0% found this document useful (0 votes)
98 views64 pages

Thermo

Uploaded by

Hari
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
98 views64 pages

Thermo

Uploaded by

Hari
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 64
Thermodynamics 6 Phase Equilzbria Bn Ceramtes sem & Tech + rope sernestex) “Tinerenocly nant ¢* dt eo = Dynamics (Mees) CHeat) Creek word) ® Thumody nam os e Sdence of fee of heat @ cLorgdly began tn 1£00 Cras developed) @ Are ume of indushral revolilion, begsncunh of con ~global, warming assues. : é, > The scence of Ahemody nomics moleaues , thus 2k io based macy? SCOPC syslens C mole usler:--- > — now we Know, aloms [moleusles, sts of humodynamic® - yous built befor alam: / pepotics of an rationalize so we © dine CW con josh —fre concep concepts built on macros topic understanding? i Noein gto cer? > tt apples Te macros How ne move from ane equittbviem ty another eq? Tos palb FS a ® é Eq! stake J ~ Egt state Sa eae : ‘ \ Te Déctoted —fhermo dynam 5 undestand Ahis so called “path belivern wo eg Stutes", people have usnducléd Sevies of ance! and built various” empirical rules C lows) ~ These empiical obsewatisns’ a7 summarized into 4 lawns 2 ‘ O Zeroth dus Co th Louw) © Cornmon Sense —r Defsnes ainpevoline : @ 1% Low J Rreals — De fines Energy he eanser vat fy ge ® and ‘Ths 4 loose / > Defines Enbopy . eee Free, rea’ Jord G'st4igan energy enn @ OR =, Nlumescal value Ee enbapy } sotmer, @ we can not — Any questions 50 -far— grt OK Stes used in thomodynamics ¢ @ Term’ nolo Syslam ey Gonbrol mos sy ston Cclosed ) syslon Cope) 27 Conltol volume / Boundors a (ota [rast Conlval mass sysle @ ‘mass, P iden hl of tne sys yemains faved. @ an =o Cm- constont) mere | «ETO eo Conliil volume 53519 mo Volume = fixed. Etro Regin Sin space, Bounded 4 coy tate boundoxy : (anlio! clr! s' Volume 1 surface mo _) may gnleract roll E+o0 suntading * m=s0 & E=O oolated sysla § Tisha closed syslo wilh no energy eae Closed d sysken m= Eo “7 Thermodly namic popek: s— Chavactei ske feabiirs of sysker, by which car be“ eped me P=Pa V-Va : Tete = Ze Fore= B= b-A = Pressure x Area WORK DONE = Fo dz. “Ee dz =p A-dz Cons Cant = Pedv 1 as p f Sw 2 S pdav ' tg ie = J pay a if-p-ficv) , then Wa = [fevo-dv - Swi= Infirikesimal work = ema) work (Not a difforntiable quent, J ? r ~ Sue Wa. Ceca | wis o& ene ; ——= in transit Sonn, Fete pate functimm) Conty pene -fancbens C properties) a7 ok ffenntable) m We Divsplacernent wa | Non-dissipottive 2 work) pay roork | reversible work. mw Q hp ww + Ne-2 Y << w Wye A-2 HF We-dy & Woo + N.-h, 2 \y ollh Sane a Q 4-2 bhat 16 dhe cnange 3 7 Qi-a-z * Q2-G prpry Jo bath jm 8-8-2 4 Q,-Q, pars =Ko-x, = Yay = W077 Path furchons PX Yon propolees or Point funcbims 2 = We-IfPav- 1 Deak of Heal a. --. Joes. 454 Lew of thomodynamies = Law of conservation of eee eee > Joule! aren e's expe Se nee) Temenele qhe state © Fosulatd (sac changed duc te supplied 2 Wolter hak fred Ahe sumending CPaddle wheel ) Same emp-vise wat bserved by eapplying calusated omount of heat: Fede ~--Nm --- Joules. voork produce Sarne Oat Ciel temp —Boln are suini lar -ferms Enerdy transfe cop WATER He restore dhe iovhal wtale of pater Ctortial stak tem pero lia) 170211 s-rmecramce equivalent of (oe Tse Pefote tris experimen, people Gre to represent Bair work and Heat Jn dffernt ands Sign convention of Work & beat -rans-fu wt-ve} W+ve) QC+ve) Q(-vey Stalement 5 The algebrai sum of net heat and work jaterachins bel@en a System and its surrounding an a Ahome dynamic cycle Ts Zeko. Differne of heat and work =O Toleractims Sn acyde ? = =6 | For an infimite small process Gal saeee) 5 exteuted by a sys lim ’ Ciofintesimal omousls Of beat & work ) yties come back +0 thee orignal =7 Jaa aycle, all pepe Bp a vde then is not chenge values, Hak means with aesplect +0 proper Ly Cor point funclan ) XH Bo poy i ax=0 pe a ee =0 = (Sa-s) = 9% ® Fer an dnfioite small precess cosy net be a uycle.) 2 2 2 6a - [Swe {dx J 5 J Heat 9 en to the syslen ond Work gen by Fhe Au di ffenne syste, ane | \Q2- Wa = X%2% ao a dele oa ees function” "change n Dp {erence Sn pecans, tow? Sn a point function - = cheng th Wg 2 Turernat ENERGY fl K = LN eee = Sa- v= de SQ = Swrde Q-w= AE aes + €E,-Et) le ee ee oki aa ce Ut Ket PER Ae Pte eee y PES@EE ave neo [sgibee & salen ie lempared do change jolermo|eurlay energy D, = wo lisrlealay —— ene y, oe t 7 dee Huw ack + dD fees de= dut shh pr OF INTERNAL | * Bram OF INTERNAL ENERGY, CONCE eneeey In CLASIECAL THERMODYNE MIS Is FRom ir DIFFERENCE CHANGED. We a nob agaleltd Ja olbsol-te value " 7? 2 2 2 {8q- San = fav = Ua i i For a yde S ‘ wor de fdr {du- (ua-w)+ (h292) 218 1 _—_—————————_——_ a= =. (Ea- 5» =O wyde | du | eres ene y Foy a closed syston = ae ees jalaoal + For a closed sysloo ee 7, encral crnent \& Grates -fer Se aao8 > Fer adosed syseon pr fowndng Se displacm i yoor sg te pav 745 low of Eni iil. procen 2 dut bav 2 Qa (U.-W) + fhe | 3 Fer a fink mas 1 Foy & antl mass —— 2 Qi-2 - rs hoy Fa are S& edur & & jotfini te &m = Small proces da EvaluaGion of J pay oO if ve constoat (azo volumétate [teometexe] vsechos ) proces 2 fpav 20 3 5a-Sn-d9 1 Saez du O,- (U.-%) [hia ee ® fsobane Cusn stant preseurt process) Isoban’ Lun af p-comstont Sa = pdv du (Oe = pWvs-Vi) +@.-1) @, = Wa 122 Speavfic heals CeD + Cy and Cp ae 1 We gewally define specfic heats fren perspective of pale fren Ghatis beat. Buk sperfic heat + x lez Bs . peutfic heat 15 0 pro} lt, of the syslen- Fire 4% lao we need to convert Re, ogee property Cpaint function), ; D cy 7 Tee anfisite small amount o heat requited to et 4 —empevaline of 4h sy them by infinde mal] amount. = bin | C2/em) closed ST-z0 ST ee f veconst (rr) Lyn © é pyr unit temp, as STO he Rise oT Amount of heak added per unit mass, & = du+pdv = 66 = dutpdy sm () = GM), constant ; . eumst cz hn(#) (2) aes —— ° -fCv,T) b1T70 87 Aus) OT ae arn * Adle oat sSigle cmnpesnt syste eomstont cp Go {Cie Vor o presnstont a SQ = du+ pav pay = dur py) = -(dh) pocoost ea -du+ &e, Pees { G 7G > cp- Lin = {eb a fis) an) Gah proanslo! prconstont Que CvaT Heat capadty is 0° exlnewe pops prooost is FCp and cy ca = Le ond SY ay mn om n= nb 0 moles De wey tateadoot hoo “Tdeo)_go* ~ 3 boste properues. which are oe and observable gu defined 0° th & relaGan sp eCr Vit? Oo + eq 0 op ste py =mkRT ( obeys @ all. Ps, Ve ond 7 5 te Ideal qo Re choacliisr’ °° eo: yosnstant ~ a yor ond poate POP. te ape ob4y) o " a po a pve mT C mary 5 ak masse CAhy de nal volume) Ga Molewles ar gid No cohesive Force 9 and dleae PV=mRT n= Mm = Mass MM mol. wot g.31 KD, pv = mMRT ae 1 ig om pve nRT C&-MR) Gy eq? state has n0-0f mole: of sysli Pyagadra's by pothesie = All gaseo @ sams 7 same no. of moles hove the come volume = moles with PV= RT pv=RT y= Volume |rna ss PORT pf Ve velo mel For areal ges Limp) er | &4° of state Pee ts valid for ace Real ga und Radified shale . of Ge @ Reversible adiabatic process w= {pad Poe Spee ge Oo Ty pave do] Sree —Jevdr ' Ww ove \ e- GInTte vy, T —_ Vw & a eG ‘a, Nie A °@ “GD G) S@= Sw t+dU For unit mass 68 ou + du 6m Sm 6a 2 Sho 4 du én dm overs ble work Fo an infinite proces! baie ; mY for ofa process exeailing: displ acement oF Siv- § pay +2 fpav + du i [ssomelec proces) case (in f- Wolume -comst ( isochoaic 2 a= f Pév +du \ dv=6 a ' ' ' , » , foq- 49] ; [ sq: du a , a e Miah Seat l 1 f Qi-2 = AUT if “¢Q" to the sysleen perfoms pav wotk , We get shertost , jn dhe anlaasl toby ' 4 , , , , case Gi) t- Jsothemal process appled to a vyske pr rfomsh fpav ook wie ideal gee as can stant Pas nRT Re universal Pe Pe WRT pel pes a Vv oflnsve , f dol “jiay as (2% lave) +40 Mi Vv Mh Casi) Const pressure process 5Q = Sw+du 2 %= fPdv + AU 1 = Plva-v) + U2-4,) | Q =(Fave+ Uz) “(AY +4) Ho Hy Qi-2 = He-H, = AH endotioeranie . om_o » if Q.,- ave Cte” Hr) and -@ Q. 7 ve Cia 6H) Seat exo there +Q dreds pe Bee dh =CpdT we fevdt +O, he fost 4+Co do au constonls Cyn wae Tt G Aw G ST he grt Co W.-u, = Cv CRT) rab} ur 0 ha-h) = GCm-1)) T=0, h=0 Us yt ond ROT puv=RkT Cp- Ca ® Reversi ble adiobatre proces ~Sa- pav du fir an tel eal 9 he pay + cdr —_p* — pay 2 dT soo ae 2 Sf the proces prfos @ constant volume =7 Eyer hesbing » is pion vie ehanep emp ; but © of i do same valiss pron | anit Pee foun gil shoes nok nly lout alee per fors wok Cop? jnereat 49 That works > Pdv. Jem p Pa 2 ico) zeonst work per ait qin ID oO a ov Gacl aan ABI ce BS ee] ? at RAN ae te) | fd pees BEL BL But du = oo ou awl, or T v =o ond d= — 8h => Q=0 on ; a7 fer A mole OF 2° ideal i es ort AP fev “fog e _ y ! Jo Ve me-R”O> a a VY th “) ZV ao a aT; Va on be “ ) 2 Fwy py Pv-RT et tt eee ema meaner ~~ _ Reversi ble tsodhama'l Chanyo of an Ceversi ble work — du = §Q-& dt=0, du=0 6&2 OW= pev pveRT = prin an] BM > Reve Reversible odiabobe path alle A chemically hemagentoua, physically distact and) mechariical sepavable part of a sysht is called @ phase. + Three phase of mall (L. 5, 6) - solid phases Cmore than phases) Ce Differnt aystal shitclires will be of diffemnk phase Fe (Room temp) $ BCC C«-phas> Fe high temp) 1 cc C¥-phase) Gomponent The todependent chemical opecie Celenent f which composi lism of a _ Cony pound) in teams 0 syslem is specified £9 Ald, - Cr20, Syslan CAl20, } C0, ar cam ponents) Sysle campoomnt phase hale H20 Le SH Gle phox wake tice H20 L,S 7 lwe phase Brine Nacl + H20 L = sgh phaw Sleel Fe+C S.S > tame phow Mild sled Fe C ate Gibb!s phase wile 2 Relatinn belaieun mo. of ammponests mo. of phass and degre of freedsrn * Unaxy phase drab rom + Biadle component, stale phase x Binasy phas diagram um comport deagraro ea id - 3 n + Quarta auy ere A ~ aa ee eee babes se v P- No.of phase By equltb rin Ce eomponusts involved vy, Fe Degrees of freedom - Thermodynamic variables Fe * Fessure, Temperalive (B04 ies variables) - + If Pussuse 15 fixed, thin only B femprralie is variable vi © Compositisn variables Cphase Le ectiont) able. . df dpe ‘© no. of components dhe 0n¢ need to opeity c-l compositions fer each phase + For P phases one needs pcc-') composition varrables. Tatal roof variables i V = pcc-!) ae Pressure and +n) variable ye peered (ee pare variables . Degrees 0 edom CF) F-No of thermady namie variables which Yadependent without changing din phase in equikibviem walibriune, “pe O76 oq? condzbent Goce thee iS Abummody name SF : mlabimns beusan ‘he athermodynar™" Variable. If we opexty Cerda VO of variable, oterrt re cucko matically “fired © relaGsns by dhese FSV if both BT mie to Fae CHP +2 ‘on Vaxiablis —r Gibbls phar : if P= fred Appl cable for Binasy phase dxaqeor) (presses Com) Sar— A. Bifale phase Liquid in eq? 2 Cy and T + AL axmpositim P+F=C+4i 4+F=2+! 2. Two phase Lta an eq” Crrand, S, 1.3 camposilion of Lequid fo temperale Nieds ty be epeafied P+r = C+4h 2+F-2t1 Fed » € jp phase 49 ‘wy Ke vor worth emp as variable L 968 ~ Gs) C1205 Ve 3 ~- 262862 amen ee REHM E Eee DH cm Eqm" phase dzagrorn | eq” dsagvorn] Phase deogror ‘ oe 2265°C . pase, Toes 2 2a Ta AO senednne WS Endival, malting for expt) 2Zosve z Ss (<)—__?” phase ALa, wt /> (ea C5203 orf C7205 of Als0s =p Ce is artic sslaliarn of AL% & (1203 per) and CH? Cle companied gassle phase C 3 ° Pre = Ciel jee e ath [F=2] Cremp & eempositim) @ Pont Bt P=2, C= 2 : @® Phase draqra> indicat, phaser @ Point At i Perecel " “gr Sin, equitbr umn Shee a ® Phan diagram is draw snes Vu huemoduynanc variables er => UsfC1.v) prelind ZL do fanclions of Tv. dy = (24) dr 4(au\ av ber ov} Conslrainls if procens do reurrsible dus da -pdv if syslan is tsoldttd =du=0 ( Sa-0- 5”): if process adaabobc dus —pdv =0)4 CReversi ble) TE cs970) iJ procs eared Volurs Seo aoa) For Ve const . au (guar +0.» Se,= (2) & : : v w) of? (Sey eT | NG) Foe re “Gs ji (a Insulal-d 4 juco = OQ Aira “A in Feely expending go 90 Work a» dom: S| | Ais jsolalzd 0 heal-flood nud the Valve and {hv cline bulb Free expansien expt 2nvolve ope oT geo frely expond » o= GA) t+ eye. : ae cn Ge 0 (Became Als orere chon 9° wn P esmpared + chang® sa volume) Lexpt ‘observa v of Joule. Peet ee =0 (ey wy aa av gt = Dow [aoe wat |i : ° OS cae expanenr, : coeff => G je a. small munbe ond 27° for a ideal 32 © 1° + Tdeal Jeo du- wdT uefon ony a al 5° nF? ree ae r H=U+PV (system const. pressue Natitol vorables an P,7 A(t = PORTED | affects tee eninaty AU = 6@,Q,- Ya Recta dark Sw = pav peenstant SEO CD, | (Q@).=4H Spans) dH =(OH dr +(38 ) de T OT OP P . (SF) 2 ee ee > dn(6a) P prestun dP=0 a— du-(OH) dr ov) box... Cp Br). du= Gat ‘Gale T canst enedy expt Bub here ab oo + CJoule-Thomsm eypld TJoule!'s expt 0° amslant enthalpy exp Joule- Thomsen expt Joule- Thomsen expt ey: oP te Porous Abrerttte. Plug a Insulated lobe Peach Pent Pe Rrhe 2 ‘ yon” P, do eq” with Pex we We do pu ans pista slowly enous that on ens & Ps 1 eh Tally Rag (RNS. Cal rege Fy ok Py Becorme carne weg” wilh Pe” mot BO slowly the PL Afi opt atte procesd -Wias 2 P.M |. apr) Before Rpt Saar Q=o0 (Adzab Lugs work (on the system) = pus" ( * D-H Hae PVE au = CPV) Q= wtav ane AU+PY) aut ACY) prec, adzabale —acev) + ACEV) Thus , thie expan si piece oe SAT ev sible, [an=_o J” : exyt do O inev oten i DH=0 dit - Gar +(oH Jae presen it? aP or Ga t Ory) oF 2 G = Tabutabed an books (sr) = expt measurenent quontlay fe =) in a T-T exp) Sol alrh)-™. Tes 1 Br) ~& a, : ond Mt ideal 9 j dh = (dT es) ag] Tdeal gas H=U+PV Wo = u(t) + PRT fr an ideal ga Hef) only d= (OH “On H Gr)" r)” d= Cpat +r de ha 5ce) o or re -O5) [an= Gar | n) du- Grd Ide. A= Gar “Tdeel goo . ideal gus du= Gdt & dh= G dT Us fodt to h = fqdr* on Cy and Cp eft For an ideal 9” qe we constant Cealonicall per ee or Cal errcolly ideal 9) Us Guang) aU = wat ne Gt + ce [ahs Gat at T=0 bein =o, h- 0 we we T he Gt ee 44 and Cy ave nt eps tens ce Summary © du= Gat a Ov du =o (Joules fiee expansion expt) —G dt = f98v (aaa? Ween Gy = 1, = Toule's free exp ansisn coeff U eco t-Ideol goo dN For an ideal goo, as ford only ' ‘ 9, #° e- Real gas 4 du=wdr : ° Oy Tre AH = Gat Ge” @ ¥-0, v=o : Ua . O- Gpdt +(pey ae 2G AT : _ Tr and H-= ureVv « -Gdi “Ge AP Hoe fot RT « He fc 2 . AH= G4? ) — 3° ), —Jsenthalpic precest— oT Ne g- TJoule- Thomsen co ar) "or en soto ize 20 Cael ged J dit= Cp dt CH-FQ)) only. is an Teeversble expan sien tbrewsh nozzle 3 fn SMart rofo aboal Gp and & GG [oaditinnal ark) 7 uid to b 2 perferse | thon v-¢ A pefeord @ Pre : Cp- Ov * (2) pv= kT oT iC (a : . ° aD - -R ek ov s oe S at}, i 32 o and Gy are enstanks fur on ideal 9" » Us OF and He GT y bv = OT and AHeGdT E in in cid Te 7 1g Abeo => Heal capo as a -functéon 0 emp eral Debyt# cory > Heal copay 852 fAeop a z . » » GQ r i log 1/8 T peo G -umnstent for on elernent Cohavaclevishe of on elemnul > i ak high Hempevalar Cee BR Ci high) bo @ THO, GUO ie @ Lou -eaperaliiren - Gre K(E] Ke const Z © = 4645 cal|mle acy yas [TS 019 = Debye Lemperale @ a 2 m2 ys g.20410° ag: Onde c + -a40Ke* Secon Second Law o Kaw of “Themodynantes 5 axiom or Law of, ahi is dhe most 28 portant law or -lbe Be Genually * ee ‘ phys propositeo Sanu accepted or prundple canclisned poteteers 5 ‘ Tt putea directional _esnstraint om nabivol proces Foint on “the natural processe>" Ine. = " Dtvechinal_ eons! proceed ow ards eg” nalival, proces? alway " al 2 Sportancove and jake place in @ partway cbree T. Test, precesse alee place gone dareclion prowl, 07 ae ee Te a aged Co deg ly a aa) wpe P mtonearsty Spontancovaly C7 oe (fiows) mass fiows from hgh cane to loo op also “ke plact?” = osnc. nalavally» process T, Seend class of exlemal agers - one devectiom witb an Brake mowid wheel can be — } est by oprtsng “fucbarnal brake: Temp brought to 22 ae ee aaa Bane hee neo ten Fe fs tes Sn a cyclic pre r hoot! Pigcest le OR reg acc oer oo Oprre. SY Heat & fom snpel con hau + It ig a syst oO anfeite heat means “us emp o Uie Thermal reserva Capauty , that Ti C Source? a, Gvesn | ebange, wher Sh bomerk the ak 1s gunn | or Taken “from A. We @-G, aw = 88 Qs aa Biel F ya2 A Q Q 7 Ak y f Tt 1 cs") eto wen in ideal case [eet ay Wt Qo CoP = a Orn (mea) to HeatCfow grade enetey) “ap nO QCG=N Rink ( High grade bic, avesn'E Ineo? ok 4 - A rocess Js ever st Girecaon JO reversed back. apy ay a hat 2ts hs dhe proces ’ Slate yor }ho uk 7 tl “Up fi ion O ter The osn clus? ; ( af w be made bp the or genal 7 ding Jpn the proce? 49 ee YUCTeoeeeedstsgessessd lhe sysleo can Oe su re we) ass (4e) ah | fn vey oie) “Tereuerstble” ‘ 4 The | 4 H i A as Se I ; . 776) (< 40) 4 7,886) Not possible epenlancousl ‘ a AMach a heat pump , Shak Jol. again lake 4 work fiom the surrounding . d q @ Comses of Sacverstbiltle F~ ——sacchutcal og@@ Cae) 1y Lack of reat equtlebrum Bemol eq (AT) A 2” Dissipative effects. Ly Chemical «4 Cde : 44> Ly Mechanical frielrn t> Fuad viscostly, eat ; Inelastalg Tf there ane be no yslerisin , “lack of Themodynamielt ra Sard : ji and no Elechacal resistance 4 ctissip ote effe 4 Heal Wansfer 2 AT=O at —r ota) * AM natara. ‘process are. han he process se 4 Baaaversible , becaust hs basic SNe OS q@ Yequuement “of naliral process Are a a ths causes of # Haaevenstl uy ) « OF q 2, @ Process Parfeet! Revevsi ble 20 , mrevers:6le 9), he Kent : ORK TRANFER 5 aP=o apo a ae-o Apo CaP 4 ‘ { Mass Transfer > Ac-o0 sC—r0 Cdc) Chunical reachum = St =O a4 ro Cafe i > Reversible he beat Vans fer ocess ¢ ~ Ee ae ot of a ape mies fase 4oc a Taine 7 [ase 4o- [go-oore | Se] [ae 002°C =) sft amber of rewers_reservoits Trfinvte small empseralie “tak allows, spate a 9° heat fiow beueeo yeservoty & sysla one > Reversible cycle 2 ob processen O78 remty— ae Spe can be more. heak ere? eng: CARNOT oS ENGINE 3— Neo CARNOT Ss — an a “pouty ible eng cre operating betwen the ble heat engine 20 Ae tb thi ete We Lele and reuers: she same Offi cary. some demperalane besen np emperatn Junto have cmcept_© of shade Snresiyaris SE" scale of Jempralue ble = Gyr AReI- Q2RKR 410°) ules Qyc Qin = [- SF ws RO Sig Qe ng@g@2n Ap =F Meg a Qe Qin. FC, +) Qar tz Cc) tizte : Que EU +) @ a 2 (gy a= 6 Gs - F(t) @ a ts 4s gr Ce +s) Cs) Wp O2-% Q, Qs Z > Ft) G FO © Fe) only 7f | eC te) = ¢c)| 2 Eb bCt2) th a a a a Se is wt a state funcGen but ik can be e. aso state farction Cov property) ee pressed 2 pveRT Ci mele) du= é@ - SW Fo a system performing reversible proces! with ideal 9 as dhe syslao compo “tan &@- Pay = dU and U= J 5) ol ta dv is o for an weal 9 en; av + du= av) dt =W4T oT v =0) be = Pav + GvdT = x av +o at 7 = Li [Mek ap a degre of inevens bilby we et ey OR er, ‘BN ae 7 pe’ YoY 45 \ e eke ding degree © gasevev sib & ° ; ss a % \e ey WORK Is DONE => F 2 <5 wt Falls ON THE SysTOM Timp © he Te. GD purq a reservar o low emp) 2 sem Se amount of heat Comes Gut C4) — syslo emp 15 71 ~ a mee eaMAARAOASH « e > (OD) again repeat i) and Temp ae > @ oO Sysleo temp Rise to Ta Se (> 2 ON u = falls do 1 . git 2 The syste is ot TF and repeat G) => Aim is 40 ayaimize Aegree 0 Suwersib mor Hoecon thik ’ of a process where degree of qrreversi bi =0. 9 = Fa ag teversible process he ay of adres bilg is TD. , > ds - E@e : Fe te Me > — tepte process— eo : ss fis E , S = Enlropy > fase pews ; 1 nel i ace f EL | fe ae TU f SOe =O ond fe ‘ a de oe Reversible procest Reversible oyele (sae fx ao rwasble cycle fe moe 7 von‘ Quant —T— heal eng con be belie CARMOT's theomun a Ke efficent fren & vevers! We engine voork sng came emp reser -- « Crefie previews par) Absolute thumodyramic scale of tempt ae (& 2 Qr 2) (7 fe) f (0 4 jv Ri THe , {2% ot) prayer Qa re lose reversible vy cles> Sat oy, = “Any | ¢ Beaded weer wwews [5 SG ae Pp . 4 = ae ea repver sible a 7 v ry This was answared by Clousitas , ee oe _————— saswre good cot OP or Clausius snequalily 2 f < z peer dy (F8)<° Ks thie ng not & park ' —functe ie < fees => ioe ! ¢ ve alfot 2 : inlegrals ba) Thy, IRe ond TRe 2 smalle tran Te manmum valve of damon dese By unig uc vole vendere by. ( (Cee ond jhok io Ry eg Re J YY ee enlroyy AS ‘CHANGE IN “ENTRO OF & HEAT and peocess , BUT NO py Is expressed AS A ~ ponlcTLON TEM PERATURE ONLY nes A REVERSERE 7 FOR TRREVERSIBLE Proof of Clousus &nequaltly: ee Wee Wer 2a Om 7m | Nt GRD ne er I BE ond T'S ce " s Qe , AN Q@ a QR Q, ar Qyh Q To 9 S) <0 (Fé) a = Reversible adzabatie process io (8a), =9 AS - (0s oy + AS=0 [Si> Sa Tscenlyopic proce’ > $ 8 ZO (FPrveversi ble ey de) 5 Say ac ( Lreversible proces) jsse ( Pr bo adiabatic cee ° nd Trreversible ( wali aasabatic Poet (S@) =o Jf the proces: adzabatic asy J & af Me Pesala om, SE OTS x must ancreaSt- : —————__— = AS 70 AS > ( S& {5 Trrevesible AS=6 {Gale Reversible 3 For al processe ( Renrrsible + Trrevwsibl ) paeos! li AS = sa a OG 7 AS= ASe + AS? BE Oe OE, ag of ey, Change Chong diet intimal of exhopy Ff ots Sagusersi bi by Oo asysten iat Poe 2ASs; =O 2 For a reversible process i and AS-DSe AS= 0 (fr @ | adzabatee proce?) =) For aN aguwersible adiabatee procerts DSer0 =) For 0) aie AS; 70 2 2 ES . _ CEE so Qa -S tds 2TAS. 4 RS concept of a0 isolated _syslin Pd eooak ® $g=Swrdo fora euersible process ina Sq: Tds closed syslem with é es ) ard Swe Pdv preca ye fist Jaw. appied 1? any ® fo a verrsible procest tds - pave AU 1s eutev ut For ony proces pv=eT ve RT bs tee and Tds = Grdt + PAY ds - Gat +fdv £.& aa TOV ds- Cy at + Rdv i Vv a B82 Gln te + Rie Me qT Vv, @® Gonst pressu process wilh aheeased tempera ef feck Le Cosnst Pj heating ) ase Gin -kie B BP 1 ~ Revirible P, Ase qnb Ge Ee >T)) - Tded goo = we [Bs So Amercare in by oO Jsothermol expenserm of an ideal Se as-@inb +9 an AS = G \n Te 70 [BETO] Inca n BAS - (270) 1 " | The tum se oye erates 2p O cle ond develop! eonlinwe wotk can neu high 4emP body. . Reservary ) Jk is'e * dan of Srfwile elk oe A 2 is @& “ 1] Creal, Res heak cap ath Sch fa. whin Q heat is adde or base out fr je WI Zh de lero? of ak dwesnt change We 7 Qe eae lee He - @- 82 21° Je qe See \ si Q, oy thermal Effort Q2¥0 ( seand low) 7 “ {felons eyen ideal com peBpowe we ee ea Q-Heak a eo gree om t>> w= Q We Kok + * high grea oli I Absolute Ahermo cy namic scale © emp eraliaw © bir be We. Qn -Qe 1H Cre Raa, Ce OR Qe. fCtd2) Qor [Az Rolin of heal added Trot vepeed 25 Ctue dem? Gwe f Cu te) Bre 826. § Ca, ts> Qsk bcnalims of Neel ond Remove 42 veservoi than the or Heg(B) 1s & combuiaGeo of heat engines fom §,074 Se Qin 2 f Cts) Sse Slt) 2 6G) oF, fasise JUD” Farid $0) Rin means funchen of ti t2 So quaint of funcGsns fltr 4,) and fC42, 43). We cannot delevmine hese feape valist, absolutely Aha stfo-reere “becaue wor denot have yeversible engqanes Sh Prachce, but “we know Ahal he rats Of here absolute tem > eralaees Dh of aeiusby heok Vote on dims served 3 Weak ong? 9° 1 Us defard an vob afew AU Nike clefewl of abride Hrermedy anc scolr com fon ae rahe Th, . | Ps Nn Be Wor KDoW 7 Hrod add AN 1 aA G c foe =0 Tr oye _shp hoc? a a) Fer a proce dc = Se) Pas- f EWE -as rams FF talk-aelsoeat = tours aH Sere After de dal. abouk CARNoI't THEOREM anc Tbr duce c laustas ie > in equal 4) Ga ae te Loge ee Bie Qy BO Rony (a Yeon ai T2 Qi < Se Qe Beh Q, i &) £0 Ty) ae =f s » » y y ee y y y ’ y y » i ; , . ' , ' ' _ a ——— pew cas | ali : #382 5 psec T ] 1 ard ja < SS i [28 , , 1 , , ' , ' ' to wer 26 ' * sy dhe temp. We con't explote ; of heat Coquating to Zero. Sq- sv du Sa-0, o4 Sw #0 ead Su + pay Wy = fdu 2 U2-Y, How do you exp lain it ? [da= Sw ] Mo wF 5 Io cote Datta WS ghee revernble heel lransfer ae ———— SQTO @& Sw =o) >» [eq-40 ) Now fren enlopy concept we baow.. ee TonachsievetommentropectitiaMe ua cost Supply amrloeahaohonserncbucklnnsncil'y- “as ose (a SESE) AS + ~ {= sla AG AS = ASo + ASI ae E+ ‘chang of 74 Change of change of due +0 oni 3p senlipy oe Enteral acti Srovetleraal Cet ian ages bil (clue +0 heat \ansfor -) ty Fer a repersible proce”? =p For a pisces =P Fer & <0 —— For & | veversidle ee yeversi ble jrvwers ble adiabatic 2 adia bate diabate proce te - AS;=0 rroce -- ASerASi =O Me Bs-2Se aes pote © ASCO, 5,7 8 Cias70)9 (SQ. = ds T 2 = frds ) = = Concept o; an isolated s slay 2 Hed Se [ate (As) y z2G Q=o0 isolated W=0 syshen Tsolated system does nut inlevack sjetiahd job The sunounding = ASe=0 PP eyelem and tf chang Cor anlerace 5) orthen he ssolated 5 ‘stem ( anside the Bolated sys) are reuersible Tun BSi=0 => AS =0 Teolated syst ~ Paes Cas- ASD (no peat inleraclan rol sumondiny ooo if e 4 in lerachonr joitid Ihe isolated outs the system are veuersi ble Doleded syste) BSji=9 ant Lrrew7Fi ble thin AS; 70 = BS =O =e ASI7A Syshmo i diag to 8 b A ip Suavundin ' my {3 ” 3A fe Js olated sys lino => System + Surrounding (arias ee) ; tf snlrractions within sf in lerachin § Abs sean ave veurrsible ie are Lrrwes! un ASHE ante aclnd BS7O- ASF#O Sy shh) AS 70 = (AS +(AS Ee ASD eee re all inlivacting syslons eta A é od gh 70 Sy sto siverse (teniled 9e-Sensc) (As) 0 un verse wy al solrraclng sy sles om within dha univers ° 2 ble @ pee ae] J a Reversi ble proce® Ass (2 4 Asi [ 4s > js2| ble and adzabater Fane © Far a vewersi 20 Cs=constant) (S@ p20 ond 4S 20 <7 4 Teeenfopic process O For a resensible drabate pat aS = G@e alg & [eves ble healing, 3 proce | )Qee =STds AS 70 1Bag7 9 + bee 2 s Tp [of cee adzrabetce prec) Sis am 1s essential be reversible or Jueversible ) =7 For an Ssolated sy slen adzabatee P SQ=0 Csyslzo may 4s [$e AS 7% fee ss to & Equivalent syslim Cisolated system) const ludins system and surrounding "untverse " [Ascotated system] System + Surrounding = Isolated syst 97 univers as), + (@s). = (AS) uy universt/isolated syslo (As). yo 2 [tas (45), J xo oO SF inlevachons ave rwersible..(AS) =O Gniverts (5), seiroelng =O Cof aateraclins ave muvrsite) Syskens (5, inlevackn’ 7o(s Syshne = 5 os F ~G paaple of anvreanw of enbsopy - AS 7 | 08 ( Je Syshen a + 48:(70) + Uy For urreveisible proces =O 1 @ TwePSble proc » deeersible ) 02 shen ie (as) 79 4 eee 70 For 2 reversible proces (Si =0) js yO =r $870 OSi2 | For an Baeversible proce, whu SQ70 7 (ee yo and T vandtf 6a The System may be in thermal e: (at = 0) and mechanical eqn 2 Ob). but fn lees of chemical eg ond phases, thu oyster SHil urdengecs shen ge ds 7% £& = Examble i Gonsider a proce Sm < TOs" a beh and ees (du +6w) S tds (au + Rv \ eteds —_ afut bye Ts) $0 dcutpy-ws) S¢ = a(H=Tes) £6 (9, <2] [EHTS] Gibe's frclm Saal, voces @ const pressust Bae to reduced G- leads ta reduced Gi bb's px precen does nok -lake ny Spontaneous mp ye acl > Sj ontaneoun proces envvay. A nalival or Sportancous place U, Gibbs free cous Ancrease- = 6=- H-Tds : dG= dn-1Tds -sdt Ga du +Pdv +vdP-Tds -~sdT Ve umstant =Vo and Tecamst=To dé - du+vdp=tds and Peumst” ‘dE Ags du-tds [eeusts ] [F=0=TS] Helmholtz fe «oy dered ak" stant "Gh rt considere constant volume > SF eth wt gid ed, olan "do _tds" a A Pelmbiolts fee ener p-u-ts : — \ dle. du 7 Tds- Sat Some useful vretations wag G and Fae = a G- H-TS Age du-td wet. ds dut pav+ vd P. - AG- aut Pdy evdp—Teas- SAT ana fiero 15F Law to &q- Sw dU 69- Pav ~ du Crees be eceti) Sa- du t+ Pav Sw~ Pav oe s- SAT dAc- 64+ yap Tas sat ble peg From 0” Law C peuey St LL Ny ju aG\_ co) = P ic. ° Gas =} —-AS a1 Pp. : DG = Diffrcoce a fies energy of products p reodkanls plow. dF~ —Pdv —SdT oe leer Ov Bie Ve. = S ar Vv i cur dn much souds, the external pres Ahan the yolume. thus Gibbs Jo dhe case of \ than Helmholtz asits tO usmliol mort & free ener8y ys much mort usefa Sree nerdy. 2g Nee Ts. Pav? = du Most basic eq*! hue Tas+vdr- 44 ee dvp- sdr = AG — Pav —Sdt oar Rib ee _ 1» a RBAAR ADDS EER A 7 © Rewustble isolhomal panne e- AUVs CYATHO @ OO 6w2dau =O } ba = éw expansin of an ideol_ ge Ysodhumal ideal go> Reerstble dws PAV SH = S= pdv Vo v2, Pv-RT [oner.fipay = dv p=RT aN Vv F yes : p Ng = ORK = RT In vex, Cvr™) C 1 ~ W270 aaa As = (E@e - (6®)e = = a0 Ger n¥s | as 1 om “) =RIn ve s a Mi : Re “(v2ew) =a BS) < oO BM ond 3) OS (AS) 2 AS geo EO on heat Reservior yeserior = Net change in nex =O For cormpyession case (as) = (82) _ Wo RTI Ne ma eerie Beets Rn d rE ae li ay suace V2eM (AD on BNE : dure com pres scam heat Wan s fev lakes place from get? Summunciag erate @s) Sussouncea AS =O Cro change ey the total enliopy of he syste) = e224 O52, OP is Resewwiny (GR. i ee ee a ee a a See Rmmeecec kh KE a a as

You might also like