Combustion Processes Part 2
Combustion Processes Part 2
[15.!> J
Co m bu s tio n Pr
oc es se s
l
Ca rb o an d 14 er p ), an d
th e c
n P ce nt hy dr o (~: Ca lc u late t he value o f du o ( va
lu es of b.hge
o rresp on di ng va o iq ) an d b. ho (v
ap ) .
.
Firs t, 1 ko of fuel produc es 0. 86 ( 44 / 12 -
o
an dQ J - 3. 15 kg of CO02
, _, .1 4( 18 / _2 ) = 1.2 6 kg
of H •
A t .... 5 C, llr g = 23 04 kJ / k
g and h - 2 44 2 kJ / kg . So that
2
rg
.
"'
uu 0
(
va p) _ "' (I . + m
- uu 0 1q) H 2O Ufg
= - 46 890 + ( I X 2304 ) = -4 39 8 7 kJ / kg
.26
.
Th
m bu st1 0n eq ua tio n can be written as
e co
0 0
1 kg fu el + 3.41 k g 2 ~ 1. 26k gH 2O + 3 .1 5k gC. 2
. .
n 11.h (Ii from equa ti on
Th e re la n be twee g th o q) a nd 11.uo(liq) can be obtained
tio
be
(15.11). Remem berin s and products shou ld
th at t~~ only . g~ se ~us. re ac ta nt
included, an d given th e eq uat ion becomes
fuel is Ill liqmd form,
.1h 0 (v ap ) = Llu 0 (v ap
) + RT0 (I ~i - L~i)
p m; R 111 ; ga~
26
298. 15 (1 . + J. l S _ 32
3.41)}
= - 43987 + { 8.3145
X
18 44
= - 43 900 kJ / kg r ce nt ,
t1u (li q) an d .1 u 0 (vap) is 6.2 pe
rence be tween 0
0.2 per cent. Jn an
y
N o te th at th e diffe r on ly by ab ou t
d Llh 0 (Iiq) diffe rt an t to decide wheth
er
\\- here as Llu 0 (li q) an ev id en tly m or e im po
stion da ta , it is or va po ur than wheth
er
ap pl ic at io ns of co m bu re ga rd ed as liq u id
uc ts sh ou ld be
the H 2 0 in th e pr od
e ap pr op riat e.
Llu 0 or .1 h 0 da ta ar
Two points should be noted. First, while values of ~uo and_~h o for an exothermic
reaction in accord with our sign conven tion are negative numbers, calorific
values are always quoted as positive numbers. Secondly, gross ( or higher) and
net (or lo wer) refer to the phase of H 2 0 in the products, the former to liquid
and the latter to vapour.
The cycle efficiency of a heat engine is calculated without reference to the source
of heat. When considering the efficiency of the power plant as a who le, however,
we are also concerned with the efficiency of the means of producing the heat,
i.e. whether the fuel is in fact being completely burnt under the most
advantageous conditions. The overall thermal efficiency of a power plant can
be sui tably defined as the ratio of the work produced to the latent energy in
the fu el supplied. The question arises as to how this latent energy should be
assessed.
Any power plant, considered as a whole, is an open system undergoing a
steady-flow process- with air and fuel entering the system, and the products
of combustion leaving it, at a stead y rate. This is illust rated in Fig. 15.8a. The
fu el and air enter at at mospheric temperature, and the largest quantity of energy
that can be transferred to the surroundings will be produced if (a) the fuel is
burnt completely, (b) the products leave at atmospheric temperature, and (c)
any water in the products is in the liquid phase. The energy transferred under
Fig . 15.8
Schematic combu stion
pow er plan t w Fu eI ---...-,r-
Fuel __,.
1------- Air
I
I
Air--cL...'.._
(a)
346
-
ses
[1 5. 6] Combustion Proces
.
these conditions ' per unit mass ff uel burnt, is tlh :'m (liq) , where 'a ' and 'atm'
fi ference ~
:e er lo the am bien t re
z a1 m(l' ) _ m pe r~ tu re and press ure respectiv
ely. To all
effective
intents and purposes t11 0 (1iq). lf tlho(li q) is regarded as the
;h
ffiiq .-
tlh
latent energy in the fu el' e e c1ency of th e power plant is suitably defined by
w ( 15.13)
1J=--
L1'1o(liq)
t
where W is thteernwork ransfer per unit mass of fue l.
N ow the peraturef, of h. the p d uc ts _1.s never reduced to atmospheric
ro a t exchange
tem pe ra tu re in practic ts wo uld en ta il an in finitel y lar ge he
e~h or \ steam plant).
surface somewhere in the economiser of a
•t· ~ pa nt ( e.g . in
Moreove r th is cond 1 10 n ts no t even approach ed , 1'f 1ror no other reason than
' .
th e un de sirability of 11 r va po ur o
t_ c?nd en ~e . Combust io n products
owmg_ wate in the
usually include a sm~l hu r d1 0x 1de which would di sso lve
:~I ~u an ti ty of su lp -called
wa ter an d fo
su lp hu ric ac id (b ut note the reference to so any
cor~oS iv e ve led m
, con dens. 01 er s' m secti on 11.6 ). Consid
erations of this type ha
. mg 1 ffi . en cy in terms of tlh 0 (vap ),
i.e.
th
e ngmeers to prefer to defi ne erm a e c1
w (15.14)
1J= -- --
t1ho(vap)
er va lue s fo r th e th ermal efficiency because
slightly hi gh
This defin _ition yields q).
r in magnitude than tlh 0 (li all
t1ho (v ap ) 1s sm al le
eff ici en ci es ar e pr oc ess efficien cies and lik e
plan t some
It is clear th at power on s be tw ee n an achieved re sult a~d
are co m pa ris ard,
such efficiencies, they po rta nt alw ay s to sta te clearly which stand
is mos t im plant
ar bi tra ry standard. It ed . A m or e ra tio nal definition of power
), is be in g us at , of the two
t1h 0 (li q) or L\h 0 ( vap .5, fro m wh ic h it is apparent th
in se ct io n 17
efficiency is di sc usse d re, de fi ni tio n (15.14) is to be prefer
red.
pres en te d he lly to steam
ar bi tra ry defin iti ons e fo re go in g discussion applies equa
d th at th
It must be emphasise en gi ne s. For th e form er, Fi g.
15.8a can
rn al-c om bu sti on
power plan t and inte A of th e syste m is re
garded as the
in Fi g. 15 .8b ; pa rt
be an a lysed fur th er as through a
B as th e w or ki ng fluid which is taken
rt t in the conden se r
boiler furn ace and pa he a t re jec te d Q 2 pa sses ou
Most of the
thermodynamic cycle. on pr oc es s its elf ca n be iso lated from th e rest
the combu sti is
cooling water. Whe n r or ga s tu rb in e co mbustion chamber, it
steam boile of
of the plant, as in a of its eff ici en cy so that the performance
e me asur e ost
ne cessary to have som n be co m pa re d. Co m bu stion efficiency is m
systems ca tively
different combustion n of the la ten t en er gy input wh ich is effec
e fracti o on th e
generally de fined as th Th e de ta ile d de finiti on wi ll depend up
man ne r. tput .
utilised in the de sired en er gy in pu t an d the effecti ve ly used ou
the la te nt to produc e
method of designati ng fo r ex am pl e, th e combu stion is used
bo ile r, ca n the refore
In the case of a steam am . Th e combustion efficiency
w ate r in to ste
heat and so transform
d as
be al ternativ ely defi ne ( 15.1 5)
Q Q
- or
= - - - q) - Llh o(vap)
11 - Llho(li
34 7
. ular Fluids
App li cation s t o Par t ic
Exam ple 15.9 Fin d the efficien cy of the comb ustion process of Example 15.5
on the basis
of '1.ho ( vap ) and the percentage of comp lete comb ustion
atta ined. The
follow ing data can be assumed:
f/=
- 6h0 (vap) - '\' m-( - "h )
L. I l.l 0/
-'1.h 0 (vap)
3
[ 15 .7 J n P ro ce ss es
C om bu st io
t· f tituents
F ro m th e so lu io n o E x a m PIe 15-5, the u n b u rn t an d PJrtialJy b u rn t con::.
s k u rn t , u" re
in th e p ro d u ct ' p er g o f eo aJ b
in ti d u ct s
0.17 k g o f C O ie g<1seous p ro
.
0 .0 86 8 k g o f C in th e refuse
0.4 X 0.217 =
T h er ef o re
= 4565 k l kg
= (0 1 7 x 10 110 32 790)
L, 117 ; ( - !l lio);
. ) + (0.0 868 x
24 4 9 0 - 45 65
17 = = 0.814
24490
n
15. 7 D iss o c ia ti o
re re ac h ed in
se ct io n 15 th e m ax im u m tem p er at u
d o u t in
lt w as p o in teco m b u st io n ro -~ t~ a~ ss o ci at io n .
by th e ph e n o m en o n o f di
an a d ia b at ic am h p ces~ti oisn lim
ited
d e r fo r ex 1 e re ac
C o n si ' P e, t
c o + t o 2- c o 2 it is ac co m p an ie d b
y
co:
· . ar ro w
ed s in th e d ir · ti·o n indi ca ted by the d ir ec ti o n
W h en it p ro ce
ec
e to p ro ce ed in th e re v er se
ca n be m ad e o f th e
1 se ~ f e n e rg t T h e re ac ti o n o le cu le s of C O 2 . Som
a re ea su p p li ed to m co ll is io n
1 su ff ic ie n t en er ~ y is
ce iv e su ff ic ie nt en er g y in
h o w ev er, ~
d u ct s d o re re ac ti o n
s m th e ~o m b u st10n p ro le s u n d er g o th e
m o le ~ u le of th e m o le cu
u r, 1. e. so m e
fo r this to o cc
C O 2 -+ C O +
f0 2
u at io n as
b o li se d by wri tin g th e eq
is sy m
This p o ss ib il it y
C O + ½0 2 ~
CO 2 y , an d it is
an ab so rp ti o n o f en er g
p an ie d by m p er at u re
se d re ac t io n is ac co m th at a t an y p ar ti cu la r te
T h e re v er fo u n d ti l th e
d o th er m ic re ac ti o n . It is 0 ad j u st th em se lves u n
te rm ed a n en o rt io n s o f C O 2
, C O an d 2
b e r of CO 2 m o
le cu le s
th e p ro p ti l th e n u m
a n d p re ss u re a t th e sa m e ra
te, i.e . u n
e o f st ab le ch
em ic a l
o n s p ro c ee d a ti ng . A st at
tw o re ac ti m b e r d is so ci st a tic o n e,
rm e d is e q u al to th e n u te o f eq u il ib ri u m is n o t a
is
b ei n g fo
en sa id to ex ist. T h e st a sl y a n d si m u lt an eo u sl y. It
is th n co n ti n u o u
eq u il ib r iu m o n s a re g o in g o si gn ifica nt p ro p o
rt i o n
tw o re ac ti , th at a
b ec au se th e u t 1500 K m mi x tu re.
te m p e ra tu re s, ab o v e a b o e a n eq u il ib ri u
ly a t h ig h a te to p ro vi d m b u q io n
on s m u s t di ss o ci le cu les in co
m o le c u le H 0 m o
o f th e C O 2
m a rk s a p p ly
eq u al ly to 2
co m b u st io n
ce d in g re te w h y th e ~d ia b a tic
Th e p re ci a 15. 7.
n o w p o ss ible to ap p re le ca lc ul at io n o f E x am p le
p ro d u ct s. It
is by th e sim p d 0 2•
Je ss th a n th a t p re d ic te d m ix lu re o f CO 2 • CO a n
te m p e ra tu re
is eq u il ib ri u m an d H 2
th e p ro d u c t"> co n tai n an .J T h e p re se n ce o f C O
h e q u es ti o n
2.
E v id en tl y O , H 2 a nc 0
u il ib ri u m m ix ru rc o f H 2 in th e fu el is rele a sed. T a ll
an d a n eq th e ch em ic a l en erg
y
be p re d i ct ed . W e sh
t n o t a ll a ca n
in d ic at e s th a ic al eq u il ib ri d ed u ce d fr o m
th e
h o w th e st at es o f ch em ri u m ca n be
a ri se s as to for eq uil ib th er m o -
sh o w th a t a co n d itio n st ep is to vi s u a lise h o w a
p ro ce ed to cs. T h e first
L aw o f T h e rm o d y n am i
S ec o n d 3 49
App licat io ns to Pa rti c ula r Fluids [15.7]
Cons
. . .~ ·
ider a ~to1ch10metrn.: reaction between CO andCO 0 2 , each initiall y at h
. h t e
~tanda rd press ure pt) and a tem pera ture T.' to .
fo rm
. 2 a t t e same pres sure
and tempera ture. This reaction can be earned o_ut m man
y ways . In the gas
. r
ca Ion mete r, 1or examp , le all the energ y relea sed 1s tra nsfer red as heat and the
. • • 'bl Whe .
rea ct ion 1s 1rreve rs1 e. n the react ion is made reversible, ho wever, we shall
fi nd that some of the energy is transferre d a~ work .
. Fig._ 15-9 illust rates
one concei vable stead y-flo w open system in whic h th e
react wn can proceed
reve rsibly. The react ion itself occu rs in the reactio n _cham
ber, or ' eq~ilib ri um
box', whic h contain s CO , CO and 0 in such prop o rt ions
2 2 that the reactions
CO + ½0 2 -+ CO 2 and CO 2 -+ CO + ½0 2
are proce eding simulta neo usly at equal rates. Th e box is main
tai ned at a constant
tempera tu re T by surro unding it with a reser voir at T. An
y heat exchanges will
therefo re take place reversibly. The total press ure in the
box may have an y
arbit rary value p, whic h may be greater or smaller than
Pe, dete rmin ed by the
tota l mass of gas prese nt. The CO, 0 and CO enter or
2 2 leave the box throu gh
semi permeable membranes, the mass fl ows at entry and
exit bein g equal. If
these mass transfers are to take place reversibly (see secti
on 14.3 ), the pressure
of each cons ti tuent outsi de the box must be equal to its
part ial press ure inside
the box (i.e. Pco , p0 2 or Pco) and the temperatu re of each
cons titue nt outsi de
the box must be equa l to T Since the pressure and temp
erature of the CO, 0
and CO 2 are pe and Tat the boundary, reversible isoth 2
ermal com pressors and
expa nders must be included in the system to main tain the
respecti ve pressures
at Pco , Po 1 and Pco2 outside the semiperm eable mem bra
nes.
Imagi ne that CO and 0 2 are transported slow ly into the
reaction box at the
stead y mola r fl ow rates of nand n/ 2 respecti vely, and tha
t the reacti on proceeds
I 15 9
i van t Hoff equtl1bnu m Surro und ing rese rvo ir at T
Wco Qco
Q
Pco
I r----+----
Expa nder
Mixture of
Compressors CO, 0 and
2 co 2 , .........---4
I at p, T
Equilibrium box
Wo . .
l Qol wCO 2 Qco1
[Drawn for the case where the net reaction
proceeds accor ding to co + J.. O, _ CO
and any partial pressure > pk] - i
350
p
Pea + Po 2 + co = p
P 2
(Pea, Ip") =
(P co/ Pe)
e , / e )1 ;2
(Pco / pd)(Po ) pe) 112 (p'co/ p HP02 p
Thus the com bination of press ure ratios (Pi ! p1=' ) ab~ve ~s independent of the
total pressu re p m . th e equili brium box. This combmatwn, or pararnete .
.. . r, is
called t he stan da,·d or tliernwdynamic eqwllbrium . constant
. . . for the react·ion
cons1.d ered. Th e symbol used is K e' the superscript 0md1catmg
Th that all part··
1a1
press ures are normalised by the standard pressure p . us
e_ (Pea/ Pe)
K - e I 0 )1 12
(15.1 8a)
(Pea l P HP02 P
It is sometimes usefu l to gather all Pe terms toge th er a nd rewrite equati on
( 15.18a) as
Ke = (Pco) (p e)1/ 2
12 (15.18b)
(PcoHPo/
(as is done in the table headings of Ref. 17 to save space). Although K-:, is
dimensionless, its numerical value will depend on the choice of pe. It is
independen t of pe only for reactions in which np = nR, when the net exponent
of the pe term becomes zero. * In common with other chemical-thermodynamic
da ta which have to be referred to a standard pressure (e.g. ~ut ~hn
the
standard press ure agreed upon internationally is 1 bar. There is nothing in the
fo regoing to suggest that K e is independent of the temperature T of the mix ture,
and ex peri ment sho ws th at it varies strongly with temperature, as we shall see
later.
As anticipated earl ier, we have not on ly show n that f,.;_ t:' -:f. f(p) , but also
derived the important res ult that equati on l I 5. l 7a) exp resses the maxim um
work I Wlmax attaina ble from th is particul ar reactio n. The result can be
generalised to apply to any other chem ica l react ion involving perfect gases for
which the eq uilibri um constant K 0 is kn own and WI can be related to Ke by
J
' max
• It useJ to be com~on practice lo define the equilibrium constant in terms of partial pressures.
e.g. in the case com1dered here as K = (p ) (p )( )1 2 Th b • added to imp!~
the above mod O f d fi . . P coi . co Po, . e su script p was _
T hi d e e n1t ion. KP would then in ge neral not be dimensionless unless np - "R ·
c/10:~r~t:m:°o~~ernt ~alues of log KP (o r _In Kp), an inadmissible practice because ar~ume~l;
an; ra nsce ndental fun ction, should always be dimensionless quanti ties. W -
a~e ~::s~~:~
d'd ti · b . 'h
K - K'
is"~~~:~dt to ~rrors? It is easy to show that if the unit in\.\ hic h the partial pressu~;;
d h b'
0 1
e sta nd a rd pressure adopted (it used to be I atm ), then oumi'ru u
P - an I e reach ts th us swept under th e carpet.
352
ss es
(1 5 .7] Co mb us tio n Pro ce
effici en b
a re call ed t h e sl ot Lh wm et ric col.'jj 1ue n1 ,·' the co
wh e re V i' vz ' 1'3 an d v4 · k tho se of the rea cta n ts
o f t h e pr.od uc t s a re by
co en t 1on
nv ta en as pos1t1v. c ' an d
th en a rri ve at th e ex prcs<;1on
as ne ga t ive. W e wo uld
)' •
K o = (pc / p'' )'' (Po , p''
6 3
(pA lp J' ' (Ps / P' )' '
ly as
itt en ev en mo re ge ne ral
An d th is co uld be wr
( 15.20)
(nPd P
0
Y' or In K "' = L In( P, p"" )'-
Ke = i
ue nts i, an d L,
IS the su m o f th
e
wh ere ni me an s the pro
te rm s.
d uc t for all co ns tit
i t hm ic for ex a mp le.
on H 2 + ½0 2 ~ H 2 0,
log ar
( 15 .20 ) to the rea cti
Ap p lying eq ua tio n
ri um co ns tant
we ge t fo r th e eq u il ib 1 2
0
_ (PH 2 0HP '
) ( 15.2 1)
K e = ( PH 2o f P )
2
0 0 112
(PH J( Po Y '
(PH ) P HPo ) P ) -
va lue s of
en tab ula tin g ex pe ri me nta lly de ter m ine d
t wh co ns tan t K ~ wo u ld
It sh o uld be cle a r th a rea ction. Th e eq uil ibr ium
ry to sp ec ify the ~2 H 2 0 or
K , it is ne ce ssa en as, sa y, 2H 2 + 0 2
0
"' ~
30
·s•a · • 1• 'h ter rpe rat ure
20
ln K '~ ~ ........
"' -" ~, 1-,
.___ -..,;;'. -;.. I
10
"' ... - ~o
,~ ----
1 .!:!.20
8
() C..... ".,..~ ......
➔
ro ,>
2
~
2500 30 00
20()( l
I 1000 1500
Te mp era ture [ K J
0 500
35 3
. Particular Fl ui ds
App licati ons to
.. . ·. Th " b (1 5)
, . ,LJllision!:> to dissociate. at K co anct ·;
, , ( >f1Cfg} 111 C • . -· 2 /(_ •
reL~I\ C•rnfi ,H.: n 1; _ h , p... rJturcs is indicated rn F 1g. 15.10. It . 1-iio dee
11
, r } h1g tt:m .., . 1s us rt
strongly Jt ,e f K'' rather th an values of K ' . Thi !:> is b Uai ta '\
1
Jnd ta buJ,1r~ _\'alu~!:, lol I~ope more easily wit h the wide range efcause g/lal
d I lJ11thn11ca Y l: o v · <tpt
plotte o~ . t, pola tion from tables of In K e provides valu ariation ,~
f... ·ind lrncar rn t.:r b • d f es Wh· or
·' , 1 es than wo uld be o tame rom linear . 1ch .
clo,er to the true va u . Inter c1rt
, . f ;.:_ e Moreover, thermodynamic theory norrn 11 Polc1ti 0
bet,, een \ alucs o . . fI e a y re n
. f l K ' (see eq uation (15.19)). Values. o n K for several reacti 9Uire,~
, J lue:, o n •
Om b ustion are tabulated against temperature in R f 0 ns of
importance ll1 c . e . 17
r ,· g example ill ustrates the method of calculatmg . ·. .
the equ1Jib
Th e 1011o~ m . . .
the percentage dissociatwn has been obtained by a riuni
cons t an t When .. . Proct
. , , .• and also how this eqw1Ibnum constant can then be used t o Prect. Ucts
ana1}-,1s, . . . .
the percen tage dissociat10n m other cJrcumstances. Jct
2
nco 0.65
Pea 2 = - p = - - x 1[bar] = 0 553 ba1·
n 1.175 ·
ncp 0.35
Pea = -;;P = l.1 x l [bar] = 0.298 bar
75
no 2 0. 175
P02 = - n P = 1. l 7 x l[b ar J = 0.149 bar
5
Based on the equilibri um equation CO + 10
2
_,, CO 2 ,
z...--
Ke = (Pco)( pe)112 0.553
(Pco)(Po) 112 = 0.298( 0.149)112 = ·
4 81
At any pressure p th •
' e partJal pressures will be
1- a
Pco === - --
1 + a/ 2 P, Pco =- a
- a
/2
1 + a/2 p, = -1+-a/-2 p
2
Po 2
354
[ 15. 7]
Comb ustion Processes
l - a )
(
K ti = 1 + a/ 2 p(p'-' )112
( 15. 22)
C/a;2)C : :;J x 1 12
Px p'"
Since the tem perature is unchanged, Ke wi ll still equal 4.81. At 10 bar,
therefo re,
4. 81 = (l - a )( 2 + a )1 12 I
a3 / 2 X 101 '2
79 79
C 7 H 16 + I 10 2 +- 11 N 2 -, aCO 2 + hH 2 0 + cCO + dO 2 + eH 2 + -21 11 N 2
21
can be written do wn
There are five unknowns: a, b, c, d and e. Three eq uati ons
gen and oxygen on
directly by eq ua ting the numb er of atom s of carbon, hydro
each side of the eq uation :
a+c = 7
2b + 2e = 16
2a + b + c + 2d = 22
aid of th e equilibrium
The remaining equa tions can be formul ated with the
2 , CO and 0 2 , and
cons tants whic h establish the proportions in which CO
amount-of-substance
H o, H ·and 0 , can exist in equilibriu m. If n is the total
2
2 2
of prod uc ts. given by
79
11
n=a +b+ c+d +e+ 21
355
Application s to Particula r Flu ids [15 .7]
CO+ ½0 2 ~ CO 2 and H2 + ½0 2 ~ H 2 O
can then be combi ned to yield the so-called water-ga s reaction
CO 2 + H 2 ~CO + H 2 0
Wi th the 0 2 elimi~~ te~ fro m the products, one fewer equation is required. and
the water- gas eq u11I bnum constan t is all that is needed for the solution of the
356
(15 .7 ]
C omb u st ion P roc esse s
co + t o , + G)~N,
is there fore
The com bust ion eq uatio n fo r the reac tion
+ 0.09 6 0 + 1.881 N 2
CO + 0.5 0 + l. 881 N 2 -0.808 CO 2 + 0.19 2 CO
2
2
358
es
[15 .8] Combustion Process
process oc
in wh ich the combust ion rkin fl ~ur~ may be affect ed, howeve r, becau se the
heat transferred to the wo now transferre~ at a lower
average
ma xim um ~e uid is the
tempe ra ture - the mp era tur e reached bemg reduced by
. · t· I th word s th · ted is the same as if
d1ssoc1a 10n. n. o er . . e quantity of energ y libera
1
ta
od yn am ic re ac t ion da
15.8 Ta bu la tio n of th er m
with
sin g tha t alt ho ug h thi s chap ter has bee n concerned
It is wo~th emphasi on known as combustion, mo
st of the
ss of ch em ica l rea cti
the pa rticular cla ica l reaction s in gene ral. Th
e enthalpy
ap pli es eq ua lly to ch em
theory presented ed to as the en thalpy of reacti
on. In
ex am ple , is the n ref err
of comb ustion, for tab ulate the enthalpies of all
reaction s
xt , it is im pra cti ca ble to
this wide r conte s. Instead it is
ica l co mp ou nd ma y un de rgo with other substance
which a chem shown, it is
of for ma tio n D.h rn wh ich is tabulated and, as will be
the enthalpy rticular case
tte r to cal cu lat e the en tha lpy of reaction M10 in any pa
a simple ma on .
s of D.h rn of the sub sta nc es taking part in the reacti
from the va lue
tio n is de fin ed as the inc rease in enth alpy when a
The enthalpy of forma ele me nts in their natural forms and
m its co nst itu en t
co mpound is forme d fro pre sse d in energy units per un
it of
It is us ua lly ex
in a standard state. d is referred to the ca se where
each of
ce of co mp ou nd , an
amount -of-substan an d T0 = 25 °C = 298.15 K
and the
nts is at p 0
= 1 ba r
the reacting eleme tem pera tu re. The qua lification
'natural
sa me pr ess ure an d
product is at the us hydrogen
tha t it is the en tha lpy of fo rm ation of, say, gaseo
fo rms' impli es na tornic gas H, which is pu
t equ al to
th at of the dis soc iut ed mo
H 2 , and not ms ' and on ly
ur se som e ele me nts ma y ex ist in severa l ·nat ura l for
zero. Of co
sta te; fo r ex am ple , for ca rbon it is graphite and
one ca n be us ed as a datum
for this purpose .
not diamond which is used co mp ou nd s at T0 = 25 °Care as follows:
tio n of thr ee
The enthalpies of for ma
hf25)c H. = -7 48 70 kJ / km
ol of CH 4
ite ) + 2H --+ CH ; (!l
C( graph 2 4
o = -2 4l 830kJ / kmoJ
of H 2 0
O( va p); (tlh ~ s)H
H 2 + ½0 2 --+ 2 H 2
359
.c ular Fl u ids
. Part 1
Applications to
D.h2s = (~hm co 2
_ ( - 74 870) - 0
= (-393 520) + 2( - 2418 30 )
. porn
t
. ts must be made here. First, the. reader is reminded that
Two 1mportan b t died on a second readmg of the book. The same
· · tended to e s u
7 15 .
Chapter m .d { this chapter which requires an understandin 9, in.
applies to the remam er q
79
particular, of sectiohn · d.3. f section !5.4.1 it was suggested that the superscr
Secondly near t e en o e 1b ipt
. h ; rs to properties at the standard press ure p = ar, can safel y be
a wh1c re,e · th t · h
' . d. Th'is was because we were gomg to assume a 'dm t e absence of
om1tte
changes of phase, the Properties u and H of . reactants an products . .can be
· depen dent of pressu re· In the follo wmg we shall
ta ken as m . be deahng With two
properties, namely the entropy S and the Gibbs funct10n G ( or their molar
equivalents g and g), and even for perfect gases these are st~ongly dependent
on pressure. In view of this we shall revert ~o the more ngorous notation
incorporating the superscript e for propert1e_s at standard pressure. For
consistency the superscript will be attached not Just to S _a n~ G, b~t also to U
and H , although in the latter case we shall neglect vanat10ns with pressure
where appropriate.
We have seen in section 7.9.3 that data for enthalpy of reaction ~nt change
in Gibbs function t1gi and equilibri um constant Ki are in terchangeable. Thus
from equations (7.72), (7. 73) and (7.75),
- ~gi = - t1hi + To(s;o - s:o ) (15.23)
A ~e
lnK 0
e
= - -u go ( 15.24)
RT0
By virtue of the Third Law (sec section 7.9. 1}, which enables a bsolute entro pies
to be determined for the rcactan ls and products rela ti ve to a common datum
at absolu te zero of temperature, the entro py term in equation (15.23) can be
calculated. The Gibbs function of fo rma tio n /j gf0 can then be defi ned in an
analogous manner to the value of /j }zf0 ; a nd the values of /j g for any reaction
6
can be fou n~ by adding the fo rmation values as for /j)zi . Conseq uently it follows
fro~ . e~uatwn ( 15.24) that it is also possible to define logarithms of th e
equ~l~br~um constant of formation In K?0 , from which the logarithm of th e
m con stant Ki for any reaction can be calcula ted from a similar
sequJhbr~u
ummation procedure.* A short compilation of various chemical- thermodynamic
data fro m Refs 36 and 37 15· · • . ~e A-➔
given in Fig. 15. 11 ; it contains values of ~h ro , uBro•
* Because values of In K ~ can be C
foll ows that values of Ke can b C nd
. .
ound fro m add1t1ons of the appropria te values of In K'iear
-
e. ic
360
[15 . 8 ] ses
Co mb ustio n Pro ces
at P - 1 ba r and T0
-3
298. IS K
-e - t-•
n1 t:.ii ;~ t:.g~ CpO So
of pe = l bar a;d T0 = 29
8.15 K.
sta nd ard sta te are
~ . all in the
an d the eq uil ibr ium co nstant for perfe ct gases
Both the enthalp y the da ta for L\hf0 and ln Kfo
can be
ure , an d in pr ac tic e
independen t of press an d va pours over wide ranges of pre
ssure.
tan t for rea l ga ses
assumed to be cons ar ly ind ep endent of pressure for liquid
s an d
lue s are ve ry ne
Similarly , th ese va r, inv olves an entropy term wh
ich varies
s fu nc tio n, ho we ve s and
so lid s. The Gibb s su bs tan ces (although not for liquid
ess ur e fo r ga se ou
apprecia bly with pr int o ac count when any gaseou s rea
ctant s
tio n mu st be tak en
solids) , and thi s varia r.
e stand ard pressure of I ba
or products arc not at th reg ard to substances which cannot
exist
ap pe ar s wi th
A parti cular di fficulty ca nn ot ex ist at 1 bar at 25 °C, and
us 2 H 0 va po ur
at the standard state. Th on ly as a co m pressed liquid . The table
s
te ca n ex ist
H 2 O in the sta ndard sta nd ar d sta te, obtained by assumin g
vapour at the sta
mak e us e of a fictitiou s s be tw een the saturated vapour
state
ve s as a pe rfe ct ga
that the substance beha H O) an d the standard state. This
is
in the ca se of
at 25 °C (0.03166 bar
2
of H 2 0
= O+ hrg + 0 = 43 990 kJ / kmol
361
p · far Fluid s (15_
Appl icatio ns to artic u
81
enthalpy of vapo ur anct of li
. d term s are zero becau!>e the 'ddl
d h
The fir~t an t ir d nt of pressure· the m1 e term repre sen ts t he la9U1d
. . d ' •d •
1s tak en as in cpen e
. ation per kmo l of H 2 0. Cons1 enng the Gibb s fu nct1.onten t
en thalpy o f va po ns of
formati on, aga in at 25 °C, we have
(.tlgn ap at I bar - (.tlJ f )liq at l bar
= {(.tlgf)vap at I bar _ ('1firtap at 0.03 166 bar }
- (L1iJr)1iq a t 0.011 66 bar}
+ 'l (i1g~ f )vap at 0.03 166 bar
) . at O· 031 66 bar - (.tlg?)iiq at 1 bar }
+ l' (i1c'i::1 filq
1
= 8.3 145 x 298.1 5[ _!!___ ] 1n + 0 + 0 = 8559kJ/ kmolofH 2 0
kmo l 0.03166
s vapour state using ( 15_23 !
The fi rs t term represen ts extrapolation to the fict itiou
ct gas over that rang e. The
and ass uming tha t the vapo ur beha ves as a perfe
ins constant in an isothermal
seco nd term is zero because th e Gibb s function rema
the third term is zero becau se
chan ge of phase (see secti ons 7. 7 and 7.9. l ), and
ent of press ure.
the Gibb s function of a liqui d is taken as independ
writ e
Fina Jly, considering the entropy at 25 °C we can
6
(s'0l ,ap at 1 bar - (s )1iq at 1 bar
= {(s )vap at 1 bar - (s)va p at 0.03166 bar }
6
i1ii
0
i1g" (43 990 -8559 )/ kJ / k mol J
- - -= - - - =- 11 8.83 kJ; kmolK
To T0 298. I 5 [ K J
thermodynamic reaction data
We conclude this brief explanation of the way
use to calcu late the value s of
J re presented with an example illustrating their
re and press ure which
.1Fi, J~7 Jnd K for a reaction at a specified temperatu
differ., from th e standard sta te.
Exa mpl e 15.1 2 Calc ulate Jh, Jg and In K • at 298 .15 K for the reac tion
362
[1 5.8 ]
Combustion Processes
equilibrium
Enthalpy, Gibb s f un ction ande h , con5 rant_ at 298 .15 K
Th e en tha lpy of reaction !).h 2 98 w en each co nstitu ent is at I bar is
_
830) - ( -3 93 520 ) - 0 }[k l ]
0
- ~l"i29 8 = - d92 98 - To (I
p
11 iSi29 B - L l1;Si 2 9B )
R
(l x 197 .65)
= - 28640[ kJ ] - 298.15[KJ{
130.68) }[ ~]
+ (1 X 188 .83 ) - () x 2 13.80) - (J X
4
Also, from eq ua tio n ( 15.2 ),
28 640 = - 11. 553
~U29s
x2 98 .15
ln K = - R To = -8 .3145
0
(sPT -
_ , .c .ln-2::,
SRT ) - ~p 11 rr
1
'O
+pl
(I:
p
1l;S;29s - L n; 5;29s) + Ln/ .In To
R
R
pi - -
T
T )klK
= (42.00 - 3.25 ln 298.15[K]
At T = 400 K,
l!:.gT = l!:.hT - T(Sn - SRT)
= +244 10 kJ
and from ( 15.24 ),
24410
In K; = - - - -- = - 7.340
8.3145 X 400
Alternatively, using equation (7. 77) and treating ~h as a variable between T0
and T,
I d(ln
T
To
K e )= :
R
J !lh d(~)
T
T
To
Thu s, using In K e = - 11.555 at 298.15 K from the first part of the example,
In K1oo = 4.2 13 - 11.555 = _ 7_ 342
which agrees closely with the result obt . d a bove.
ame
15.9 Li mitat ions of the th erm 0 d .
vnam,c analysis
In the previous chap ter it was e . . I •sis of
the processes occ urring . mphasised that the th ermodynamic a~a _) d to
. . . . plant 15
1n co ndens ers and a1r-cond1t10mng · 1,rn1te
364
[ 15 ,9]
Co mbus tion Proc esses
state s and energy t "
th e pred ictio n of. final . rans 1ers from k nowledge of the ini tial
tates and certa m oper atmg cond ition s. A
.a
led analysis of the way in
:hic h heat is trans ferre d mus t be und ert;~ re detai
designed. n before an actual plant can be
The ther mod ynam ic anal ysis of com bust ion ·
• • processe s, given · · h.
a simi lar way : it does not e bl mt 1s chap ter,
. 5 limit ed in ·· s
speci·fY th e con d 1t10n
b na. e us to .
1
der whic h the proc ess can actu all
. Y e earn ed out m practice For exam ple'
un air /fuel ratio and . ·t· ·
it cann ot be used to pred ict the m1 1a 1 temp eratu re necessary
. . . . .
for self-1gmt10n to occu r. Nor. has the simple therm o d ynam1c treatment anyt hmg
·d " •
to say abou t. the rate at whic h the proc ess can be c·arne out ; 1or examp 1e, 1t
r which a stable flame is
cann ot pred ict flam e spe~ ds, or the cond itions unde
omb ustion engines.
possible, or the dela y ~e~iods expe rienced in inter nal-c
the years to explain
A grea t deal of emp inca l data has been amassed over
ustion systems such as
the deta iled phen ome na enco unte red in practical comb
ing engines, gas turbi nes,
coal and oil fired furn aces , gas burn ers, reciprocat
for a synthesis of this mass
ram-jets and rock et mot ors. The concepts necessary
the fundamenta l sciences
of data are now bein g form ulate d with the growth of
y. Quantitatively there is
of com bust ion kine tics and com bust ion wave theor
be applied directly so
still a wide gap to be brid ged before these scien ces can
drawing boar d, but even
that new com bust ion syste ms can be designed on the
to reduce the amo unt of
now they can be used to aid consisten t think ing and
design can be mad e to
ad hoc deve lopm ent whic h is still required before a new
comb ustion kinetics and
work efficiently. Ref. 30 prov ides an intro ducti on to
com bust ion wav e theo ry.
365