Q. No. O.
No
QNO.
|ae-Hrvahesnu
302 -
YUce
Decisio SGene.
cdars SMeA
t).te short noles
) Tm povtane Deision
deision
Siente 2 9ole
tgaantitahe
techngue io nating
Importane Deciion Sientes :
a) Holistic De istor - TMaking
Decision Sdences înuolue th
înkgrafoo Uantous diaiplines includng mathearae,
Ostatbtics
economics,
and opexatfon, geseaNch,
-to
Support Compxehensîve dectston. making
b) Data -
DscueoDecision biq data,
Mabn
Decisfon Sences emphasi the Use data and
anaytics to akeiofornedand eviece
mak based
Seistons, to beller outcomes
leadiog
optiníz at on, Resoces
Deisior Sdences
help orgaiates,
opimiaa 90S0sces allocati budget and
fhecanty
enhance oUexal ograti onal tfeakienss
Q. Q. No
No.
(2
r
Q.No.
139/6
a)Risk Managem ent 3
Deis?oo Siencesplag Gucial
Plag
and ishs
by prooting toos and modute to evalut
Cho
pokntial oakcones and unedaioiesn
Shakgfc plannig
postdng fnsigbts into mathet
pannig
ound
b
O compeitoy añatyts and long
texro
Korecastirg aiding o7gans aions
ahoR in
Role d Quanlitafue
Quantitatiue Techniges
io Deci sion
Mangt
iDala Analysis 5
CQuantitaiue technizucsSuch
8tefis ical sis, alloo
analy sis orfanisation
dataet
to analys
n)opfininalion
Maduls : melha, GE
Quanttatie
help optimiee
Sneax Dgramming,
9sowet
chains ioti ca,
Schedules,
to Cos
impzooeal
Q. No. No
Q.
(3)
iii) Decisten Trees
Ta and Simulaion
assis oio Gmlating Uaious
Jhese
Scenaiousan
techriqus
their
as«ceng. Upoknttad outonss
Mocals
Forecasng
ime Serdes analysis and
models enable oTqaniSaions
tranel dernand, and
mdehel CondiRorns proate cecisen.
blaing
making
finand al Decisiorn Making
Quantitatie techntqucs
a
io kinantalede dslon mahing
Ioteqral
includinq udgeing sb assess ment
Cagitad
and
poielio manaqend
Contol:
S4attstcal Melhods Contibute to
Control
processes enswing thadpveduts
qualby Sewices Oglandards and
meel
Seiad
Custo mer
capeclakong.
vn) Sufply chain man genend
Quantlaliue technigues
tech
e3sentia chaio operatons
opiriing Suppy
nundon rmenagumend
Q. No
Q. No.
QNo.
Pemante measwament - metics and
V
Quantaue
(kPI) proodea
indicadors
emnte
Oméas rable basis le eualuatng
Sysem -
Deciston Suppor S4s
Quantitatue techogucs
Suppord Syskem, afding
Cenbeddec in decsfon
Stetions
managers Comgex
anayatg
Prget ManagenendtQuantitalfve toos helas in
and SusowCe
3dedabog
peojeel plani
tocaion
2 Iransportation:
nppL
Deinon 3 fo the
Transporlalion
gooda people iafumetin
mouererd 'anothor t a
pesm one plae
to
d (ogisics and
cuit cal élement
hain
Sevoad model franspor
7heee
widely ued 1ogotcs
tationhal
and oporation
rescarch.
Q. No. Q. No.
No.
Models d
ranap-lalon
)Transshipmen! Model:
B Inuolus ntemediat ponts, oT traneshpmend
neds. oheu good Stored or
gpoda
Aransgred dutng traraporlat
lseke in Scenassos oheru goo needs to
be Consolidalrdy deconsoltidatad on transd betuen
cGexerd mocdy d txanspordetion
Assiqnment model .
ios Inuolues odeediat base d on 4he mt
Cost - ectue
dstance
dent assirments
Cost.
Consdoing
fadors Gka
Appli cctton
Dpplied i situcions wheu assigning
asigntg
task
12Sowrces (eq o or kers, rmachine) to
is
Dekicle Roufing Proben lURP):
Deiaitton
focuses Aodtng the opfimal ods or a
oehiceto Seteje O Sel d locakon,
tota dc-tanes traeled or
mônimiag transporaion
(osts
Q. No.
a. No.
ONo.
in lnea
fxplain
Ars -
Dekoidfon
hinear Sa mathemscl
Pgrning to ind he
opimiaadton echnqedesigred
(mamun minimum ) in
best outome
madhemat ad modl f4b
selaionsh
be
Comporerts
Deision Vaiables
delomined
.
hineax progmming!
Represert the
optmieel
quanities do
20 functon
Obieckue s
Del?oes he goal, wohethor
tosts
minimiz'ng
3.
expressed
de'usioo
Constrants
decisior
. Uaables
Restichon
Uaršablas
?
tycali
o maton s
epresented
Gneax îreaualttes
Q. No. Q. No.
No.
Contepls a.
Fey
1neafltty
Bolh the objecltue functon and Con stratnt
mus! be linen meanîng each asfabu to raled
to th pouoen o nd ts nod multtpled oY
dot ded other Uaiab.
by
2. feasible Re
he el al possibe Soutons
Hhal Constats
DJ
oph mizaton ?
Jhe qoal to toind the Ualues
de ist ons atable, U tha! ehe mazimiza
mini miA
fnchon
4:Bpplí caions :
Rinean roqrmning nds applahon în
Uatow nanee marulacošg
trarsporddion and Aesxu allocatoo
Pduantaqs
prouides a Syskrmate and ehiciend
melhad Jallocaton and cecisPon -
mahng
Q. No. Q. No.
9.5.
QNo.
)No
Applfcabl to a w?de hange
elaltbnshi s
world poblems
probems otth (inear
Q3 Explain in bie CPM QQ PERT
Ans : Coilfcal path Melho (ee)
CceM):
Detnfon
prefect managenent
echni
CPM
to and sthedule Jaciues ind
Use plan
the coRcal path.
:
projecl. 34 identes
Components
Lhe
Tasbs fobs had need o be acor
dwtng the
Nocus cuhen acioes
LoT poinds io
Represendpoin
n
3)Duralion - each atoi
to Compleke
The 4ime uquired
(rHfal path ?
The Ahrrough
th nekeorh
longesi
patt
atfng he Ushorded Hime to
baindi
ONo. QNo.
Q. No.
2) pro gram fualuclon and Reotew Techaique
(PERT) :9
Delioen
PERT
P£AT is another projecl managrrerd
tool hat the
dyense and berospace
key Componerds t
Acfoitesu
imilex to CPM,ashs tha neel
to be compleked
2: Nodes
Repsuend potnts in time cohere actii
3 Jione esimatu
eptfmistte, masl Gkely, and pestmthc
4mes estimatu kor each actoty
Crittcal path
Kike cPM, PERT identiltes fhe
Cuitcal path too de
delomne the
minirnun ime.
Competion
Q.No.
O.No
LNo
5.
PERT ie panlfalany wt!
untidaiain
and wheu
to ine
Decisfon
Eoplain
Defnitton
is
De tsion thaory a ysemahc
and mathe rmatical Bpe ach to
3itudtion
making dacistons in
Cuncestnty or rish.
hey Components 1
Decis?on Maker;
roThejndiodual or
enthy esponsbie fr manny a
lthi deeis ion
Ja 2 De cisior 9leinattve
Diloxand
aetion chofces auailabu to
4he decison mahor.
Q.No. QNo
7. 5.
Q. No.
3) lales Natures :
.
The vayious po sstbe
everts or outcomes 4hat
outorne that au unertain
and beyond heConrol d the dedsicn
maker
4 Decision (oiteria
Rles o medh wed to
hevala and
and choose
choase among deiclon
o alttmate.
among
Types of De cisonr Enuron ments
Centainty
înform atfon is knoton, and
otcomnes predical
3. Sone and
po babi h Cann at be
axignad
accuratay
No. O.No.
O. No.
No
Deciston - protess &
Makin
Hhe Decior poblem
be made
eleaxly
cleasly deine tho descis lon ;
20
Tdenti
his
Deciston
Possi ble
Ateralius 3
(ouTRS
;
3. Deterroine tales d Nat
Tdenti pokeotad atcomes
Asiah. pobabilies
Io a
4he ikethoo
belhooe each slat d nat
5. Delkotne
valua ha outcomes
ass odatd oith each Com binaion d
decision allernatiues ands stat