Problem-01:
Calculate the first and follow functions for the given grammar-
S → aBDh
B → cC
C → bC / ∈
D → EF
E→g/∈
F→f/∈
Solution-
The first and follow functions are as follows-
First Functions-
First(S) = { a }
First(B) = { c }
First(C) = { b , ∈ }
First(D) = { First(E) – ∈ } ∪ First(F) = { g , f , ∈ }
First(E) = { g , ∈ }
First(F) = { f , ∈ }
Follow Functions-
Follow(S) = { $ }
Follow(B) = { First(D) – ∈ } ∪ First(h) = { g , f , h }
Follow(C) = Follow(B) = { g , f , h }
Follow(D) = First(h) = { h }
Follow(E) = { First(F) – ∈ } ∪ Follow(D) = { f , h }
Follow(F) = Follow(D) = { h }
Problem-02:
Calculate the first and follow functions for the given grammar-
S→A
A → aB / Ad
B→b
C→g
Solution-
We have-
The given grammar is left recursive.
So, we first remove left recursion from the given grammar.
After eliminating left recursion, we get the following grammar-
S→A
A → aBA’
A’ → dA’ / ∈
B→b
C→g
Now, the first and follow functions are as follows-
First Functions-
First(S) = First(A) = { a }
First(A) = { a }
First(A’) = { d , ∈ }
First(B) = { b }
First(C) = { g }
Follow Functions-
Follow(S) = { $ }
Follow(A) = Follow(S) = { $ }
Follow(A’) = Follow(A) = { $ }
Follow(B) = { First(A’) – ∈ } ∪ Follow(A) = { d , $ }
Follow(C) = NA
Problem-03:
Calculate the first and follow functions for the given grammar-
S → (L) / a
L → SL’
L’ → ,SL’ / ∈
Solution-
The first and follow functions are as follows-
First Functions-
First(S) = { ( , a }
First(L) = First(S) = { ( , a }
First(L’) = { , , ∈ }
Follow Functions-
Follow(S) = { $ } ∪ { First(L’) – ∈ } ∪ Follow(L) ∪ Follow(L’) = { $ , , , ) }
Follow(L) = { ) }
Follow(L’) = Follow(L) = { ) }
Problem-04:
Calculate the first and follow functions for the given grammar-
S → AaAb / BbBa
A→∈
B→∈
Solution-
The first and follow functions are as follows-
First Functions-
First(S) = { First(A) – ∈ } ∪ First(a) ∪ { First(B) – ∈ } ∪ First(b) = { a , b }
First(A) = { ∈ }
First(B) = { ∈ }
Follow Functions-
Follow(S) = { $ }
Follow(A) = First(a) ∪ First(b) = { a , b }
Follow(B) = First(b) ∪ First(a) = { a , b }
Problem-05:
Calculate the first and follow functions for the given grammar-
E→E+T/T
T→TxF/F
F → (E) / id
Solution-
We have-
The given grammar is left recursive.
So, we first remove left recursion from the given grammar.
After eliminating left recursion, we get the following grammar-
E → TE’
E’ → + TE’ / ∈
T → FT’
T’ → x FT’ / ∈
F → (E) / id
Now, the first and follow functions are as follows-
First Functions-
First(E) = First(T) = First(F) = { ( , id }
First(E’) = { + , ∈ }
First(T) = First(F) = { ( , id }
First(T’) = { x , ∈ }
First(F) = { ( , id }
Follow Functions-
Follow(E) = { $ , ) }
Follow(E’) = Follow(E) = { $ , ) }
Follow(T) = { First(E’) – ∈ } ∪ Follow(E) ∪ Follow(E’) = { + , $ , ) }
Follow(T’) = Follow(T) = { + , $ , ) }
Follow(F) = { First(T’) – ∈ } ∪ Follow(T) ∪ Follow(T’) = { x , + , $ , ) }
Problem-06:
Calculate the first and follow functions for the given grammar-
S → ACB / CbB / Ba
A → da / BC
B→g/∈
C→h/∈
Solution-
The first and follow functions are as follows-
First Functions-
First(S) = { First(A) – ∈ } ∪ { First(C) – ∈ } ∪ First(B) ∪ First(b) ∪ { First(B) – ∈ } ∪ First(a)
={d,g,h,∈,b,a}
First(A) = First(d) ∪ { First(B) – ∈ } ∪ First(C) = { d , g , h , ∈ }
First(B) = { g , ∈ }
First(C) = { h , ∈ }
Follow Functions-
Follow(S) = { $ }
Follow(A) = { First(C) – ∈ } ∪ { First(B) – ∈ } ∪ Follow(S) = { h , g , $ }
Follow(B) = Follow(S) ∪ First(a) ∪ { First(C) – ∈ } ∪ Follow(A) = { $ , a , h , g }
Follow(C) = { First(B) – ∈ } ∪ Follow(S) ∪ First(b) ∪ Follow(A) = { g , $ , b , h }