LAPLACE TRANSFORM                           3.
𝑓(𝑡) = 𝑐𝑜𝑠4𝑡
Definition : the laplace transform of a
function 𝑓(𝑡) is transformation from the
function of a variable 𝑡 to a function of
variable 𝑠 denoted by                       4. 𝑓(𝑡) = 𝑠𝑖𝑛4𝑡
                        ℒ {𝐹(𝑡)} or 𝐹(𝑠)
                                 ∞
ℒ {𝐹(𝑡)} or 𝐹(𝑠) = ∫0 𝑒 −𝑠𝑡 𝑓(𝑡)𝑑𝑡
                                            5. 𝑓(𝑡) = 𝑠𝑖𝑛ℎ4𝑡
Laplace Transforms of the common
functions
                                                              1
              𝑘
                                            6. 𝑓(𝑡) = cosh 4 𝑡
ℒ{𝑘} =
              𝑠
                   1
ℒ{𝑒 𝑘𝑡 } =        𝑠−𝑘
                                            7. 𝑓(𝑡) = 4𝑠𝑖𝑛8𝑡 − 5𝑐𝑜𝑠3𝑡
                  𝑛!
ℒ{𝑡 𝑛 }   =             ; 𝑛 >0
              𝑠 𝑛+1
                         𝑠
ℒ{𝑐𝑜𝑠𝑘𝑡} =             𝑠2+ 𝑘2
                         𝑘
ℒ{𝑠𝑖𝑛𝑘𝑡} =                                              𝑡4
                       𝑠2+ 𝑘2               8. 𝑓(𝑡) =        + 3𝑠𝑖𝑛8𝑡
                                                        36
                          𝑠
ℒ{𝑐𝑜𝑠ℎ𝑘𝑡} =             𝑠2− 𝑘2
                          𝑘
ℒ{𝑠𝑖𝑛ℎ𝑘𝑡} =             𝑠2− 𝑘2
                                            9. 𝑓(𝑡) = 3𝑠𝑖𝑛(𝜔𝑡 + 𝛼)
Linearity of laplace transform
1. ℒ{𝑐 𝑓(𝑡)} = 𝑐 ℒ{𝑓(𝑡)}
2. ℒ{ 𝑓(𝑡) ± 𝑔(𝑡)} =
          ℒ{𝑓(𝑡)} ± ℒ{ 𝑔(𝑡)}                10. 𝑓(𝑡) = 𝑠𝑖𝑛3𝑡𝑐𝑜𝑠3𝑡 + 3
Example :
Solve the laplace the following .
1. 𝑓(𝑡) = 𝑡 3                               11. 𝑓(𝑡) = 𝑠𝑖𝑛3𝑡𝑠𝑖𝑛4𝑡
2. 𝑓(𝑡) = 𝑒 4𝑡
                                            12. 𝑓(𝑡) = 𝑠𝑖𝑛2 4𝑡
Page 1
13. 𝑓(𝑡) = 𝑠𝑖𝑛3𝑡𝑐𝑜𝑠3𝑡
Recall :                                        First Shifting Theorem
Sum and product of sine and cosine Identities   Theorem :
               1                                 If ℒ{𝑓(𝑡)} = 𝐹(𝑠) then
𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦 =       [𝑐𝑜𝑠(𝑥    − 𝑦) − 𝑐𝑜𝑠(𝑥 + 𝑦)]
               2
                                                     ℒ{𝑒 𝑎𝑡 𝑓(𝑡)} = 𝐹(𝑠 − 𝑎)
                1
𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦 =        [𝑠𝑖𝑛(𝑥   − 𝑦) + 𝑠𝑖𝑛(𝑥 + 𝑦)]
                2
                1
𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 =      2
                  [𝑐𝑜𝑠(𝑥   − 𝑦) − 𝑐𝑜𝑠(𝑥 + 𝑦)]   Example :
𝑠𝑖𝑛(𝑥 + 𝑦 ) = 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦 + 𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦               Evaluate the laplace of the following
𝑠𝑖𝑛(𝑥 − 𝑦 ) = 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦 − 𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦               1.       𝑓(𝑡) = {𝑒 𝑎𝑡 𝑡 𝑛 }
𝑐𝑜𝑠(𝑥 + 𝑦 ) = 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦
𝑐𝑜𝑠(𝑥 − 𝑦 ) = 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 + 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦
Double Identities
                                                2. 𝑓(𝑡) = {𝑒 −4𝑡 𝑐𝑜𝑠3𝑡}
𝑠𝑖𝑛2𝜃 = 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
𝑐𝑜𝑠2𝜃 = 𝑐𝑜𝑠 2 𝜃 − 𝑠𝑖𝑛2 𝜃
           2𝑡𝑎𝑛𝜃
𝑡𝑎𝑛2𝜃 =
         1 − 𝑡𝑎𝑛2 𝜃
Half Angle Identities
                                                3. 𝑓(𝑡) = {3𝑠𝑖𝑛2𝑡 + 5𝑐𝑜𝑠8𝑡}
            1−𝑐𝑜𝑠2𝜃
𝑠𝑖𝑛2 𝜃 =
               2
            1−𝑐𝑜𝑠2𝜃
𝑐𝑜𝑠 2 𝜃 =      2
   𝜃          1−𝑐𝑜𝑠𝜃
𝑠𝑖𝑛 2 = ±√      2                               4. 𝑓(𝑡) = {𝑒 2𝑡 𝑠𝑖𝑛𝑗2𝑡}
    𝜃         1+𝑐𝑜𝑠𝜃
𝑐𝑜𝑠 2 = ±√      2
    𝜃         1 − 𝑐𝑜𝑠𝜃
𝑡𝑎𝑛 2 = ±√ 1+ 𝑐𝑜𝑠𝜃
                                                5. 𝑓(𝑡) = {2𝑒 2𝑡 𝑠𝑖𝑛4𝑡𝑠𝑖𝑛3𝑡 𝑧}
                                                           7        0<𝑡<3
                                                6. 𝑓(𝑡) = { 2       3 < 𝑡 < 5}
                                                            0       𝑡≥4
Page 2