1.1 Precalculo
1.1 Precalculo
REVIEW
= . , = . ... = .
π= . ...
                                                                                                                                      repeating
                                                periodic
                                                                        π
                                                                                               number
                                            ∈
a∈ a
                                                                                                                                              1
2   CHAPTER 1            PRECALCULUS REVIEW
                  |a|                             a                va                                     a           |a|
          a                                                                                                            a            a≥
FIGURE 2 |a|                          a                            |a| = distance from the origin =
                                                                                                                       −a           a<
| . |= . |− . |= .
                        |b − a|                   a                                                   a       b   |b − a|
                                                               a            b
      −       −   a                   b
                                                                            a         b                                     |b − a|
FIGURE 3                          a   b
                                                                                                                  if the decimal
|b − a|
                                          expansions of a and b agree to k places (to the right of the decimal point), then the
                                          distance |b − a| is at most −k                            a= .             b= .
                                                        −            a     b
                                          | .     − .        |= .
                                                            |a + b|            |a| + |b|       a      b
                                                       a      b
                                          a+b        |a + b| < |a| + |b|             | + |=| |+| |         |− + | =
                                                     |− | + | | =             |a + b|                    |a| + |b|
                                                                         a         a
|a + b| ≤ |a| + |b|
                                                                                                                                       a<b
                                                                            a          b                                              b−a
                                              a             b                    a               b                a             b              a           b
FIGURE 4                                              v      a b                           v    a b                         v       a b                v       a b
a     b                                                    u                                    u
va [a, b] x a≤x≤b
[a, b] = {x ∈ : a ≤ x ≤ b}
                                                                                                 {x : a ≤ x ≤ b}                                   x
                                                                        a                       va
(−∞, ∞)
                                                                        a                                                                 b
FIGURE 5                                                                        a ∞                                          −∞ b
                                                                                                  S E C T I O N 1.1             Real Numbers, Functions, and Graphs               3
                     |x| r
                                                   (−r, r)                                          |x| < r
    −r                                        r
FIGURE 6
                                                                           |x| < r       ⇔        −r < x < r               ⇔        x ∈ (−r, r)
(−r, r) = {x : |x| < r}
                                                     EXAMPLE 1                         [ ,   ]
                                                                                                       [ ,        ]        c= ( +                 )=
                                                   r= (      − )=
FIGURE 8                     [ ,   ]                                                   [ ,   ]= x∈            : |x −            |≤
   |x −    |≤
                                                     EXAMPLE 2                                   S= x:            x−           >
                                                                                                                                     x−               ≤
 In Example 2 we use the notation ∪ to
 denote “union”: The union A ∪ B of sets                                x−         ≤         ⇔     − ≤        x−            ≤
 A and B consists of all elements that
 belong to either A or B (or to both).
                                                                                                   − ≤        x≤                     (            )
− ≤x≤ ( )
           −
                                                             x−        ≤                     x                          [− ,         ]                S            complement
                                                                                x not in [− , ]                                       S
FIGURE 9           S= x:                x−    >
                                                   S = (−∞, − ) ∪ (          , ∞)
Graphing
y y
                                                                                                                                             P= a b
                                                                                                               b
                                                                                                                                                                                  − +         + +
                                                                                                                                                 x                                                          x
                                                                                          −       −                                          a
                                                                                                           −                                                                                      V
                                                                                                                                                                                  − −         + −
                                                                                                           −
FIGURE 10
        y
                                                                           Distance Formula                                                           P = (x , y )                      P = (x , y )
                              P = x y
    y
                                           d                                                                                   d=            (x − x ) + (y − y )
                    |y   −y   |
    y                                                     P = x y
                                      |x   −x     |
                                                                                                                                                                                                                     r
                                                                      x                       (a, b)                                             (x, y)                                                         (x, y)
                                  x                   x
                                                                            (a, b)            r
FIGURE 11                              d
                                                                                                                                        (x − a) + (y − b) = r
                y
                                                           x, y
                                                  r                                                                                    (x − a) + (y − b) = r
            b
                                           a, b
                                                                           DEFINITION                                          f                    D                         Y
                                                                  x               x D                                                        y = f (x)        Y
                                            a
FIGURE 12
                                                                                                                                                 f :D→Y
(x − a) + (y − b) = r
                                                                                      D                                    a             f                                                            x ∈ D f (x)
                                                                                          va               f           x                                  a       R           f                       Y
                                                                                          f (x)
R = {y ∈ Y : f (x) = y x ∈ D}
                                                                                                      numerical                       f
                                                                                                                                                                     f
                                             f (x)                   x                                                                 va a
                                                                             D            y = f (x)                               y                       va a
                                                                                                x
                                                         f                                                                                      √                x
                                                                             √                                                    f (x) =           −x
                                           D = {x : x ≤ }                         −x                            −x ≥
f (x) a D a R
                                                                         x                                        {y : y ≥ }
                                                                              x                                   {y : − ≤ y ≤ }
                                                                                      {x : x = − }                {y : y = }
                                                                         x+
            y
                y=f x
                                                         a                        y = f (x)                                                         (a, f (a))       a
                                                                 D                                         x=a                    x
     f a             a f a                                           y                                        f (a)                                   |f (a)|
                                 f x                                              x
                                       x                                              f (x)                       c                   f (c) =
                 a           c
                                                     x                                                 x
FIGURE 15
EXAMPLE 3 f (x) = x − x
                                                                                   x − x = x(x − ) = .
                                                                                         √
                                                             f (x)       x=          x=±
TABLE 1
                                                             x       x − x                             −
                                                                                                                                                      x
                                                         −               −                        −         −             −
                                                         −
                                                                                                                          −
                                                                         −
                                                                                                      FIGURE 16                   f (x) = x − x
                                                                             W                                                            t
6   CHAPTER 1          PRECALCULUS REVIEW
w g W g y
TABLE 2
t W t W
                                                                                                                                                                  x
                                                                                                                             −
                                                                                                                                                   −
                                                                                                                                    −
                  g t y
                                                                                                                    FIGURE 18               y −x =
FIGURE 17
                                                                                                                                                        y        x
                                                                                                             y −x =                                          (x, y)
                                                                                                                                                        x
                                                                        y                                     x=                            y=±
                                                                                                                                a
                                                        x=a
f (x)
                                                        f (x)
                                                                                                                                                             x
                                                             f (x)                           a                f (x ) ≤ f (x )           x <x                          ≤
                                                                                 <                   a
y y y y
                                                                 x                           x                               x                                x
                                                                                                              a          b
                                                             g                           g                          g     a b                          g u
                                                                                                             u             g                   g
                                                                                                             v yw
                                        FIGURE 19
        •        v                                                                     y                               P = (a, b)
                                                          Q = (−a, b)
        •
                                                                                                              y
                             y
                                                                           y
 −a b                    b                  a b
                                                                       b                   a b
                                                             −a
                                                  x                                              x                               x
     −a                                 a                                              a
                                                      −a −b           −b
            v        u           : f −x = f x                     u            : f −x = −f x                           v
                         y                                             y
                u        y                                    u                g
FIGURE 20
    EXAMPLE 4
  a f (x) = x                                          g(x) = x −                                       h(x) = x + x
                                                         x                                                                    f (x)
                                 |x|
TABLE 3
                             x                                                               y
                                       x +
                                                                                                     f x =
                                                                                                             x +
                         ±
                         ±                                                                                         x
                                                                      −            −
                                                                                       FIGURE 21
8     CHAPTER 1             PRECALCULUS REVIEW
a a a
f (x) = /(x + )
                                                                y                                    u             y                                                     y
                                                                                             u w                                                             u
                                                                                         x                                            x                                               x
                                                  −    −                                         −        −                                   −         −    −
EXAMPLE 6 f (x) = x
y y
                                                                                                               x                                                 x
                                                                −        −                                              −     −
                                                                                 −                                                −
                                                                                         f x =x
                                                  FIGURE 23
                                                                                                                        ( , )                               f (x)
                                                  ( ,− )                                                      g(x) = (x − ) −
                        y                                   a                                a
                               y=f x
                                             x     DEFINITION Scaling
                                                        •           a        a
                                                                             y = kf (x)    k>
                    −                                               k      <k<
                                                            k              k<                                                                       x
                    −                                   •                a a    y = f (kx)   k>
                              y=− f x
                                                                                <k<                                                           k<
FIGURE 24                                                                          y
k=−
                                                                                             S E C T I O N 1.1        Real Numbers, Functions, and Graphs     9
                                                                                                            a
                                                                               |k|
• y = f (x) = (π x) y = f (x)
y y
x x x
                                          −                                         −                                       −
                                                         y                                        y                         −
FIGURE 25                                                y=f x =      πx                                               :                  V               :
  f (x) =    (πx)                                                                             y=f x =            πx                     y= f x =     πx
1.1 SUMMARY
                                                                             a               a≥
                                          •                         |a| =
                                                                             −a              a<
                                          •                             |a + b| ≤ |a| + |b|
                                          •                                      a     b
                                                      c = (a + b)                                     r = (b − a)
                                          •                  d          (x , y )             (x , y )
d= (x − x ) + (y − y )
• r (a, b)
                                                                                        (x − a) + (y − b) = r
                                          •       zero       root                   f (x)                   c                  f (c) =
10   CHAPTER 1           PRECALCULUS REVIEW
                                                                          x=a
                                                                                   f (x   ) < f (x     )       x    <x
                                                                                   f (x   ) ≤ f (x     )       x    <x
                                                        •
                                                                                   f (x   ) > f (x     )       x    <x
                                                                                   f (x   ) ≥ f (x     )       x    <x
                                                        •                       f (−x) = f (x)                                           y
                                                        •                      f (−x) = −f (x)
                                                        •                                                    f (x)
                                                        f (x) + c                                     |c|                          c>                 c<
                                                        f (x + c)                                           |c|                         c<                 c>
                                                        kf (x)                                                        k
                                                                              k<                                       x
                                                        f (kx)                                                             k                 k>
                                                                              k<                                       y
1.1 EXERCISES
Preliminary Questions
                                  a      b                  a<b       |a| > |b|           a ( , )                      (− , )           ( ,− )             (− , − )
                              |a| = a                        |a| = −a
      |−a| = a                                                                        (x − ) + (y − ) =
                                   a         b
|a + b| < |a| + |b|                                                                                                f (x) =
                                                                                          a                                        f
x= y=− f
f (−x) = −f (x)
Exercises
                                                   r                                  In Exercises 13–18, express the set of numbers x satisfying the given
|r − π | <     −                                                                      condition as an interval.
                                                                                              |x| <                                      |x| ≤
                                   a=−             b=
 a a<b                         |a| < |b|                          ab >                        |x − | <                                   |x + | <
In Exercises 9–12, write the inequality in the form a < x < b.                            a a>                                           |a − | <
     |x| <                                       |x −       |<
                                                                                              a−           <                             |a| >
     | x+ |<                                     | x− |<                                      |a − | <                                       ≤a≤
                                                                                                 S E C T I O N 1.1     Real Numbers, Functions, and Graphs     11
         a
         a
                                                                                                          f : {r, s, t, u} → {A, B, C, D, E}
                                   a
 v                                 a                                                              f (r) = A f (s) = B f (t) = B f (u) = E
 v a                                                                                                                                          D
 v       a                                   −                                                            R
                                                                                            D                                            R
                          x
                      x:               <                                               In Exercises 41–48, find the domain and range of the function.
                         x+
                                                                                           f (x) = −x                                    g(t) = t
                     {x : x + x < }                                Hint:       y=x +                                                            √
 x−                                                                                        f (x) = x                                     g(t) =   −t
                     r = .                          Hint:          r −r                              y                           y
                      r = .            ...
                       /           /                                                                                                                       x
                                                                                                                      x
                     If the decimal expansions of numbers a and b agree
to k places, then |a − b| ≤ −k
   k                      a     b                          do not agree
at all    |a − b| ≤ −k                                                                                        y                      y
                                                                                                                      x                                    x
 a ( , )              ( , )                               ( , )        ( , )
         ( , )        (− , )                              (− , − )         (− , )
                                                              ( , )                                                  FIGURE 26
 a                     r=
                                   ( ,− )
                                                                                        a f (x) = x                                  g(t) = t − t
                                                                                           F (t) =
                           ( , )                                                                     t +t