guaranteed by
OC_LV_fast_flt Overcurrent filter time 1 - 2.2 μs -
scan and design
STG_th OUT short to ground threshold - 2.5 3.2 3.9 V OUT
STG_flt Short to ground filter time Guaranteed by scan - - 10 μs -
Blanking time from driver turning on
STG_blank Guaranteed by scan 80 - 100 ms -
command

4.1.5 ENOUT
ENOUT is an open-drain output, going in high impedance when the voltage at the OUT pin is above (VB -
VFULL_ON), indicating that the external MOSFETs are fully on. ENOUT pin cannot be asserted if WAKE pin
voltage is below turn off threshold.

Table 12. ENOUT parameters

Symbol Parameter Test condition Min Typ Max Unit Note

ENOUT_OD_LL ENOUT_OD low level Pull-up current = 1 mA - - 0.4 V ENOUT


ENOUT_Leakage ENOUT_OD leakage Apply 5 V to FLT, output buffer off - - 10 μA ENOUT
VB-VOUT difference for releasing
VFULL_ON - 0.5 0.8 1.1 V -
ENOUT
FULL_ON_flt Filter time to activate ENOUT Guaranteed by scan - - 100 μs -

DS13990 - Rev 2 page 15/38


STPM801
Functional behavior in detail

4.1.6 FLT
FLT is an open-drain output that is asserted low when a fault is detected, after that a proper filter time is elapsed
(depending on the fault type). Fault pin cannot be asserted if WAKE pin voltage is below turn off threshold.

Table 13. FLT parameters

Symbol Parameter Test condition Min Typ Max Unit Note

FLT_OD_LL FLT_OD low level Pull-up current = 1 mA - - 0.4 V FLT


FLT_OD_Leakage FLT_OD leakage Apply 5 V to FLT, output buffer off - - 10 μA FLT

4.1.7 Charge pump


The charge pump supplies the voltage necessary to drive the external N-channel MOSFETs. Average current
capability for the charge pump can guarantee proper turn on and turn off timings for oring MOSFET also in case
of AC ripple on the supply line (standard ISO 16750).
The charge pump is enabled immediately at the device power-up, once the battery level is higher than under-
voltage threshold, and WAKE input is high.
In case of under voltage on the charge pump (CP_UV), it is not possible to drive in the proper way the external
MOSFETs; the pre-drivers are therefore switched OFF and FLT pin is asserted low.
The same check on CP voltage is done during the power-up. Once CP_UV is released, device can complete the
power-up sequence. If CP_UV is not released by CP_UV_TIMEOUT expiration, drivers are turned off and FLT is
asserted.

Figure 8. Charge pump configuration simplified block diagram

Table 14. Charge pump parameters

Symbol Parameter Test condition Min Typ Max Unit PIN

VB = 14 V, value referred to VB
VCP Charge pump voltage 9 11.8 15 V CPTANK
(voltage above VB)
VB = 4.5 V, value referred to VB
VCP_low Charge pump voltage 5 - - V CPTANK
(voltage above VB)
CPTANK pin falls from VB + 11 V
Charge pump
CP_UV_L to VB + 0, Value referred to VB 4 - 5 V CPTANK
Undervoltage_L
(voltage above VB)
CPTANK pin rises from VB + 0 to
Charge pump
CP_UV_H VB + 11 V, Value referred to VB 4.5 - 5.5 V CPTANK
Undervoltage_H
(voltage above VB)

DS13990 - Rev 2 page 16/38


STPM801
Functional behavior in detail

Symbol Parameter Test condition Min Typ Max Unit PIN

Charge pump undervoltage


CP_UV_flt Guaranteed by SCAN 7 10 12 μs -
filter time
Fs CP switching frequency - - 385 - kHz -
Cfly C1 and C2 flying capacitor - 80 100 120 nF -
CPTANK Tank output capacitor - 176 220 264 nF CPTANK
Charge pump undervoltage
CP_UV_TIMEOUT Guaranteed by SCAN 1.8 - 2.2 s -
timeout
Charge pump regulation in Put OV pin higher than 1.26 V and
CPRegulation_OVmode 8.5 - 10.5 V CPTANK
OV condition measure CP regulation

4.1.8 Hot swap pre-driver and soft start


An internal pre-driver, supplied by charge pump, can drive HGATE at a voltage that typically is clamped
ΔVHG1_12V above battery line, completely turning ON hot swap MOSFET.

Figure 9. Hot swap pre-driver simplified structure

The pre-driver is floating with respect to the substrate and directly referred to the external FET gate-source
terminals, allowing a better driving also during fast transient commutations, and can sustain, without being
damaged, deep negative pulses.
A capacitor (maximum value 100 nF) is connected on HGATE pin, allowing the control of soft start timing during
hot swap switching ON. This turn-on transient is, in fact, controlled by the charge at constant current IHG_PU (gate
pull-up current) of this capacitor. The more soft start timing is increased, the more the inrush current during the
power-up is reduced. On the other hand, the switching OFF is realized with a strong pull-down current.
When ENOUT is de-asserted, hot swap VDS comparator is ignored. When the full on condition (OUT > VB -
VFULL_ON, ENOUT asserted) is reached, the VDS comparator is enabled after MASK_VDS_rising_flt masking
time. Indeed, when ENOUT is de-asserted again, the VDS comparator is ignored after MASK_VDS_falling_flt
masking time. The behavior of VDS diagnostics is shown in Figure 10.

DS13990 - Rev 2 page 17/38


STPM801
Functional behavior in detail

Figure 10. VDS diagnostic enabling signal

Every time hot swap driver is turned ON, the VDS comparator is masked until Hotswap_VDS mask_soft_start_flt
is expired (and the other masking conditions disappear).

Table 15. Hot swap and pre-driver parameters

Symbol Parameter Test condition Min Typ Max Unit

HGATE gate drive, (VHGATE − Drive voltage at VB = 4.5 V


Hotswap_ΔVHG1_4V 5 - - V
VSOURCE) CP = VB + 5.3, VB + 6
HGATE gate drive, (VHGATE − Drive voltage at VB = 14 V,
Hotswap_ΔVHG1_12V 9 - 13 V
VSOURCE) CP = VB + 15, VB + 9
Hotswap_IHG,PU GATE pull-up Current - 20 37 55 μA

Hotswap_IHG,PD GATE pull-down Current - 50 80 120 mA

VDS on soft start MOS. A fault


Hotswap_VDS is generated if detection happens - 0.8 1 1.2 V
after ENOUT set
Hotswap_VDS_flt VDS detection filter time Guaranteed by scan 0.8 0.9 1 ms
Masking diag on filter time after
MASK_VDS_rising_flt Guaranteed by scan 80 100 120 μs
ENOUTrising edge
Masking diag on filter time after
MASK_VDS_falling_flt Guaranteed by scan 1 1.2 1.4 ms
ENOUTfalling edge
Hotswap_VDS_mask_soft_start_flt Soft start blanking time Guaranteed by scan 80 90 100 ms

4.1.9 Oring pre-driver


The pre-driver for Oring MOSFET is an ideal diode regulator. When the load current creates more than
Oring_Full_ON of drop across the MOSFET (Oring_Full_ON comparator), the DGATE pin is pulled high by an
internal charge pump current source and clamped to Oring_ΔVDG2_12V above the SOURCE pin.
When the load current is small enough, the DGATE pin is actively driven to maintain Oring_VREG across the
MOSFET by actively regulating DGATE, thus implementing ideal diode function. In case of reverse voltage of
more than Oring_VREV across the MOSFET (SOURCE - VSENSE voltage drop), the oring MOSFET is turned
off, thus preventing reverse current from flowing from OUT to VB.
During normal operating condition, VGS of oring external FET is driven to allow the correct current load ( VSense
- VSource = Oring_VREG). For fast turning on and off condition, (when Vsense - Vsource > Oring_Full_ON) an
internal comparator activates a strong pullup current on DGATE pin.
Oring reverse and full on comparators are also used to quickly turn on and off the oring MOSFET, in order to
withstand with AC ripple disturbances (standard ISO 16750) and preventing AC noise from being transferred on
VOUT line.
This pre-driver implements same diagnosis and masking of hot swap pre-driver, such as VDS detection, shown in
Figure 10.

DS13990 - Rev 2 page 18/38


STPM801
Functional behavior in detail

The VDS comparator of oring is also masked until the full on condition (OUT > VB - VFULL_ON) is reached.
Every time the oring pre-driver is turned ON, the VDS comparator is masked until a
Oring_VDS_mask_soft_start_flt is expired (and the other masking conditions disappear).

Table 16. Oring pre-driver parameters

Symbol Parameter Test condition Min Typ Max Unit

DGATE gate drive, (VDGATE Drive voltage at VB = 4.5 V CP =


Oring_ΔVDG2_4V 4.5 - - V
- VSOURCE) VB + 5.3, VB + 6
DGATE gate drive, (VDGATE Drive voltage at VB = 14 V, CP = VB
Oring_ΔVDG2_12V 6 - 8 V
- VSOURCE) + 11, VB + 9
DGATE gate driver, upper
Drive voltage at VB = 14 V, CP = VB
Oring_VDG_12V limit respect charge pump - - CP-1 V
+ 11 V, guaranteed by design
value
Peak current guaranteed by design,
DGATE oring pull-up Current,
Oring_IDGATE(UP) switch on time < 2 μs, 15 nF from 0 55 - 180 mA
peak
V to 4.5 V at VB 14 V
Peak current guaranteed by design,
DGATE oring pull-up Current,
Oring_IDGATE(UP)_VBmin switch on time < 3 μs, 15 nF from 0 45 - 130 mA
peak at VB min
V to 4.5 V at VB 4.5 V
Peak current guaranteed by design,
DGATE oring pull-down
Oring_IDGATE(DN) switch off time < 1.5 μs, 15 nF from 100 - 300 mA
Current, peak
regulated to 1.5 V
Peak current guaranteed by design,
DGATE oring pull-down
Oring_IDGATE(DN)_VBmin switch off time < 1.5 μs, 15 nF from 90 - 250 mA
Current, peak
regulated to 1.5 V
Ideal diode regulation voltage,
Oring_VREG - 15 30 47 mV
(VSOURCE - VSENSE)
(VSOURCE - VSENSE) for
Oring_Fullon - 60 80 130 mV
fast turn ON activation
Reverse voltage shut off
Oring_VREV - -20 -10 -4 mV
(VSOURCE - VSENSE)
DGATE turn-off propagation
Oring_Turnoff_delay Guaranteed by design - - 0.6 us
delay
VDS on oring MOS.generates
Oring_VDS - 270 300 330 mV
FLT if detection happens
Oring_VDS_flt Short detection filter time Guaranteed by scan 0.8 0.9 1 ms
Oring_VDS_mask_soft_start_flt Soft Start blanking time Guaranteed by scan 80 90 100 ms
VB floating < OUT = SENSE = 14 V,
Source_Rev_Leakage Source input leakage Force SOURCE pin 5 V measure - - 4 mA
sinked current

4.1.10 DISABLE
When DIS pin is driven at high logic level, the device turns off HGATE and DGATE with internal pulldown.
Differently from WAKE, DIS assertion turns off the pre-drivers only, but the device remains supplied. When DIS
pin is driven at low logic level, the device turns on HGATE and DGATE with internal pullup.
For internal pulldown and pullup specification, refer to Section 4.1.9 Oring pre-driver.

Table 17. DISABLE parameters

Symbol Parameter Test condition Min Typ Max Unit

DIS_in_hl_th High input voltage range - 2 - - V

DS13990 - Rev 2 page 19/38


STPM801
Fault management

Symbol Parameter Test condition Min Typ Max Unit

DIS_in_ll_th Low input voltage range - - - 0.8 V


DIS_in_pd Internal pull down current Pin = 3.3 V 20 40 60 μA
DIS_flt Disable pin filter time Guaranteed by scan 1.6 - 3 us

4.2 Fault management


In the next paragraphs all device functions related to faults handing are described.

4.2.1 Fault table


In the following table all the faults causing an alarm on FLT pin, with proper filter time, are listed.
To clear a latched fault, the WAKE pin has to be set low for its filter time (1 ms) and then set again to high for its
filter time; after that a new power-up sequence can start.

Table 18. Fault table

Action for
Event Filter time HGATE DGATE FLT Latched coming back to Scenario
operating

OV disappears Input overvoltage


OV 10 μs Low Low Active Not and no other starting from device
faults present ON condition
Input undervoltage
UV 100 μs Low Low Active Not UV disappears starting from device
ON condition

HOTSWAP VDS After softstart finish,


1 ms Low Low Active Yes Toggling WAKE
detection M1 is open
ORING VDS
1 ms Low Low Active Yes Toggling WAKE M2 VDS short
detection
Latched
Overcurrent 1/100 μs Low Low Active after 32 Toggling WAKE Output overcurrent
retries
Output short to a lower
STG 10 μs No effect No effect Active Not N.A.
fixed voltage level

High Low Reverse battery


Not condition Reverse current
VB < VOUT 10 μs (VDS (VDS Not
active VB<VOUT VBAT < Vout
masked) masked) disappear
UV on charge pump
If CP_UV
CP_UV 10 μs Low Low Active Not - VGS on MOSFETs
disappears
cannot be guaranteed
Over-temperature
OT 10 μs Low Low Active Not If OT disappears
detected
If DIS is not
DIS 3 μs Max Low Low Active Not DIS pin is not asserted
active
Selftest fail or clock
100 μs fault
SAFETY_FAULT Low Low Active Yes Toggling WAKE monitor error or OTP
detection
CRC fail

If a reverse condition (VB < VOUT) is detected, VDS comparators of Oring and hot swap are both masked to
avoid false detection.
Pre-driver VDS diagnostic is implemented and optimized to work with a recommended bill of material (see
Table 24).

DS13990 - Rev 2 page 20/38


STPM801
Fault management

4.2.2 Overcurrent auto retry


When an overcurrent condition is detected, the device turns off HGATE and DGATE.
After retrying cooling down, the device tries again to switch them ON (auto retry function) for Tretry_attempt.
In case, after the auto retry attempt, the device recognizes OVC again, the turn OFF procedure of the drivers is
triggered again.
Maximum number of retries is retry#: once this counter is expired, if the OVC is still present, the fault is latched
and HGATE and DGATE are permanently switched off.
A toggling on WAKE input is, therefore, necessary to re-engage the device and unlatch the fault.
If one of the retry attempts is successfully concluded, the counter of the retry is reset (see Figure 11).

Figure 11. Auto retry mechanism

DS13990 - Rev 2 page 21/38


STPM801
Fault management

Table 19. Auto retry parameters

Symbol Parameter Test condition Min Typ Max Unit

Tretry Auto retry time after fault detection - 105 - 130 ms


Tretry_attempt Auto retry attempt duration - 230 250 270 ms
Retry# Max number of retry attempts - - - 32 -

DS13990 - Rev 2 page 22/38


STPM801
STAND-BY mode feature

5 STAND-BY mode feature

5.1 STAND-BY behavior in detail


In the next paragraphs all device features in STAND-BY mode are presented in detail, putting in evidence the
functional differences from normal operation mode, and describing the way to enter (exit) to (from) it.

5.1.1 STAND-BY mode feature description


STPM801 can enter in a hybrid configuration to reduce current consumption, disabling some diagnostics, and
reducing safety and accuracy of some features. Basically, the device keeps the hotswap and oring functionality,
with ideal diode regulation provided with a lower accuracy, and without fast pullup feature. Current consumption
values in standby are shown in Table 20.
In standby mode all diagnostics are disabled, to save current consumption, except CP_UV and OVC feature, that
are kept ON avoiding damage of external MOSFETs. OVC keeps the HV comparator with half threshold in typical
condition, and STG comparator switches off hotswap and Oring, with a specified filter time (see Figure 12).
The device always starts in normal mode after it powers up; the standby condition can be reached by applying a
dedicated pattern on STBY_IN pin. Once in standby mode, the IC can be brought back in normal mode by a rising
pulse of STBY_IN lasting 1 ms at least. Device status either.
Normal or stand-by is echoed on the pin STBY_ECHO.
Standby mode access is denied when the device is in fault condition.
DIS pin is ignored in stand-by. Vice versa, if DIS pin is High during normal state, the stand-by pattern is ignored. If
DIS pin is High in stand-by, the device can return to normal state, and, after the filter time of DIS pin expired, the
drivers are turned off.
VB operative range in stand-by is between 4.5 V and 28 V: operation outside this specific range can lead to
degraded performances; the IC integrity is by the way granted up to the specified AMR.

Table 20. Supply current in standby mode

Symbol Parameter Test condition Min Typ Max Unit

Supply current in standby VB = 14 V, device enable VOUT = VSENSE =


ION_STAND-BY 5 - 9 mA
mode VSOURCE, HGATE ON, DGATE regulation

5.1.2 Oring driver in STAND-BY


The pre-driver for oring MOSFET is an ideal diode regulator. VDS detection is not present in standby mode.
Neither the fast turn on comparator nor the related fast pull-up are present in standby mode. The other
parameters related to oring driver have no change in standby mode.

5.1.3 Hot swap driver in STAND-BY


The pre-driver for hot swap MOSFET, in standby mode, has the same pull-up current (during turn-on) and
pull-down current (at the switch off), as in normal mode. VDS diagnostics are disabled in stand-by. The other
parameters are aligned with the specification in normal state, with the only exception reported in Table 21. Since
the charge pump regulation, in standby mode, is lower, the minimum VGS guaranteed for the hot swap is also
lower.

Table 21. Hot swap driver in standby

Symbol Parameter Test condition Min Typ Max Unit

HGATE gate Drive_STAND-BY, Drive voltage at VB = 14 V, CP = VB + 15,


ΔVHG1_12V_STAND-BY 8 - 11 V
(VHGATE - VSOURCE) VB + 9

DS13990 - Rev 2 page 23/38


STPM801
STAND-BY behavior in detail

5.1.4 Diagnostic in STAND-BY


STG detection is also present in standby mode, with a different filter time. When a short is detected, the FLT pin is
asserted low and the MOSFET driving signal HGATE/DGATE are turned off.
OVC diagnostic is also present in standby mode, but only HV comparators work and without retry function. When
OVC is detected the FLT pin is asserted low and the MOSFET driving signals HGATE/DGATE are turned off.
OVC and STG diagnostics work in OR condition, as shown in Figure 12.

Figure 12. Overcurrent and short to GND during standby

Table 22. Overcurrent and short to GND parameters in standby mode

Symbol Parameter Test condition Min Typ Max Unit Note

Overcurrent threshold
OC_HV_th_stand-by (VSENSE-VOUT), VOUT > STG - 22.5 27.5 35 mV SENSE, OUT
threshold
OC_HV_stand-by_flt Overcurrent filter time Guaranteed by scan 80 - 100 μs -
Overcurrent threshold
OC_HV_fast_stand-by_th (VSENSE-VOUT), VOUT > STG - 40 50 60 mV SENSE, OUT
threshold
Guaranteed by scan
OC_HV_fast_stand-by_flt Overcurrent filter time 1 - 3 μs -
and design
Guaranteed by scan
STG_flt Short to ground filter time 1 - 3 μs -
and design
CP_UV_flt CP undervoltage filter time Guaranteed by scan 0.9 - 1.2 ms -

DS13990 - Rev 2 page 24/38


STPM801
STAND-BY behavior in detail

5.1.5 STAND-BY mode enter/exit


For the transition to standby mode, the generation of a specific pattern at the input of STBY_IN is required,
according to the below description. T0 and T1 are related to Figure 13. The pattern is considered valid if the
timing of T0 and T1 is inside the specified range. Out of range, the pattern detection is not guaranteed.

Figure 13. Standby pattern mechanism

FULL ON state
T_blank counter 0 1 2 ... threshold 0
STBY_IN PIN

Enable pattern IN
Enable pattern OUT
STAND BY state

STBY_ECHO PIN

STBY_T0 STBY_T1

For a blanking time the When a 10 transition on


STBY_IN pin will be ignored STBY_IN pin is detected, When the pattern is When the stand-by mode is
to allow the stabilization of the FSM will start to check correctly sent, fully reached, the echo is
the CPLD. the pattern. the activation of the asserted, and the FSM is able
STBY_T_Blank stand-by mode starts. again to hear the STBY_IN pin.

After standby mode transition, the STBY_IN pin must be kept at 0 logic level. Bringing it high longer than
STBY_Exit_flt, STPM801 can come back from standby to normal mode. Behavior is reported in Figure 14.

Figure 14. Standby exit sequence

FULL ON state
STBY_IN PIN

Enable pattern OUT


Enable pattern IN

STAND BY state
STBY_ECHO PIN
STBY_T_Exit

When in Stand-by mode, if When the functional mode has been successfully restored,
STBY_IN pin is high for the echo is deasserted, and the FSM is ready to hear the
STBY_T_Exit, the device STBY_IN pin to return in stand-by mode.
returns in normal mode.

DS13990 - Rev 2 page 25/38


STPM801
STAND-BY behavior in detail

Table 23. Standby pattern parameters

Symbol Parameter Test condition Min Typ Max Unit

STAND-BY_T0min Pattern minimum time logic level 0 Guaranteed by scan 160 - - μs


STAND-BY_T0max Pattern maximum time logic level 0 Guaranteed by scan - - 240 μs
STAND-BY_T1min Pattern minimum time logic level 1 Guaranteed by scan 80 - μs
STAND-BY_T1max Pattern maximum time logic level 1 Guaranteed by scan - - 120 μs
Blanking time from Power up to consider the
STAND-BY_T_Blank Guaranteed by scan 140 - 160 ms
standby pattern
Filter time on STAND-BY_IN pin to exit from
STAND-BY_Exit_flt Guaranteed by scan 0.9 - 1.1 ms
standby mode
Time between validated stand-by_pattern_in
STAND-BY_ECHO_LH Guaranteed by scan - - 300 μs
and ECHO pin assertion
Time between validated stand-by_pattern_out
STAND-BY_ECHO_HL Guaranteed by scan - - 300 μs
and ECHO pin assertion
STAND-BY_PIN _in_hl_th High input voltage range - 2 - - V
STBY_PIN _in_ll_th Low input voltage range - - - 0.8 V
STAND-BY_PIN _in_pu Internal pull up current Pin = 0 V 20 40 60 μA
PullUP current 1 mA, used
STAND-BY_ECHO_LOW Stand-By ECHO LOW Level - - 0.4 V
as OpenDrain
STAND-BY_ECHO_HIGH Stand-By ECHO push pull signal HIGH PullDOWN current 100 μA 2 - - V

5.1.6 STAND-BY exception


STPM801 can reject the standby enter request by pattern, according to the below pictures.

Figure 15. Standby pattern during blanking time

ENOUT

blk_counter 0 1 2 3 ... ... ... ... ... ... ... threshold

FLT

HGATE/DGATE

STBY_IN PIN

Enable pattern IN

Enable pattern OUT

STAND BY state

STBY_ECHO PIN

Note: If standby pattern is received before blanking time expiration it will be ignored.

DS13990 - Rev 2 page 26/38


STPM801
STAND-BY behavior in detail

Figure 16. Standby pattern during ENOUT low state

ENOUT

FLT

HGATE/DGATE

STBY_IN PIN

Enable pattern IN

Enable pattern OUT

STAND BY state

STBY_ECHO PIN

Note: If standby pattern is received before ENOUT high logic level assertion it will be ignored.

Figure 17. Standby pattern during FLT assertion

ENOUT

FLT

HGATE/DGATE

STBY_IN PIN

Enable pattern IN

Enable pattern OUT

STAND BY state

STBY_ECHO PIN

Note: If standby pattern is received during a FLT assertion it will be ignored.

DS13990 - Rev 2 page 27/38


STPM801
Application and implementation

6 Application and implementation

6.1 Applications information


In the Figure 18 the typical application schematic is shown. In the Table 24 the reference bill of material (BOM) is
listed.
In the application note you can find a more detailed description about the choice criteria for external components
and the application setup.

Figure 18. Typical application schematic

STAND-BY LOGIC
STBY_IN

STBY_ECHO

DS13990 - Rev 2 page 28/38


STPM801
Applications information

Table 24. Reference BOM

Name Min Typ Max Unit Quantity Minimum requirement Note

CIN1 - 10 - nF 4 Ceramic, 20%, 100 V -

CIN2 - 4.7 - μF 4 Ceramic, 10%, 100 V -

CHG - 10 - nF 1 Ceramic, 10%, 100 V -

COV - 1 - nF 1 Ceramic, 10%, 50 V To be placed close to OV pin

CUV - 1 - nF 1 Ceramic, 10%, 50 V To be placed close to UV pin

CFLYn - 100 - nF 2 Ceramic, 10%, 25 V n = 1, 2

CTANK - 220 - nF 1 Ceramic, 10%, 50 V -

CVB1 - 4.7 - μF 1 Ceramic, 10%, 50 V To be placed close to VB pin

CVB2 - 0.1 - μF 1 Ceramic, 10%, 50 V To be placed close to VB pin

COUT1 - 270 - μF 4 Ceramic, 20%, 100 V -

COUT2 - 4.7 - μF 2 Ceramic, 10%, 100 V -

COUT3 - 100 - nF 2 Ceramic, 20%, 100 V -

DZ_GSH n = 1, 2
- - - - 3 MM5Z12VT1G
DZ_GSDn 12 V clamp

DS_H
- - - - 2 SD0805S020S1R0 -
DS_D

MHS - - - - 1 STH315N10F7-6 100 V breakdown

n = 1, 2
MOR_n - - - - 2 BUK9Y6R0-60E, 115
60 V breakdown
RSHUNT - 1 - mΩ 1 0.1%, 2 W -

RGSH - 1 - MΩ 1 0.1%, 0.1 W -

RGSD - 510 - kΩ 1 1%, 0.1 W -

RUV_OV1 - 205 - kΩ 1 1%, 0.1 W

RUV_OV2 - 56.2 - kΩ 1 1%, 0.1 W For 12 V system

RUV_OV3 - 10 - kΩ 1 1%, 0.1 W

RUV_OV1 - 392 - kΩ 1 1%, 0.1 W

RUV_OV2 - 47 - kΩ 1 1%, 0.1 W For 24 V system

RUV_OV3 - 10 - kΩ 1 1%, 0.1 W

RWAKE - 1 - kΩ 1 1%, 0.1 W -

RGH
- 10 - W 2 1%, 0.1 W -
RGD

RPU - 4.7 - kΩ 2 1%, 0.1 W -

TVS - - - - 1 SM30T39CAY For 12 V system


TVS - - - - 1 SM30T39CAY For 24 V system
input_fit - - - - - - Input LC filter (according to customer's needs)

DS13990 - Rev 2 page 29/38


STPM801
Applications information

6.1.1 MOSFET reference information


The external MOSFET realizing the hot swap and oring functions, must be properly chosen considering the
application requirements, in terms of current and voltages, and all the STPM801 parameters related to HGATE
and DGATE driving.
On the product application note more details about the choice of external FETs are described.

6.1.2 Dual line application scenario


Device can also be used in double line application, as shown in the Figure 19.

Figure 19. Double line application

The two-lines scheme is useful when a second battery supply line is recommended as auxiliary line in case the
main battery is not available anymore (under voltage condition or any other malfunction).
In this way the voltage on the output line is the OR of the supply voltages of the two single lines. The higher
voltage supply is transferred to the output line; on the other line a reverse condition is detected by STPM801,
oring MOSFET is switched OFF, avoiding current back feeding from OUT to VB.

DS13990 - Rev 2 page 30/38


STPM801
Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 VFQFN (5x5x0.9, 32+4L) package information

Figure 20. VFQFN (5x5x0.9, 32+4L) package outline

DS13990 - Rev 2 page 31/38


STPM801
VFQFN (5x5x0.9, 32+4L) package information

Table 25. VFQFN (5x5x0.9, 32+4L) package mechanical data

Dimension in mm
Symbol
Min. Typ. Max.

A 0.80 0.90 1.00


A1 0.00 0.02 0.05
A2 0.2 REF
A3 0.10 - -
b 0.20 0.25 0.30
D - 5.00 -
e - 0.5 -
E - 5.00 -
L 0.35 0.45 0.55
L1 - 0.35 -
L2 - 0.075 -
L3 - 0.42 -
k 0.20 - -
N 32+4
Tolerance of form and position
aaa 0.15
bbb 0.10
ccc 0.10
ddd 0.05
eee 0.08
fff 0.10
Expose PAD variation
D2 3.55 3.60 3.65
E2 3.55 3.60 3.65

Note: 4L additive corner pins are electrically floating but it is recommended to solder them towards GND in order to
guarantee the mechanical integrity of the package.

DS13990 - Rev 2 page 32/38


STPM801

Revision history

Table 26. Document revision history

Date Version Changes

23-May-2022 1 Initial release.


Updated:
• Section Features;
• Section 5.1.1 STAND-BY mode feature description;
• Table 3. Relative absolute maximum ratings;
• Table 8. Power supply parameters;
• Table 16. Oring pre-driver parameters;
• Table 21. Hot swap driver in standby;
• Table 23. Standby pattern parameters.
28-Nov-2022 2
Minor text changes in:
• Section Description;
• Section 4.1.1 VB power supply;
• Section 4.1.10 DISABLE;
• Section 4.2.1 Fault table;
• Table 4. Maximum operating voltage;
• Table 11. Over current and short to GND parameters.
Removed watermark "Restricted".

DS13990 - Rev 2 page 33/38


STPM801
Contents

Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Product features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3.1 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Absolute maximum ratings and operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 ESD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Temperature range and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.1 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10


4.1 Functional behavior in detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.1 VB power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.2 WAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.3 UV and OV detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.4 OVC and STG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.5 ENOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.6 FLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.7 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.8 Hot swap pre-driver and soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.9 Oring pre-driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.10 DISABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20


4.2.1 Fault table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Overcurrent auto retry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 STAND-BY mode feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23


5.1 STAND-BY behavior in detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.1 STAND-BY mode feature description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.2 Oring driver in STAND-BY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.3 Hot swap driver in STAND-BY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

DS13990 - Rev 2 page 34/38


STPM801
Contents

5.1.4 Diagnostic in STAND-BY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1.5 STAND-BY mode enter/exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.6 STAND-BY exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Application and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28


6.1 Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.1 MOSFET reference information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1.2 Dual line application scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31


7.1 VFQFN (5x5x0.9, 32+4L) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

DS13990 - Rev 2 page 35/38


STPM801
List of tables

List of tables
Table 1. Pin functions and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Relative absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Maximum operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. ESD data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Temperature range and thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 7. Temperature thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 8. Power supply parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 9. WAKE input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 10. Under voltage and over voltage parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 11. Over current and short to GND parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 12. ENOUT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 13. FLT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 14. Charge pump parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 15. Hot swap and pre-driver parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 16. Oring pre-driver parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 17. DISABLE parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 18. Fault table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 19. Auto retry parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 20. Supply current in standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 21. Hot swap driver in standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 22. Overcurrent and short to GND parameters in standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 23. Standby pattern parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 24. Reference BOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 25. VFQFN (5x5x0.9, 32+4L) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 26. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

DS13990 - Rev 2 page 36/38


STPM801
List of figures

List of figures
Figure 1. STPM801 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Figure 2. Pin out (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. 2s2p PCB with thermal vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Under voltage and over voltage detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. OV and UV - VB diagnostic simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Overcurrent digital architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. OVC timing and thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 8. Charge pump configuration simplified block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Hot swap pre-driver simplified structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 10. VDS diagnostic enabling signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 11. Auto retry mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12. Overcurrent and short to GND during standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 13. Standby pattern mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 14. Standby exit sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 15. Standby pattern during blanking time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 16. Standby pattern during ENOUT low state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 17. Standby pattern during FLT assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 18. Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 19. Double line application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 20. VFQFN (5x5x0.9, 32+4L) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

DS13990 - Rev 2 page 37/38


STPM801

IMPORTANT NOTICE – READ CAREFULLY


STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2022 STMicroelectronics – All rights reserved

DS13990 - Rev 2 page 38/38

You might also like