0% found this document useful (0 votes)
59 views27 pages

28 Jul 22 Morning

The document contains the question paper for the JEE Main July 2022 exam held on 28 July for Shift 1. It contains 6 multiple choice questions related to mathematics. The questions cover topics like differential equations, inverse trigonometric functions, vectors, mathematical reasoning, etc. Detailed step-by-step solutions are provided for each question. The document aims to help students understand the type of questions asked in JEE Main and learn the concepts and methods to solve such problems.

Uploaded by

anujku9245
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
59 views27 pages

28 Jul 22 Morning

The document contains the question paper for the JEE Main July 2022 exam held on 28 July for Shift 1. It contains 6 multiple choice questions related to mathematics. The questions cover topics like differential equations, inverse trigonometric functions, vectors, mathematical reasoning, etc. Detailed step-by-step solutions are provided for each question. The document aims to help students understand the type of questions asked in JEE Main and learn the concepts and methods to solve such problems.

Uploaded by

anujku9245
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 27

JEE Main July 2022

Question Paper With Text Solution


28 July | Shift-1

MATHEMATICS

MATRIX

JEE Main & Advanced | XI-XII Foundation| VI-X Pre-Foundation

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911


Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
JEE MAIN JULY 2022 | 28TH JULY SHIFT-1
SECTION – A
Question ID : 100601
Differential Equation

1. Let the solution curve of the differential equation xdy   


x 2  y 2  y dx , x > 0, intersect the line
x = 1 at y = 0 and the line x = 2 at y = . Then the value of  is :

ekuk vody lehdj.k xdy   


x 2  y 2  y dx , x > 0 dk gy oØ] js[kk
x = 1 dksy = 0 ij rFkk js[kk

x = 2 dksy = ij dkVrk gSA rks


 dk eku gS:
1 3 3 5
(1) (2) (3)  (4)
2 2 2 2
Ans. Official Answer NTA (2)

Sol. xdy   x 2  y 2  y dx


xdy  ydx  x 2  y 2 dx

xdy  ydx y 2 dx
 1  .
x2 x2 x

dy / x dx

y
2 x
1  
x

y 2 
 y
ln     1   ln x  R
x x 
 

y  y2  x 2
 cx
x

y  y 2  x 2  cx 2
x =1, y = 0  0 +1 = C  C = 1
Curve is y  x 2  y 2  x 2
x = 2, y = 
2  4  2  4

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 2
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
4   2  16   2  8
3

2
Question ID : 100602
ITF
2. Considering only the principal values of the inverse trigonometric functions, the domain of the function

 x 2  4x  2 
f  x   cos 1  2  is :
 x 3 

 x 2  4x  2 
izfrykse f=kdks.kferh; Qyu ds dsoy eq[; eku ysrs gq,]
f  Qyu
x   cos 1  2  dk izkar:gS
 x 3 

 1  1  1
(1)  ,  (2)   ,   (3)   1 ,   (4)  , 
 4  4   3   3
Ans. Official Answer NTA (2)

x 2  4x  2
Sol. 1
x2  3
2 2
  x 2  4x  2    x 2  3
2 2
  x 2  4x  2    x 2  3  0

  2x 2  4x  5   4x  1  0

1
 4x  1  0  x  
4
Question ID : 100603
Vectors
  
3. Let the vectors a  1  t  ˆi  1  t  ˆj  kˆ , b  1  t  ˆi  1  t  ˆj  2kˆ and c  tiˆ  tjˆ  kˆ , t  R be such that
   
for , ,   R, a   b  c  0        0 . Then, the set of all values of t is :
(1) a non-empty finite set (2) equal to N
(3) equal to R – {0} (4) equal to R
 
ekuk lfn'k a  1  t  ˆi  1  t  ˆj  kˆ , b  1  t  ˆi  1  t  ˆj  2kˆ rFkkc  tiˆ  tjˆ  kˆ , t  R bl izdkj gS fd
   
, ,   R, ds fy, a   b  c  0        0 rkst ds lHkh ekuksa dk leqPp; : gS
(1) ,d vfjDr ifjfer leqPp; gS (2) N ds cjkcj gS

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 3
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
(3) R – {0} ds cjkcj gS (4) R ds cjkcj gS
Ans. Official Answer NTA (3)
Sol. By its given condition
  
: a, b, c are linearly independent vectors

 a b c   0 ....(i)

Now, a b c 

1 t 1 t 1
 1 t 1 t 2
t t 1

C2  C1  C2

1 t 2 1
1 t 2 2
t 0 1

1 t 2 1
 2 1 t 2 2
t 0 1

 2 1  t   1  t   t 

 2 3t   6t

a b c   0  t  0
 
Question ID : 100604
ITF
4. Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation
cos–1(x) – 2sin–1(x) = cos–1(2x) is equal to :
izfrykse f=kdks.kferh; Qyu ds eq[; eku ysrs gq, lehdj.k
cos–1(x) – 2sin–1(x) = cos–1(2x) ds lHkh gyksa dk
;ksx gS
:
1 1
(1) 0 (2) 1 (3) (4) 
2 2
Ans. Official Answer NTA (1)

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 4
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
Sol. 1 1
cos x  2 sin x  cos 2x 1

 
cos 1 x  2   cos 1 x   cos 1 2x
2 
cos 1 x    2 cos 1 x  cos 1 2x
3cos 2 x    cos 1 2x ....(1)
cos  3cos 1 x   cos    cos 1 2x 

4x 3  3x  2x
1
4x 3  x  x  0, 
2
All satisfy the original equation
1 1
sum   to   0
2 2
Question ID : 100605
Mathematical Reasoning
5. Let the operations *,  {, }. If (p * q) (p ~q) is a tautology, then the ordered pair (*, ) is :
ekuk *,  {, } gSA ;fn(p * q) (p ~q) ,d iqu#fDr gS] rks Øfer ;qXe
(*, ) gS:
(1) (, ) (2) (, ) (3) (, ) (4) (, )
Ans. Official Answer NTA (2)
Sol. Well check each option
For A  = v of 0 = A
 pvq    pv  q 
 pv  q   q 

 pv  c   p
For B : * = v, O = v
 pvq    pv  q   t using Venn Diagrams

Question ID : 100606
Vectors

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 5
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
 
6. Let a vector a has magnitude 9. Let a vector b be such that for every (x, y)  R × R – {(0, 0)}, the vector
     
   
xa  yb is perpendicular to the vector 6ya  18xb . Then the value of a  b is equal to :

ekuk ,d lfn'k a dk ifjek.k9 gSA ekuk ,d lfn'kb bl izdkj gS fd izR;sd(x, y)  R × R – {(0, 0)} ds
     
  
fy,] lfn'k xa  yb , lfn'k 6ya  18xb ds yacor gSA rks  a  b dk eku cjkcj gS:

(1) 9 3 (2) 27 3 (3) 9 (4) 81


Ans. Official Answer NTA (2)
    
Sol.  
| a | 9 & xa  yb . 6ya  18xb  0 
 6xy | a | 18x  a.b   6y  a.b   18xy | b |  0
2 2 2 2

 6xy | a | 3 | b |    a.b   y  3x   0
2 2 2 2

This should hold x, y  R  R

 
 | a |2  3 | b |2 & a.b  0
2 2
Now a  b | a |2 | b |2  a.b  
| a |2
 a.
3
| a |2 81
 | a  b |   27 3
3 3
Question ID : 100607
Circle
7. For t  (0, 2), if ABC is an equilateral triangle with vertices A(sin t, – cot t), B(cos t, sin t) and C(a, b) such
1
that its orthocentre lies on a circle with centre 1,  , then (a2 – b2) is equal to :
 3
t  (0, 2) ds fy,] ;fn 'kh"kksZa
A(sin t, – cot t), B(cos t, sin t) rFkk
C(a, b) ds ,d leckgq f=kHkqt
ABC dk yac
 1  gS
dsUnz] ,d o`Ùk ftldk dsUnz
1,  , ij fLFkr gS] rks
(a2 – b2) cjkcj gS:
 3
3 77 80
(1) (2) 8 (3) (4)
8 9 9
Ans. Official Answer NTA (2)
Sol. s  sin t,c  cos t
Let orthocentre be (h,k)
Since it if an equilateral triangle hence orthocentre coincides with centroid.
MATRIX JEE ACADEMY
Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 6
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
 a + s + c = 3h, b + s – c = 3k
2 2 2 2
  3h  a    3k  b    s  c    s  c   2  s 2  c 2   2
2 2
 a  b 2
h   K    ,
 3  3 9

a b
circle centre at  , 
3 3
a b 1
Gioves,  1,   a  3, b  1
3 3 3
 a 2  b2  8
Question ID : 100608
Set & Relations
8. For  N, consider a relation R on N given by R = {(x, y) : 3x + y is a multiple of 7}. The relation R is an
equivalence relation if and only if :
(1)  = 14
(2)  is a multiple of 4
(3) 4 is the remainder when  is divided by 10
(4) 4 is the remainder wehn  is devided by 7
 N ds fy, , N ij ,d laca/k R,R = {(x, y) : 3x + y, 7 dk ,d xq.kt gS} }kjk fn;k x;k gSA laca/k
R ,d
rqY;rk laca/k gS ;fn vkSj dsoy: ;fn
(1)  = 14 gS
(2) , 4 dk ,d xq.kt gS
(3)  dks10 ls foHkkftr djus ij 'ks"kQy
4 gS
(4)  dks7 ls foHkkftr djus ij 'ks"kQy4gS
gS
Ans. Official Answer NTA (4)
Sol. For R to be reflexive  x R x
 3x +  x = 7x  (3 + ) x = 7K
 3 +  = 7  = 7 – 3 = 7N + 4, K,,N  I
 when  divided by 7, remainder is 4.
R to be symmetric xRy  yRx
3x + y = 7N1, 3y + x = 7N2
 (3 + ) (x + y) = 7 (N1 + N2) = 7N3
Which holds when 3 +  is multiple of 7

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 7
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
  = 7N + 4 (as did earlier)
R to be transitive
xRy&yRz  xRz .
3x + y = 7N1 & 3y + z = 7N2 and
3x + z = 7N3
 3x + 7N2 – 3y = 7N3
 7N1 - y + 7N2 –3y = 7N3
 7 (N1 + N2) – (3 + y = 7N3
 (3 + ) y = 7N
Which is true again when 3 +  divisible by 7, i.e.
when  divided by 7, remainder is 4.
Question ID : 100609
Probability
9. Out of 60% female and 40% male candidates appearing in an exam, 60% candidates qualify it. The number of
females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the
qualified candidates. The probability, that the chosen candidate is a female, is :
60% efgyk rFkk
40% iq#"k vH;kfFkZ;kas }kjk nh xbZ ,d60%
ijh{kk
vH;FkhZ
esa lQy gksrs gSaA ijh{kk esa l
gksus okyh efgykvksa dh la[;k] ijh{kk esa lQy gksus okys iq:"kksa dh la[;k dh nks xquk gSA lQ
,d vH;kFkhZ ;kn`PN;k pquk tkrk gSA pqus x, vH;kFkhZ ds efgyk gksus : dh izkf;drk gS
3 11 23 13
(1) (2) (3) (4)
4 16 32 16
Ans. Official Answer NTA (1)

Sol.

40 2
Probability that chosen candidate is female  
60 3
Question ID : 100610
Differential Equation

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 8
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
10. If y = y(x), x  (0, /2) be the solution curve of the differential equation
dy  
 sin 2
2x 
dx
  8sin 2 2x  2sin 4x  y  2e 4x  2 sin 2x  cos 2x  , with y    e  , then y   is equal
4 6
to :
dy
;fn vody lehdj.k  sin 2
2x    8sin 2 2x  2sin 4x  y  2e 4x  2 sin 2x  cos 2x  , x  (0, /2)
dx
 
y    e  dk gy oØ y = y(x) gS
, rksy   cjkjcj gS:
4 6
2 2  /3 2 2  /3 1 2  /3 1 2  /3
(1) e (2) e (3) e (4) e
3 3 3 3
Ans. Official Answer NTA (1)
Sol. Given differential equation can be re-written as
dy 2e 4x
  8  4 cot 2x  y   2 sin x  cos 2x 
dx sin 2 2x
which is a linear diff. equation.
I.f .  e 8 4cot 2x dx  e8x  2Cu sin 2x 
 e8x .sin 2 2x
 solution is
y  e8x .sin 2 2x    2e 4x  2sin 2x  cos 2x  dx  C

 e 4x .sin 2x  C
   
Given y    e  C  0
4
e4x
y 
sin 2x

4.
 e 6 2  23
y    e
 6  sin  2.   3
 
 6
Question ID : 100611
Parabola
11. If the tangents drawn at the points P and Q on the parabola y2 = 2x – 3 intersect at the point R(0, 1), then the
orthocentre of the triangle PQR is :

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 9
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
;fn ijoy; y2 = 2x – 3 ds fcUnqvksa
P rFkk
Q ij [khaph xbZ Li'kZ js[kk,sa
R(0,fcUnq
1), ij feyrh gSaA rks f=kHkqt
PQR dk yac dsUnz: gS
(1) (0, 1) (2) (2, –1) (3) (6, 3) (4) (2, 1)
Ans. Official Answer NTA (2)
Sol. y2 = 2x – 3 …(1)
Equation of chord of contact
PQ : r = 0
yx1 = (x + 0) – 3
y=x–3 ....(2)

from (1) and (2)


(x . 3)2 = 2x – 3
x2 – 8x +12 = 0
(x – 2)(x – 6) = 0
x = 2or 6
y = –1or 3

1
MPQ  1
4
2 1
MQR  
6 3
2 1
MPR  
6 3
2
MPR   1
2

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 10
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
MPQ  MPR    PQ  PR
Orthocentre = P (2, –1)
Question ID : 100612
Circle
11
12. Let C be the centre of the circle x2 + y2 – x + 2y = and P be a point on the circle. A line passes through the
4

point C, makes an angle of with the line CP and intersects the circle at the points Q and R. Then the area of
4
the triangle PQR (in unit2) is :
11
ekuk o`Ùk
x2 + y2 – x + 2y = dks dsUnz
C gS rFkk o`Ùk ij ,d fcUnq
P gSA ,d js[kk] fcUnq
C ls gksdj tkrh gS]
4

js[kkCP ls  dks dks.k cukrh gS rFkk o`Ùk dks


Q rFkk
fcUnqvksa
R ij dkVrh gSA rks f=kHkqt
PQR dk {ks=kQy
(oxZ
4
bdkbZ)esa
gS:
 
(1) 2 (2) 2 2 (3) 8sin   (4) 8 cos  
8 8
Ans. Official Answer NTA (2)
11
Sol. x 2  y 2  x  2y 
4
2
 1 2 2
 x     y  1   2 
 2
Or  PQR
1
PR  QK sin 2 
3


 4.6 sin
8

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 11
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
1
PQ  QR cos 22
2

 4 cos
8
1
As PQR  PR  PQ
2
1   
  42 sin   4 cos 
2 6  8
 4
 4sin  2 2
4 2
Question ID : 100613
Binomial Theorem
13. The remainder when 72022 + 32022 is divided by 5 is :
72022 + 32022 dks6 ls foHkkftr djus ij 'ks"kQy :gS
(1) 0 (2) 2 (3) 3 (4) 4
Ans. Official Answer NTA (3)
Sol. 72022 + 32022
= (49)1011 + (9)1011
= (50 – 1)1011 + (10 – 1)1011
= 5 –1+ 5K –1
= 5m – 2
Remainder = 5 – 2 = 3
Question ID : 100614
Matrices

0 1 0 
14. Let the matrix A  0 0 1  and the matrix B0 = A49 + 2A98. If Bn = Adj(Bn–1) for all n  1, then det(B4) is
 
1 0 0 
equal to :

0 1 0 
A  0 0 1  rFkk vkO;wg
ekuk vkO;wg B0 = A49 + 2A98 gSaA ;fn lHkh
n  1 ds fy, Bn = Adj(Bn–1) gS] rks
1 0 0 

det(B4) cjkcj gS:


(1) 328 (2) 330 (3) 332 (4) 336

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 12
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1

Ans. Official Answer NTA (3)

0 1 0  0 1 0
A  0 0 1 0 0 1
2
Sol.
1 0 0  1 0 0

0 0 1
 1 0 0
0 1 0

a  R2

1 0 0
 0 0 1
0 1 0

R2  R3

1 0 0 
0 1 0   I
 
0 0 1
B0 = A49 + 2A98
= A+ 2I
Bn = Adj (Bn – 1)
B4 = Adj(Adj(Adj(AdjB0))
4
| B0 |
n 1

| B0 |16

0 1 0  2 0 0
B0  0 0 1   0 2 0
1 0 0 0 0 2

2 1 0
 0 2 1 
1 0 2 
= 2(4 – 0) –1(0 – 1)
=9
B4 (9)16 = (3)32

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 13
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
Question ID : 100615
Complex number
1
15. Let S1   z1  C : z1  3   and S2  z 2  C : z 2  z 2  1  z 2  z 2  1 . Then, for z1  S 1 and
 
 2
z2  S2, the least value of |z2 – z1| is :

ekukS1  z1  C : z1  3  1  rFkkS2  z 2  C : z 2  z 2  1  z 2  z 2  1  gSaA rks


z 1  S 1 rFkk
 2
z2  S2 ds fy, |z2 – z1| dk fuEure eku gS
:
1 3 5
(1) 0 (2) (3) (4)
2 2 2
Ans. Official Answer NTA (3)
2 2
Sol. z2  z2  1  z2  z2  1

 
 z 2  z 2  1 z 2  z 2  1   z 2  z 2  1  z 2   z 2  1  
 
 z 2 z 2  122  1  z 2  z 2  1  z 2  z 2  1  z 2  1 
2 2
 z2  1  z2  1

 z
 z2  z2
 2 
 1    z 2  1  2 z 2  z 2 
 z  z  z
2 2 2 1  z2  1  2  0

 z 2  z 2  0 or z 2  1  z 2  1  2  0
 z2 lie on imaginary axis. Or on real axis within [–1, 1]
1 1
Also z1  3  lie on circle having centre 3 and radius .
2 2

5 3
Clearly |z1 – z2| min  1 
2 2
Question ID : 100616

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 14
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
3D Geometry
16. The foot of the perpendicular from a point on the circle x2 + y2 = 1, z = 0 to the plane 2x + 3y + z = 6 lies on
which one of the following curves?
o`Ùk
x2 + y2 = 1, z = 0 ds ,d fcUnq ls lery 2x + 3y + z = 6 ij Mkys x, yac dk ikn fuEu esa ls fdl oØ
ij gS ?
(1) (6x + 5y – 12)2 + 4(3x + 7y – 8)2 = 1, z = 6 – 2x – 3y
(2) (5x + 6y – 12)2 + 4(3x + 5y – 9)2 = 1, z = 6 – 2x – 3y
(3) (6x + 5y – 14)2 + 9(3x + 5y – 7)2 = 1, z = 6 – 2x – 3y
(4) (5x + 6y – 14)2 + 9(3x + 7y – 8)2 = 1, z = 6 – 2x – 3y
Ans. Official Answer NTA (2)

Sol.

h  cos  k  sin  w  0
 
2 3 1
1 2 cos   3sin   6 

14
2  2 cos   3sin   6 
h  cos
14
10 cos   6sin   12

14
3
k  sin    2 cos   3sin   6 
14
5sin   6 cos   18
k
14
Elementaary sin  and cos 
2 2
 5h  6k  12   4  3h  5k  9   1
Question ID : 100617
Sequence & progression
5x 2 
17. If the minimum value of f  x    5 , x > 0, is 14, then the value of  is equal to :
2 x

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 15
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
5x 2 
;fn f  x    5 , x > 0, dk fuEure eku14 gS] rks
 dk eku cjkcj gS:
2 x
(1) 32 (2) 64 (3) 128 (4) 256
Ans. Official Answer NTA (3)
x2 x2 x2 x2 x2  
Sol.      5 5
2 2 2 2 2 2x 2x
1
 2  7
 7 7 
2 
2/7
7.   
 14
2
(2)1/7 = 22
(22)7/2 = 27
 = 128
Question ID : 100618
Sequence & progression
18. Let ,  and  be three positive real numbers. Let f(x) = x5 + x3 + x, x  R and g : R  R be such that
g(f(x)) = x for all x  R. If a1, a2, a3, ......, an be in arithmetic progression with mean zero, then the value of

 1 n 
f  g   f  a i    is equal to :
  n i 1 
ekuk,  rFkkrhu /kukRed okLrfod la[;k,sa gSA ekuk
f(x) = x5 + x3 + x, x  R rFkkg : R  R bl izdkj
gSa fd lHkh
x  R ds fy, g(f(x)) = x gSA ;fna1, a2, a3, ......, an ,d lekarj Js<+h esa esa gS] ftudk

 1 n 
ek/; 'kwU; gS]frks
g  f  a i    dk eku cjkcj gS:
  n i 1 
(1) 0 (2) 3 (3) 9 (4) 27
Ans. Official Answer NTA (1)
Sol. Consider a case when  =  = 0 then
f(x) = yx
x
gx 
y
1 n y
 f  a i    a1  a 2  .....  a n 
n i 1 n
=0

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 16
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
 f  g  0   f  0
0
Question ID : 100619
Binomial Theorem
2
19. Consider the sequence a1, a2, a3, ..... such that a1 = 1, a2 = 2 and a n  2   a n for n = 1, 2, 3, ....... . If
a n 1

 1  1  1   1 
 a1  a   a2  a   a3  a   a 30  a 
 2
 . 3
 . 4
 ....  31
  2  61 C31  , then  is equal to :
 a3   a4   a5   a 32 
     
     

2
vuqØea1, a2, a3, ..... dk fopkj dhft, ftlds fy, a1 = 1, a2 = 2 rFkka n  2   a n , n = 1, 2, 3, .......
a n 1

 1  1  1   1 
 a1  a   a2  a   a3  a   a 30  a 
gSaA ;fn 2
 . 3
 . 4
 ....  31
  2  61 C31  gS
, rks cjkcj gS:
 a3   a4   a5   a 32 
     
     

(1) –30 (2) –31 (3) –60 (4) –61


Ans. Official Answer NTA (3)
Sol. an+2 an+1 – an+1 – an = 2
Series will satisfy
a1a2, a2a3, a3a4, a4a5
1.2 2.2 2.3 2.4
1 1
an  a n 2 
a n 1 a n 1

a n2 a n2

1
 1
a n 1a n  2

1
 1
2  r  1

2r  1

2  r  1
now proof is given by

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 17
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1


30  2r  1
r 1 2  r  1


1.3.5.......61
230.  2.3......31


1.3.5.......61  230  30
31.230 230  30
61
 60
2 31. 30
 = –60
Question ID : 100620
Differential Equation
x
20. The minimum value of the twice differentiable function f  x    e x  t f '  t  dt   x 2  x  1 e x , x  R, is:
0

x
nks ckj vodyuh; Qyu f  x    e x  t f '  t  dt   x 2  x  1 e x , x  R dk fuEure eku gS
:
0

2 2
(1)  (2) 2 e (3)  e (4)
e e
Ans. Official Answer NTA (1)
x
f ' t 
Sol. f  x   ex .  t
dt
0 e

x
f ' t  f ' x 
f '  x   ex .  t
dt  e x . x
0 e e
  2x  1 .e x   x 2  x  1 .e x 
x
f ' t 
 t
dt  x 2  x
0 e

f ' x 
 2x  1
ex
f '  x    2x  1 .e x
1
f ' x  0  x  
2
f  x    2x  1 .e x  2ex  C

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 18
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
f  0   1
–1 = 1 – 2 + C
C=0
f(x) = ex (2x – 1)
 1  2
f   
 2 e
SECTION – B
Question ID : 100621
P&C
21. Let S be the set of all passwords which are six to eight characters long, where each character is either an
alphabet from {A, B, C, D, E} or a number from {1, 2, 3, 4, 5} with the repetition of characters allowed. If the
number of passwords in S whose at least one character is number from {1, 2, 3, 4, 5} is  × 56, then  is equal
to ___________.
ekuk N% ls vkB fpUg yacs lHkh ladsr&'kCnksa
{A, B, C, D, E} ls ,d v{kj ;k {1, 2, 3, 4, 5} ls ,d vad gS
rFkk ftuesa fpUgksa dh iqujko`fÙk dh vuqefr gS]
S gSS
dk leqPPk;
;fn
S esa mu ladsr&'kCnksa] ftudk de ls de
,d fpUg {1, 2, 3, 4, 5} esa ls ,d vad gS] fd la[;k
 × 56 gS
, rks cjkcj gS_________A
Ans. Official Answer NTA (7073)
Sol. Required no. = Total – no character from {1, 2, 3, 4, 5}
= (106 – 56) + (107 – 57) + (108 – 58)
= 106 (1 + 10 + 100) – 56 (1 + 5 + 25)
= 106 × 111 – 56 × 31
= 26 × 56 × 111 – 56 × 31
= 56 (26 × 111 – 31)
 56  7073

 = 7073
Question ID : 100622
3D Geometry
 56 43 111 
22. Let P(–2, –1, 1) and Q  , ,  be the vertices of the rhombus PRQS. If the direction ratios of the
 17 17 17 
diagnonal RS are , –1, , where both  and  are integers of minimum absolute values, then 2 + 2 is equal
to ___________.
56 43 111 
ekukP(–2, –1, 1) rFkkQ  , ,  ,d leprqHkqZt
PRQS ds 'kh"kZ gSaA ;fnRS
fod.kZ
dsfnd~~&vuqikr
 17 17 17 

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 19
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
, –1, gSa] tgk¡
 rFkk nksuksa fuEure fujis{k eku ds iw.kkZad
2 + 2gSa]
cjkcjrks
gS_________A
Ans. Official Answer NTA (450)
Sol. RS   , 1,  

56 43 111 
DR of PQ    2,  1,  1
 17 17 17 
 90 60 94 
 , , 
 17 17 17 
90 60 94
   1    0
17 17 17
90 + 94 = 60
60  90

94
30  2  3 

94

  30
 3  2 
94
 3  2
 
15 47
   15,   15
 2  2  225  225
= 450
Question ID : 100623
Monotonocity
23. Let f : [0, 1]  R be a twice differentiable function in (0, 1) such that f(0) = 3 and f(1) = 5. If the line
y = 2x + 3 intersects the graph of f at only two distinct points in (0, 1), then the least number of points x  (0,
1), at which f ''  x   0 , is ___________.
ekukf : [0, 1]  R, varjky (0, 1) esa nks ckj vodyuh; gS rFkk
f(0) = 3 gSaA ;fn js[kk
f(1) = 5 gSaA ;fn js[kk
y = 2x + 3, f ds xzkQ dks
(0, 1) esa dsoy nks fHkUUk fcUnqvksa ij dkVrh
xgS]
(0,rks
1) dh
fcUnqvksa
U;wure la[;k]
ftu ij f ''  x   0 gS
, gS
__________A
Ans. Official Answer NTA (2)

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 20
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1

Sol.

f ' (a) = f ' (b) = f ' (c) = 2


 f '' (x) is zero
for atleast x1  (a, b) & x2  (b, c)
Question ID : 100624
Definite Integration
3
15x 3
24. If  dx   2   3 , where ,  are integers, then  +  is equal to ___________.
2 3
0 2
1 x  1  x 
3
15x 3
;fn  dx   2   3 gS
, tgk¡ ,  iw.kkZad gS]
 + rks
 cjkcj________A
2 3
0
1 x  2
1  x 
Ans. Official Answer NTA (10)
Sol. Put 1 + x2 = t2
2x dx = 2t dt
X dx = t dt
2 15  t 2  1 t dt

1
t 2  t3
2 t  t 2  1
15  dt
t 1 t
1

Put 1 + t= u2
dt = 2u du
3
15   u 4  2u 2  du
2

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 21
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
3
 u 5 2u 3 
30   
 5 3  2

1
30 
5
 5
3  2
5
  52  3

3 
3  2 

1 2 

30  9 3  4 2  3 3  2 2 
5 3 
  
 1 8 
30    3  2
 5 15 
6 3  16 2   2   3
  16,   6
    10
Question ID : 100625
Matrices
1 1  1 
25. Let A    and B    , ,   R. Let  1 be the value of  which satisfies
2    1 0 
2 2 2
 A  B  A2    and 2 be the value of  which satisfies (A + B)2 = B2. Then |1 – 2| is equal to
2 2
___________.

1 1  1  2 2 2
ekukA    rFkkB  1 0  , ,  R gSaA ekuk
 A  B  A2    dks larq"V djus okyk
2     2 2
 dk eku  gS rFkk
(A + B)2 = B2 dks larq"V djus okyk
 dk eku gSaA |rks
1
– 2| cjkcj gS_______A
Ans. Official Answer NTA (2)
  1 0 
Sol. AB  
 3 

2   1 0    1 0 
 A  B   
 3   3 

   1 2 0 
 
3    1  3  2 

1  1  1  1 
A2    
2   2 

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 22
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1

 1 1   
 2 
 2  2   2 
2
 1    1     1 0 
  
 2  4  2  3      1  2 
 = 1 = 1
 1  1
B2    
1 0  1 0 
2
2  1     1 0 
    
 1  3    1  3  2 

   0,   1   2
1   2  1   1  2
Question ID : 100626
Sequence & progression
26. For p, q  R, consider the real valued function f(x) = (x – p)2 – q, x  R and q > 0. Let a1, a2, a3 and a4 be in
an arithmetic progression with mean p and positive common difference. If |f(ai)| = 500 for all
i = 1, 2, 3, 4 then the absolute difference between the roots of f(x) = 0 is ___________.
p, q  R, q > 0, ds fy, okLrfod eku Qyu f(x) = (x – p)2 – q, x  R dk fopkj dhft,A ekuka1, a2, a3 rFkk
a4 ,d /kukRed lkoZ varj dh lekarj Js<+h esa gS rFkk budk
p gSA
ek/;;fni = 1, 2, 3, 4 ds fy,
|f(ai)| = 500 gS] rks
f(x) = 0 ds ewyksa dk fujis{k varj gS A
___________
Ans. Official Answer NTA (50)
Sol. f(x) = 0  (x – p)2 – q = 0.
Roots are p  q, p  q absolute difference between roots 2 q .
Now, |f (ai)| = 500
Let a1, a2, a3, a4 are a1 a + d, a + 2d, a + 3d
|f(a4)| = 500
|(a1 – p)2 – q| = 500
 (a1 – p)2 – q = 500
9 2
 d  q  500 ........(1)
4
and |f(a1)|2 = |f(a2)|2
((a1 - p)2 - q)2 = ((a2 - p)2 – q)2

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 23
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
 ((a1 - p) – (a2 - p) ) ((a1 - p) – q + (a2 - p)2 - q) = 0
2 2 2

9 d2
 d2  q   q  0
4 4
10d 2 5d 2
2q  q
4 4
4q
 d2 
5
9 4.q
From equation (1) .  q  500
4 5
4q
 500
5
50
and 2 q  2   50
2
Question ID : 100627
Hyperbola
x 2 y2
27. For the hyperbola H : x2 – y2 = 1 and the ellipse E :   1 , a > b > 0, let the
a 2 b2
x 2 y2
vfrijoy; H : x2 – y2 = 1 rFkk nh?kZo`Ùk E : 2  2  1 , a > b > 0 ds fy,] ekuk
a b
(1) eccentricity of E be reciprocal of the eccentricity of H, and
E dh mRdsUnzrk] H dh mRdsUnzrk dh O;qRØe.kh; gSa] rFkk

5
(2) the line y  x  K be a common tangent of E and H.
2

5
js[kky  x  K , E rFkkH dh ,d mHk;fu"B Li'kZ js[kk gSA
2
Then 4(a2 + b2) is equal to ___________.
rks4(a2 + b2) cjkcj gS___________.
Ans. Official Answer NTA (3)

b2
Sol. eE  1  ,e H  2
a2
1
If  eE 
eH

a 2  b2 1
 
a2 2
MATRIX JEE ACADEMY
Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 24
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
2a2–2b = a2
a2 = 2b2
5
and y  x  k is tangent to ellipse then
2
5 3
K 2  a 2   b2 
2 2
3 1 1
6b 2   b 2  and a 2 
2 4 2
 4.  a 2  b 2   3
Question ID : 100628
Statistics
1
28. Let x1, x2, x3, ......., x20 be in geometric progression with x1 = 3 and the common ratio . A new data is
2
constructed replacing each xi by (xi – i)2. If x is the mean of new data, then the greatest integer less than or
equal x to is ___________.
1
ekukx1 = 3, x2, x3, ......., x20 ,d xq.kksÙkj Js<+h esa gSa] ftldk lkoZgSA
vuqikr
izR;sd
xi dh txg (xi – i)2.
2
ysdj u;s vk¡dM+s cuk, tkrs gSaA ;fn u;s vk¡dM+s
x gS
dk rks
ek/;egÙke iw.kkZad
 x gS
_________A
Ans. Official Answer NTA (142)
20
  1 
3 1    
 2   1 
Sol. x10    6 1  20 
1  2 
1
2
20
2
   x i 1 
i 1

20
2
   x i    i   2x i i
i 1

20
  1 
9 1    
20
 4   1 
 
2
Now    x i   12 1  40 
i 1 1  2 
1
4
20 1
 i 2   20  21  41  2870
i 1 6

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 25
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
20 1 1 1
 x i i  s  3  2.3  3.3 2  4.3 3  ......AGP
i 1 2 2 2
 22 
 6   20 
 2 

12  22 
12  40
 2870  12  2  20 
2  2 
x
20
2858  12 22  1
x   
20  240 220  20

 x   142
 
Question ID : 100629
Limits
100
  x  2 cos x 3  2  x  2 cos x  2  3sin  x  2 cos x   x
29. lim  3 2
 is equal to ___________.
x 0  
  x  2   2  x  2   3sin  x  2  
100
  x  2 cos x 3  2  x  2 cos x  2  3sin  x  2 cos x   x
cjkcj gS
__________A
lim  3 2

x 0  
  x  2   2  x  2   3sin  x  2  
Ans. Official Answer NTA (1)
x
  x  2 cos x 3  2  x  2 cos x  2  3sin  x  2 cos x  
Sol. lim  3 2

x 10  
  x  2   2  x  2   3sin  x  2  
Form 1
  x  2cos x 3  2 x  2cos x 2  3sin  x  2cos x    100
lim   1
x 0 
  x  23  2 x  22 3sin  x  2   x
 
e


 x  2cos x 3  2 x  2cos x 2  3sin  x  2cos x    x  2 3  2 x  2 2  3sin  x  2 
100  
lim 
 
 
x 0 x
   x  2 3  2 x  22  3sin  x  2  
  
e
3 3 2 2
100   x  2cos x    x  2   2 x  2cos x   2 x  2   3sin  x  2cos x  3sin  x  2   
lim
x 0 x  8 8  3sin 2 
 
e
2 2
100 3 x  2cos x  1 2sin x  3 x  2   4 x  2cos x 
lim
16  3sin 2 x0 x 1 2sin x  4 x  2 3cos x  2cos x 1 2sin x 3cos x  2 
e
100  12 3 4  818  3cos 2 3cos 2 
 
16  3sin 2  1 
e
Using L'H rule.
MATRIX JEE ACADEMY
Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 26
Question Paper With Text Solution (Mathematics)
JEE Main July 2022 | 28 July Shift-1
= eº = 1
Question ID : 100630
Quadratic Equation
3x 2  9x  17 5x 2  7x  19
30. The sum of all real value of x for which  is equal to ___________.
x 2  3x  10 3x 2  5x  12
3x 2  9x  17 5x 2  7x  19
x ds lHkh ekuksa] ftlds fy,2  gS] dk ;ksx cjkcj __________
gS A
x  3x  10 3x 2  5x  12
Ans. Official Answer NTA (6)
3x 2  9x  17 5x 2  7x  19
Sol. 
x 2  3x  10 3x 2  5x  12
x 2  3x  10  2x 2  12x  7 3x 2  5x  12  2x 2  12x  7

x 2  3x  10 3x 2  5x  12
2x 2  12x  7 2x 2  12x  7
1  1 
x 2  3x  10 3x 2  5x  12
 1 1 
 2x  12x  7   2
2
 2 0
 x  3x  10 3x  5x  12 
2x2 – 12x + 7 = 0 OR 3x2 + 5x + 12 = x2 + 3x +10
12  D
x 2x2 + 2x + 2 = 0
4
x2 + x +1= 0
Sum or Roots = 6 No solution.

MATRIX JEE ACADEMY


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
Page No. 27

You might also like