Thermodynamics 6 Phase Equilzbria Bn Ceramtes
sem & Tech + rope sernestex)
“Tinerenocly nant ¢*
dt
eo =
Dynamics
(Mees)
 
  
 
 
CHeat)
Creek word)
® Thumody nam os e Sdence of fee of heat
@ cLorgdly began tn 1£00 Cras developed)
@ Are ume of indushral revolilion, begsncunh of con ~global,
warming assues. : é,
> The scence of Ahemody nomics
moleaues , thus 2k io based macy? SCOPC
syslens C mole usler:--- >
— now we Know, aloms [moleusles,
sts of humodynamic® -
yous built befor alam: /
pepotics of
an rationalize
so we ©
dine
CW con josh
—fre concep
concepts built on macros topic understanding?
i Noein gto cer?
> tt apples Te macros
How ne move from ane equittbviem ty another eq?
Tos palb FS a
® é
Eq! stake J ~ Egt state
Sa eae :
‘ \
Te
Déctoted
—fhermo dynam5 undestand Ahis so called “path belivern wo eg
Stutes", people have usnducléd Sevies of ance!
and built various”
empirical rules C lows)
~ These empiical obsewatisns’ a7 summarized into
4 lawns 2 ‘
O Zeroth dus Co th Louw) © Cornmon Sense
—r Defsnes ainpevoline :
@ 1% Low J Rreals
— De fines Energy he eanser vat fy ge
® and ‘Ths 4 loose /
> Defines Enbopy . eee Free, rea’ Jord
G'st4igan energy enn @ OR
=, Nlumescal value Ee enbapy } sotmer, @
we can not
— Any questions 50 -far— grt OK
Stes used in thomodynamics ¢
 
@ Term’ nolo
Syslam ey Gonbrol mos sy ston Cclosed )
syslon Cope)
27 Conltol volume
/ Boundors a
   
(ota [rastConlval mass sysle
@ ‘mass, P iden hl of tne sys
yemains faved.
@ an =o Cm- constont)
mere | «ETO
eo
Conliil volume 53519
mo Volume = fixed.
Etro
Regin Sin space, Bounded 4 coy tate boundoxy :
(anlio! clr! s'
Volume 1 surface
mo _) may gnleract roll
E+o0 suntading
* m=s0 & E=O
oolated sysla §
Tisha closed syslo wilh no
energy eae
Closed d
sysken m=
Eo
“7 Thermodly namic popek: s— Chavactei ske feabiirs of
sysker, by which car be“ eped
me P=Pa
V-Va :
Tete=
Ze
 
 
 
 
 
 
 
 
Fore= B= b-A = Pressure x Area
WORK DONE = Fo dz.
“Ee dz =p A-dz
Cons Cant
= Pedv
1 as p
f Sw 2 S pdav
' tg
ie = J pay
a
if-p-ficv) , then Wa = [fevo-dv -
Swi= Infirikesimal work = ema) work (Not a difforntiable
quent, J
? r ~
Sue Wa. Ceca | wis o& ene
; ——=
in transit Sonn, Fete pate functimm)
Conty pene -fancbens C properties) a7
ok ffenntable) m
We Divsplacernent wa | Non-dissipottive 2 work) pay roork | reversible
work.
mw Q hp ww + Ne-2
Y << w Wye A-2 HF We-dy
& Woo + N.-h,
2 \y
ollh Sane a Q 4-2
bhat 16 dhe cnange 3 7 Qi-a-z * Q2-G
prpry Jo bath jm 8-8-2 4 Q,-Q,
pars
=Ko-x,
= Yay= W077 Path furchons
PX Yon propolees or Point funcbims
2
= We-IfPav-
1 Deak of Heal a. --. Joes.
454 Lew of thomodynamies = Law of conservation of
eee eee
> Joule! aren
e's expe Se nee)
Temenele qhe state ©
Fosulatd (sac changed duc te supplied
2 Wolter hak fred Ahe sumending
CPaddle wheel )
Same emp-vise wat bserved
by eapplying calusated omount of
heat:
Fede ~--Nm --- Joules.
  
 
 
 
voork produce Sarne Oat Ciel temp
—Boln are suini lar -ferms Enerdy transfe
 
cop WATER
He restore dhe iovhal wtale of
pater Ctortial stak tem pero lia)
170211 s-rmecramce equivalent of
(oe Tse
Pefote tris experimen, people
Gre to represent Bair work
and Heat Jn dffernt
andsSign convention of Work & beat -rans-fu
wt-ve} W+ve)
QC+ve)
Q(-vey
Stalement 5 The algebrai sum of net heat and work
jaterachins bel@en a System and its surrounding
an a Ahome dynamic cycle Ts Zeko.
 
Differne of
heat and work =O
Toleractims Sn acyde
? = =6 | For an infimite small process
Gal saeee) 5 exteuted by a sys lim ’
Ciofintesimal omousls
Of beat & work )
yties come back +0 thee orignal
=7 Jaa aycle, all pepe
Bp a vde then is not chenge
values, Hak means
with aesplect +0 proper Ly Cor point funclan )
XH Bo poy i
ax=0
pe a ee =0
= (Sa-s) = 9%® Fer an dnfioite small precess cosy net be a uycle.)
2
 
2 2
6a - [Swe {dx
J 5 J Heat 9 en to the syslen
ond Work gen by Fhe
Au di ffenne
syste, ane
| \Q2- Wa = X%2%
ao a dele oa ees
function”
"change
n Dp {erence Sn pecans, tow?
Sn a point function -
 
= cheng th
Wg 2 Turernat ENERGY fl
K = LN eee
= Sa- v= de
SQ = Swrde
Q-w= AE
aes + €E,-Et)
le ee ee oki aa
ce Ut Ket PER Ae Pte eee
y PES@EE ave neo [sgibee
& salen ie lempared do change
jolermo|eurlay energy D, = wo lisrlealay
—— ene y, oe
t 7
dee Huw ack + dD fees de= dut shh
pr OF INTERNAL |
* Bram OF INTERNAL ENERGY, CONCE
eneeey In CLASIECAL THERMODYNE MIS Is FRom ir
DIFFERENCE CHANGED. We a nob agaleltd Ja olbsol-te
value "
7?2 2 2
{8q- San = fav = Ua
i
i
For a yde S ‘
wor de fdr {du- (ua-w)+ (h292) 218
1 _—_—————————_——_
a=
=. (Ea- 5» =O
wyde |
du
| eres ene y
  
 
      
 
Foy a closed syston =
ae ees
 
 
jalaoal
+ For a closed sysloo ee
7, encral crnent
\& Grates -fer Se aao8
> Fer adosed syseon pr fowndng Se displacm
i
yoor sg te pav
    
745 low of Eni iil. procen
2 dut bav
2
Qa (U.-W) + fhe | 3 Fer a fink mas
1
Foy & antl mass
——
2
Qi-2 - rs hoy
Fa areS& edur &
& jotfini te
&m =
Small proces
da 
 EvaluaGion of J pay
oO if ve constoat (azo volumétate [teometexe] vsechos ) proces
2
fpav 20 3 5a-Sn-d9
1 Saez du
O,- (U.-%)
[hia ee
® fsobane Cusn stant preseurt process)
Isoban’ Lun
af p-comstont Sa = pdv du
(Oe = pWvs-Vi) +@.-1)
@, = Wa
122Speavfic heals CeD
+ Cy and Cp
ae
1 We gewally define specfic heats fren perspective of pale fren
Ghatis beat. Buk sperfic heat + x lez
Bs . peutfic heat 15 0 pro} lt, of the syslen-
Fire 4% lao we need to convert Re, ogee
property Cpaint function), ;
D cy 7 Tee anfisite small amount o heat requited to et 4
—empevaline of 4h sy them by infinde mal] amount.
= bin | C2/em) closed
ST-z0 ST ee f
veconst (rr)
Lyn ©
é
pyr unit temp, as STO
he
Rise
oT
 
  
Amount of heak
added per unit mass,
& = du+pdv
= 66 = dutpdy
sm
() = GM), constant ;
.
eumst
cz hn(#) (2) aes
—— ° -fCv,T)
b1T70 87 Aus) OT ae arn
* Adle oat
sSigle cmnpesnt
syste
 
eomstontcp Go {Cie
Vor o
presnstont
a SQ = du+ pav
pay = dur py) = -(dh)
pocoost
ea -du+
&e,
Pees {
G 7G
> cp- Lin = {eb
a fis) an) Gah
proanslo! prconstont
Que CvaT
  
Heat capadty is 0° exlnewe pops
 
 
 
 
 
prooost
 
is FCp and cy
ca = Le ond SY ay
mn om
n= nb 0 moles
De wey tateadoot hoo
“Tdeo)_go* ~ 3 boste properues. which are oe and observable
gu defined 0° th & relaGan sp
eCr Vit? Oo + eq 0 op ste
py =mkRT ( obeys @ all. Ps, Ve ond 7 5 te Ideal qo
Re choacliisr’ °° eo:
yosnstant ~ a yor ond poate POP.
te
ape ob4y)
o "
a po a pve mT C mary 5
ak masse CAhy de nal volume)
Ga Molewles ar
gid No cohesive Force
9 and dleaePV=mRT
n= Mm = Mass
MM  mol. wot
g.31 KD,
pv = mMRT ae 1 ig om
pve nRT C&-MR)
Gy eq? state has n0-0f mole: of sysli
Pyagadra's by pothesie = All gaseo @ sams 7
same no. of moles hove the come volume
= moles
with
PV= RT
pv=RT y= Volume |rna ss
 
PORT pf Ve velo mel
For areal ges Limp) er | &4° of state
Pee ts valid for
ace Real ga und
Radified shale
. of Ge
@ Reversible adiabatic process
w= {pad
Poe Spee ge
Oo Ty pave do] Sree —Jevdr
' Ww
ove \ e- GInTte
vy, T
—_ Vw
& a eG ‘a,
Nie A
°@ “GD G)S@= Sw t+dU
For unit mass
68 ou + du
6m Sm
6a 2 Sho 4 du
én dm
overs ble work
Fo an infinite proces! baie ;
mY for ofa process exeailing: displ acement oF
Siv- § pay
+2
fpav + du
i [ssomelec proces)
case (in f- Wolume -comst ( isochoaic
2
a= f Pév +du
\
dv=6 a
'
'
'
,
»
, foq- 49]
; [ sq: du a
, a e
Miah Seat
l 1
f Qi-2 = AUT if “¢Q" to the sysleen perfoms
pav wotk , We get shertost
, jn dhe anlaasl toby
'
4
,
,
,
,
case Gi) t- Jsothemal process
appled to a vyske pr rfomsh fpav ook wie ideal gee
as can stant
Pas nRT Re universal
Pe Pe WRT pel pes
a Vv
oflnsve , f
dol “jiay as (2% lave) +40
Mi
Vv
MhCasi) Const pressure process
5Q = Sw+du
2
%= fPdv + AU
1
= Plva-v) + U2-4,)
| Q =(Fave+ Uz) “(AY +4)
Ho Hy
Qi-2 = He-H, = AH endotioeranie
. om_o »
if Q.,- ave Cte” Hr)
and
-@ Q. 7 ve Cia 6H)
Seat
exo there
+Q
 
dreds pe Bee
dh =CpdT
we fevdt +O,
he fost 4+Co
do au constonls
Cyn
wae Tt G Aw G ST
he grt Co W.-u, = Cv CRT)
rab} ur 0 ha-h) = GCm-1))
T=0, h=0
Us yt ond ROTpuv=RkT
Cp- Ca ®
Reversi ble adiobatre proces
~Sa- pav du
fir an tel eal 9
he pay + cdr
—_p*
— pay 2 dT
soo ae
2 Sf the proces prfos @ constant volume =7 Eyer
hesbing » is pion vie ehanep emp ; but © of i do same
valiss pron | anit Pee foun gil shoes nok nly
lout alee per fors wok Cop?
jnereat 49
That works > Pdv.
Jem p Pa 2 ico)
zeonst
work per ait qin ID
oO
a ov
Gacl aan
ABI ce BS ee]
? at
RAN ae te) | fd
pees BEL BL
But
du = oo ou
awl, or
T v=o ond d= — 8h
=> Q=0 on ;
a7 fer A mole OF 2° ideal i es
ort AP
fev “fog e
_ y
! Jo Ve
me-R”O>
a a VY
th “)
ZV
ao a
aT; Va on
be “ )
2 Fwy
   
py Pv-RT
et tt eee ema meaner ~~ _Reversi ble tsodhama'l
Chanyo of an
Ceversi ble work
—
du = §Q-&
dt=0, du=0
 
6&2 OW= pev pveRT
= prin an] BM > Reve
    
    
    
 
 
Reversible
odiabobe
pathalle A chemically hemagentoua, physically distact
and) mechariical sepavable part of a sysht
is called @ phase.
+ Three phase of mall (L. 5, 6)
- solid phases Cmore than phases)
Ce Differnt aystal shitclires will be of diffemnk phase
Fe (Room temp) $ BCC C«-phas>
Fe high temp) 1 cc C¥-phase)
Gomponent The todependent chemical opecie Celenent
f which composi lism of a
 
_ Cony pound) in teams 0
syslem is specified
£9 Ald, - Cr20, Syslan CAl20, } C0, ar cam ponents)
Sysle campoomnt phase
hale H20 Le SH Gle phox
wake tice H20 L,S 7 lwe phase
Brine Nacl + H20 L = sgh phaw
Sleel Fe+C S.S > tame phow
Mild sled Fe C ate
Gibb!s phase wile 2 Relatinn belaieun mo. of ammponests
mo. of phass and degre of freedsrn
* Unaxy phase drab rom + Biadle component, stale phase
x Binasy phas diagram um comport deagraro
ea id - 3 n
+ Quarta auy ere A
~ aa ee eee babes sev
P- No.of phase By equltb rin
Ce eomponusts involved vy,
Fe Degrees of freedom
-
Thermodynamic variables Fe * Fessure, Temperalive (B04 ies
variables) -
+ If Pussuse 15 fixed, thin only
B femprralie is variable vi
© Compositisn variables Cphase Le ectiont) able.
. df dpe ‘© no. of components dhe 0n¢ need to opeity
c-l compositions fer each phase
+ For P phases one needs pcc-') composition varrables.
Tatal roof variables i V = pcc-!) ae Pressure and
+n) variable
ye peered (ee pare variables
. Degrees 0 edom CF)
F-No of thermady namie variables which
Yadependent without changing din phase in equikibviem
walibriune, “pe O76 oq? condzbent
Goce thee iS Abummody name SF :
mlabimns beusan ‘he athermodynar™" Variable. If we opexty
Cerda VO of variable, oterrt re cucko matically “fired
© relaGsns
by dhese
FSV
if both BT
mie to Fae CHP +2
‘on Vaxiablis
—r Gibbls phar :
if P= fred
Appl cable for Binasy phase dxaqeor)
(presses Com)
Sar—A. Bifale phase Liquid in eq? 2 Cy and T
 
+
AL axmpositim
P+F=C+4i
4+F=2+!
 
2. Two phase Lta an eq”  Crrand, S, 1.3
 
camposilion of Lequid fo temperale
Nieds ty be epeafied
P+r = C+4h
2+F-2t1
Fed »
 
 
€ jp phase 49
‘wy
Ke
 
vor worth emp as variable
L
968 ~
Gs)
C1205
Ve
3
~- 262862 amen ee REHM E Eee DHcm
Eqm" phase dzagrorn | eq” dsagvorn] Phase deogror
‘ oe
2265°C
. pase,
Toes 2 2a
Ta AO senednne WS
Endival, malting for expt)
2Zosve z
Ss (<)—__?” phase
ALa, wt /> (ea C5203
orf C7205 of Als0s
=p Ce is artic sslaliarn of AL% & (1203
per) and CH? Cle companied
gassle phase C
3
° Pre = Ciel
jee e ath
[F=2] Cremp & eempositim)
@ Pont Bt P=2, C= 2 :
@® Phase draqra> indicat, phaser
@ Point At
i Perecel " “gr
Sin, equitbr umn
Shee a ® Phan diagram is draw snes
Vu
huemoduynanc variableser
=> UsfC1.v) prelind ZL do fanclions of Tv.
dy = (24) dr 4(au\ av
ber ov}
Conslrainls
if procens do reurrsible dus da -pdv
if syslan is tsoldttd =du=0 ( Sa-0- 5”):
if process adaabobc dus —pdv =0)4
CReversi ble) TE cs970)
iJ procs eared Volurs Seo aoa)
For Ve const .
au (guar +0.» Se,= (2) & : :
v
w) of? (Sey eT |
NG) Foe
 
  
 
re “Gs ji
(a
Insulal-d
4 juco =
OQ Aira “A in Feely expending
   
go 90 Work a» dom:
S| | Ais jsolalzd 0 heal-flood
nud the Valve and
{hv cline bulb
 
Free expansien expt 2nvolve ope
oT geo frely expond »o= GA) t+ eye.
: ae cn
      
Ge 0 (Became Als orere chon 9° wn P
esmpared + chang® sa volume) Lexpt ‘observa
v
of Joule.
Peet ee =0 (ey wy aa
av gt
= Dow
[aoe wat |i : ° OS cae expanenr, :
coeff
=> G je a. small munbe ond 27° for a ideal 32 © 1°
+ Tdeal Jeo du- wdT
uefon ony
a al 5° nF?
ree aer H=U+PV
(system const. pressue Natitol vorables an P,7
A(t = PORTED | affects tee eninaty
AU = 6@,Q,- Ya
Recta dark
Sw = pav
peenstant
SEO CD,
| (Q@).=4H
Spans)
 
 
dH =(OH dr +(38 ) de
T
OT OP
P .
(SF) 2 ee ee > dn(6a)
P prestun
dP=0 a—
du-(OH) dr
ov)
box... Cp Br).
du= Gat ‘Gale
T
canst enedy expt Bub here ab oo
+ CJoule-Thomsm eypld
   
TJoule!'s expt 0°
amslant enthalpy expJoule- Thomsen expt
    
  
Joule- Thomsen expt
ey:
oP te
Porous Abrerttte. Plug
a Insulated lobe
Peach Pent Pe
Rrhe
2
‘ yon”
P, do eq” with Pex
we
We do pu ans pista slowly enous that
on ens & Ps 1 eh Tally Rag (RNS. Cal rege Fy
ok Py Becorme carne weg” wilh Pe”
mot BO slowly the
PL
    
Afi opt
atte procesd
-Wias 2 P.M |. apr)
 
Before Rpt
Saar Q=o0 (Adzab
Lugs work (on the system) =
pus" ( * D-H Hae PVE
au = CPV) Q= wtav
ane AU+PY)
aut ACY)
prec, adzabale
—acev) + ACEV)
Thus , thie
expan si piece oe SAT
ev sible,
[an=_o J”
: exyt do O inev
oten i DH=0
dit - Gar +(oH Jae presen it?
aP
or Ga t Ory) oF 2G = Tabutabed an books
(sr) = expt measurenent quontlay
fe =) in a T-T exp)
Sol alrh)-™. Tes 1
Br) ~& a, : ond Mt ideal 9
j dh = (dT
es) ag]
Tdeal gas
H=U+PV
Wo = u(t) + PRT
fr an ideal ga Hef) only
d= (OH “On
H Gr)" r)”
d= Cpat +r de ha 5ce)
o or re -O5)
[an= Gar | n)
du- Grd Ide.
A= Gar “Tdeel goo
 
 
 
  
 
 
 
 
.
ideal gusdu= Gdt & dh= G dT
Us fodt to
h = fqdr* on
Cy and Cp eft
For an ideal 9” qe we constant Cealonicall per ee
or Cal errcolly ideal 9)
Us Guang)
aU = wat
ne Gt + ce [ahs Gat
at T=0 bein =o, h- 0
we we T
he Gt
ee
44 and Cy ave nt eps tens ceSummary
© du= Gat a
Ov
du =o (Joules fiee expansion expt)
—G dt = f98v
(aaa?
 
 
Ween Gy = 1, = Toule's free exp ansisn coeff
U
eco t-Ideol goo dN
For an ideal goo, as ford only
  
  
   
  
    
 
 
 
 
'
‘
9, #° e- Real gas 4
du=wdr :
° Oy Tre
AH = Gat Ge” @ ¥-0, v=o :
Ua .
O- Gpdt +(pey ae 2G AT :
_ Tr and H-= ureVv «
-Gdi “Ge AP Hoe fot RT «
He fc 2 .
AH= G4?
) — 3° ),
—Jsenthalpic precest—
oT Ne g- TJoule- Thomsen co
ar) "or en soto
ize 20 Cael ged J
dit= Cp dt CH-FQ)) only.
 
  
is an Teeversble expan sien
tbrewsh
nozzle3 fn
SMart rofo aboal Gp and
& GG [oaditinnal ark) 7 uid to b
2 perferse |
thon v-¢ A pefeord @ Pre
: Cp- Ov * (2) pv= kT
oT iC (a :
. ° aD - -R
ek ov
s oe S at}, i
32 o and Gy are enstanks fur on ideal 9"
» Us OF and He GT
y bv = OT and AHeGdT
E in in cid Te 7 1g Abeo
=> Heal capo as a -functéon 0 emp eral Debyt# cory
> Heal copay 852 fAeop a
z .
»
» GQ
r
i
log 1/8 T
peo G -umnstent for on elernent Cohavaclevishe of on elemnul >
i ak high Hempevalar Cee BR Ci high)
bo @ THO, GUO
ie @ Lou -eaperaliiren - Gre K(E] Ke const
Z © = 4645 cal|mle acy
yas [TS 019 = Debye Lemperale
@ 
a 2 m2
ys g.20410°
ag: Onde
c + -a40Ke*Secon
Second Law o
Kaw of “Themodynantes 5
axiom or Law of,
ahi
is dhe most 28 portant law or -lbe
Be
Genually * ee ‘ phys
propositeo Sanu
accepted
or prundple canclisned
poteteers
5 ‘
Tt putea directional _esnstraint om nabivol proces
Foint on “the natural processe>"
Ine. =
" Dtvechinal_ eons!
proceed ow ards eg”
nalival, proces? alway
" al
 
2 Sportancove
and jake place in @ partway cbree
T. Test, precesse alee place gone dareclion prowl, 07 ae
ee Te a aged Co
deg ly a aa)
wpe
P mtonearsty Spontancovaly C7 oe
(fiows) mass fiows
from hgh
cane to loo
op also “ke plact?” = osnc.
nalavally»
process
T, Seend class of
exlemal agers -
one devectiom witb an
Brake
mowid wheel can be
—
} est by oprtsng “fucbarnal brake:
Temp
brought to
 
 
22 ae ee
aaa
Bane hee
neo
ten Fe fstes Sn a cyclic pre
r hoot! Pigcest le OR reg acc oer
 
oo Oprre.
SY Heat &
fom snpel
con hau
+ It ig a syst oO anfeite heat
means “us emp o Uie
Thermal reserva
Capauty , that
Ti C Source?
a, Gvesn | ebange, wher Sh bomerk the ak
1s gunn | or Taken “from A.
We @-G, aw = 88
Qs aa Biel F
ya2 A Q Q
7 Ak y f
Tt 1 cs") eto wen in ideal case
[eet ay
Wt Qo
CoP =
 
 
  
 
 
 
a Orn (mea) to HeatCfow grade enetey)
“ap
nO QCG=N Rink ( High grade
 
    
bic, avesn'E Ineo?
ok 4
- A rocess Js ever st
Girecaon JO reversed back.
apy ay a
hat 2ts
hs dhe proces
’ Slate yor }ho uk 7
tl
“Up fi ion O
ter The osn clus? ;
( af w be made bp the or genal 7
ding Jpn the proce? 49 ee
YUCTeoeeeedstsgessessd
lhe sysleo can Oe
su
re we) ass(4e) ah
 
| fn vey oie) “Tereuerstble” ‘
4
The | 4
H i A as Se I ;
. 776) (< 40) 4
7,886) Not possible epenlancousl ‘
a AMach a heat pump , Shak Jol. again lake 4
work fiom the surrounding . d
q
@ Comses of Sacverstbiltle F~ ——sacchutcal og@@ Cae)
1y Lack of reat equtlebrum Bemol eq (AT) A
2” Dissipative effects. Ly Chemical «4 Cde :
44>
Ly Mechanical frielrn
t> Fuad viscostly, eat ;
Inelastalg Tf there ane be no
yslerisin , “lack of Themodynamielt
ra Sard : ji
and no
Elechacal resistance 4 ctissip ote effe 4
 
Heal Wansfer 2 AT=O at —r ota)
* AM natara. ‘process are. han he process se 4
Baaaversible , becaust hs basic SNe OS q@
Yequuement “of naliral process Are a a
ths causes of # Haaevenstl uy ) «
OF q
2,
@ Process Parfeet! Revevsi ble 20 ,
mrevers:6le 9), he Kent :
ORK TRANFER 5 aP=o apo
a ae-o Apo CaP 4
‘
{
Mass Transfer > Ac-o0 sC—r0 Cdc)
Chunical reachum = St =O a4 ro Cafe i> Reversible he beat Vans fer ocess ¢
~ Ee ae ot of a
ape
mies fase
4oc
a
 
Taine 7
 
[ase
4o- [go-oore | Se] [ae 002°C =) sft amber of rewers_reservoits
Trfinvte small empseralie
“tak allows, spate a
9°
heat fiow beueeo yeservoty & sysla
one
> Reversible cycle 2 ob processen O78 remty— ae
Spe can be more.
heak ere? eng:
CARNOT oS ENGINE 3— Neo
CARNOT Ss —
an a “pouty ible eng cre operating betwen the
ble heat engine 20 Ae
tb thi
ete We Lele and reuers:
she same Offi cary.
     
some demperalane
besen np emperatn Junto have
cmcept_© of shade Snresiyaris SE" scale of Jempralue
ble = Gyr AReI- Q2RKR
410°) ules Qyc Qin = [- SF
ws RO Sig Qe
ng@g@2n Ap =F Meg a
Qe
Qin. FC, +)
Qar
   
tz Cc)tizte
: Que EU +)
@
a 2
(gy a= 6 Gs - F(t)
@ a
ts 4s gr Ce +s)
Cs) Wp O2-% Q,
Qs Z > Ft)
G FO © Fe)
only 7f | eC te) = ¢c)| 2 Eb
bCt2) th
 
a a a a  Se is wt a state funcGen but ik can be e.
aso state farction Cov property) ee pressed
2 pveRT Ci mele)
du= é@ - SW
Fo a system performing reversible proces! with ideal 9
as dhe syslao compo
“tan &@- Pay = dU
and U= J 5)
ol ta dv
is o for an weal 9 en;
av
+
du= av) dt =W4T
oT
v
=0)
be = Pav + GvdT
= x av +o at7
=
Li
[Mek ap a degre of inevens bilby
we et
ey OR
er, ‘BN
ae
7 pe’
YoY 45
\
 
e eke
ding degree © gasevev sib &
 
° ; ss a
% \e ey WORK Is DONE => F 2
<5 wt Falls ON THE SysTOM Timp © he Te.
GD purq a reservar o low emp) 2 sem
Se amount of heat Comes Gut C4) —
syslo emp 15 71
~ a mee eaMAARAOASH «e
> (OD) again repeat i) and Temp ae
> @ oO Sysleo temp Rise to Ta
Se (> 2 ON u = falls do 1
. git 2 The syste is ot TF and repeat G)
=> Aim is 40 ayaimize Aegree 0 Suwersib mor Hoecon thik
’ of a process where degree of qrreversi bi =0.
9 = Fa ag teversible process he ay of adres bilg is TD.
,
> ds - E@e
: Fe te Me
> — tepte process— eo
: ss fis E , S = Enlropy
> fase pews
; 1 nel
i ace f EL
| fe
ae
 
TU
f SOe =O ond fe
‘ a
de
oe Reversible procest
Reversible oyele
(sae fx ao rwasble cycle fe
moe
7 von‘
Quant —T—
heal eng con be
belie
CARMOT's theomun a Ke
efficent fren & vevers! We engine voork sng
came emp reser -- « Crefie previews par)Absolute thumodyramic
scale of tempt ae (& 2
Qr 2)
(7 fe)
 
f (0 4
jv Ri THe
, {2%
ot)
prayer
Qa re
lose reversible vy cles>
Sat oy,
=
“Any |
¢ Beadedweer wwews
[5 SG ae Pp . 4
= ae ea
repver sible a
7 v ry
This was answared by Clousitas , ee oe
_————— saswre good
cot OP or
 
 
Clausius snequalily 2
f  < z peer dy (F8)<°
Ks thie ng not & park
' —functe
ie < fees => ioe
!
 
¢ ve alfot 2
: inlegrals ba) Thy, IRe ond TRe 2
smalle tran
 
Te manmum valve of damon dese
By unig uc vole vendere by. ( (Cee ond jhok io
Ry eg Re J
YY
ee enlroyy AS
 
‘CHANGE IN “ENTRO
OF & HEAT and
peocess , BUT NO
py Is expressed AS A ~ ponlcTLON
TEM PERATURE ONLY nes A REVERSERE
7 FOR TRREVERSIBLEProof of Clousus &nequaltly:
 
 
 
 
ee Wee Wer 2a
Om 7m | Nt GRD ne
er I BE ond T'S
ce " s Qe ,
AN  Q@ a QR
Q, ar
Qyh
Q To
9 S) <0
(Fé) a
= Reversible adzabatie process io
(8a), =9
AS - (0s oy
+
AS=0
[Si> Sa Tscenlyopic proce’
> $ 8 ZO (FPrveversi ble ey de)
5
Say ac ( Lreversible proces)
jsse ( Prbo
 
adiabatic cee °
nd
Trreversible
( wali aasabatic Poet
(S@) =o Jf the proces: adzabatic
asy J & af Me Pesala om, SE OTS
x must ancreaSt- :—————__—
= AS 70
AS > ( S&
{5
Trrevesible
AS=6 {Gale Reversible
 
3
For al processe ( Renrrsible + Trrevwsibl )
paeos!
li
AS = sa a OG
7
AS= ASe + AS?
BE Oe OE, ag of ey,
Change Chong diet intimal
of exhopy Ff ots Sagusersi bi by
Oo
asysten iat Poe
2ASs; =O
2 For a reversible process i
and AS-DSe
AS= 0 (fr @ | adzabatee proce?)
=) For aN aguwersible adiabatee procerts DSer0
=) For 0) aie
AS; 702
2
ES . _
CEE so Qa -S tds 2TAS.
4
RS
concept of a0 isolated _syslinPd eooak
® $g=Swrdo
fora euersible process ina
Sq: Tds
closed syslem with
é es
) ard Swe Pdv
preca
ye fist Jaw.
 
appied 1? any
® fo a verrsible procest tds - pave AU 1s
eutev
ut
For ony proces
pv=eT
ve RT
bs tee
and Tds = Grdt + PAY
ds - Gat +fdv £.&
aa TOV
ds- Cy at + Rdv
i Vv
 
a
B82 Gln te + Rie Me
qT Vv,@® Gonst pressu process wilh aheeased tempera ef
feck
Le Cosnst Pj heating )
ase Gin -kie B BP
1 ~ Revirible
P,
Ase qnb Ge Ee >T)) - Tded goo
=
we [Bs So Amercare in by
oO Jsothermol expenserm of an ideal Se
as-@inb +9
an
AS = G \n Te 70
[BETO] Inca n BAS -
(270)
 
 
1 "
| The tum se oye
erates 2p O cle ond develop! eonlinwe
wotk can neu high 4emP
body.
. Reservary ) Jk is'e * dan of Srfwile
elk oe A 2 is @&
“ 1] Creal, Res heak cap ath Sch fa. whin
Q heat is adde or base out fr
je WI Zh de lero? of ak dwesnt change
We 7 Qe
eae lee
He - @- 82 21°
Je qe See
\ si Q,
oy thermal Effort Q2¥0 ( seand low)
7 “ {felons eyen ideal com
peBpowe we
ee ea Q-Heak a eo gree om
t>> w= Q We Kok + * high grea oliI
Absolute Ahermo cy namic scale © emp eraliaw ©
bir be
 
 
 
We. Qn -Qe 1H Cre
Raa, Ce OR
Qe. fCtd2)
Qor
[Az
Rolin of heal added Trot vepeed 25 Ctue dem?
Gwe f Cu te)
Bre
826. § Ca, ts>
Qsk bcnalims of Neel ond
Remove 42 veservoi than the or
Heg(B) 1s & combuiaGeo of heat engines
fom §,074 Se
Qin 2 f Cts)
Sse Slt) 2 6G) oF,
fasise JUD” Farid $0)
Rin means funchen of ti t2 So quaint of funcGsns
fltr 4,) and fC42, 43).
 
 
We cannot delevmine hese feape valist,
absolutely Aha stfo-reere “becaue
wor denot have yeversible engqanes
Sh Prachce, but “we know Ahal he
rats Of here absolute tem > eralaees
Dh of aeiusby heok Vote
 
on
dims served 3 Weak ong?
9° 1 Us defard an vob afew AU
Nike clefewl of abride Hrermedy anc scolr com
fon ae rahe Th, .| Ps Nn Be Wor KDoW
7 Hrod add
AN 1 aA G
c
foe =0
Tr
oye
_shp hoc? a a)
 
Fer a proce
dc = Se) Pas- f EWE -as
rams FFtalk-aelsoeat = tours aH Sere
 
 
After de dal. abouk CARNoI't THEOREM anc Tbr duce
c laustas ie
> in equal 4)
Ga ae te Loge ee
Bie Qy
BO Rony (a
Yeon ai
T2
Qi < Se
Qe
Beh
Q,
i &) £0
Ty) ae
=f 
s
»
»
y
y
ee
y
y
y
’
y
y
»
i
;
,
.
'
,
'
'
_ a ———
pew cas |
ali
: #382 5 psec
T ]
1
ard ja < SS i [28 
,
,
1
,
,
'
,
'
' to wer 26
'
* sy dhe temp. We con't explote
; of heat Coquating to Zero.
Sq- sv du
Sa-0, o4 Sw #0 ead Su + pay
Wy = fdu 2 U2-Y,
How do you exp lain it ?
[da= Sw ] Mo wF
5 Io cote Datta WS ghee revernble heel lransfer
ae ————
SQTO @& Sw =o) >» [eq-40 )
Now fren enlopy concept we baow..
ee TonachsievetommentropectitiaMe ua cost Supply
amrloeahaohonserncbucklnnsncil'y-
“as ose (a SESE)AS
 
+
~ {= sla AG
AS = ASo + ASI
ae E+ ‘chang of 74
Change of change of due +0
oni 3p senlipy oe Enteral
acti Srovetleraal Cet
ian ages bil
(clue +0
heat \ansfor -)
ty Fer a repersible proce”?
=p For a
pisces
=P Fer &
<0
——
For &
|
veversidle
ee
yeversi ble
jrvwers ble adiabatic
2
adia bate
diabate proce te
- AS;=0
rroce -- ASerASi =O
Me Bs-2Se aes
pote © ASCO, 5,7 8
Cias70)9(SQ. = ds
T 2
= frds
)
=
= Concept o; an isolated s slay 2
Hed Se [ate
(As) y z2G
 
Q=o0 isolated
W=0 syshen
Tsolated system does nut inlevack
sjetiahd job The sunounding = ASe=0
PP eyelem and tf chang Cor anlerace 5) orthen
he ssolated 5 ‘stem ( anside the Bolated
sys) are reuersible Tun BSi=0
=> AS =0
Teolated syst
~ Paes Cas- ASD
(no peat inleraclan rol sumondiny
ooo
if e 4 in lerachonr
joitid Ihe isolated outs the
system are veuersi ble Doleded syste)
BSji=9 ant Lrrew7Fi ble
thin AS; 70
= BS =O
=e ASI7ASyshmo i diag to 8
b A ip Suavundin
' my {3 ” 3A
fe
Js olated sys lino => System + Surrounding
(arias ee)
 
; tf snlrractions within sf in lerachin §
Abs sean ave veurrsible ie are Lrrwes!
un
ASHE ante aclnd BS7O-
ASF#O Sy shh) AS 70
= (AS +(AS
Ee ASD eee re
all inlivacting syslons
eta
A
é od gh 70
Sy sto
    
   
siverse (teniled 9e-Sensc)
(As) 0
un verse
wy
al solrraclng sy sles om within dha univers
° 2
ble@ pee ae]
J a Reversi ble proce®
Ass (2 4 Asi [ 4s > js2|
ble and adzabater Fane
© Far a vewersi
20 Cs=constant)
(S@ p20 ond 4S 20 <7 4
Teeenfopic process
O For a resensible drabate pat
aS = G@e
alg & [eves ble healing, 3 proce |
 
 
)Qee =STds AS 70
1Bag7 9
+ bee
2 s
Tp [of cee adzrabetce prec)
Sis
am 1s essential
be reversible or Jueversible )
=7 For an Ssolated sy slen adzabatee P
SQ=0 Csyslzo may
4s [$e
AS 7% fee
ss
to& Equivalent syslim Cisolated system)
const ludins system and surrounding
"untverse " [Ascotated system]
System + Surrounding = Isolated syst 97 univers
as), + (@s). = (AS)
uy universt/isolated syslo
(As). yo
2 [tas (45), J xo
oO SF inlevachons ave rwersible..(AS) =O
Gniverts
(5), seiroelng =O Cof aateraclins ave muvrsite)
Syskens
(5, inlevackn’ 7o(s
Syshne =
5 os F ~G paaple of anvreanw of enbsopy -
AS 7 | 08
( Je
Syshen
a + 48:(70)
+ Uy
For urreveisible proces
=O 1 @ TwePSble proc
» deeersible )
02 shenie (as) 79
4
eee 70
For 2 reversible proces (Si =0)
js yO =r $870
OSi2
| For an Baeversible proce, whu SQ70 7 (ee yo and
T
vandtf 6a The System may be in thermal e: (at = 0)
and mechanical eqn 2 Ob). but fn lees of chemical eg
ond phases, thu oyster SHil urdengecs shen ge
ds 7% £&
=
 
 
 
 
Examble i Gonsider a proce
Sm < TOs" a
beh and ees
(du +6w) S tds (au + Rv \ eteds
—_
afut bye Ts) $0 dcutpy-ws) S¢
=a(H=Tes) £6
(9, <2]
[EHTS] Gibe's frclm Saal,
voces @ const pressust Bae
to reduced G-
leads ta reduced Gi bb's px
precen does nok -lake
ny Spontaneous
mp ye acl
> Sj ontaneoun proces
envvay. A nalival or Sportancous
place U, Gibbs free cous Ancrease-
=
6=- H-Tds :
dG= dn-1Tds -sdt
Ga du +Pdv +vdP-Tds -~sdT
Ve umstant =Vo and Tecamst=To
dé - du+vdp=tds
and Peumst”
‘dE Ags du-tds
[eeusts ] [F=0=TS] Helmholtz fe «oy
dered ak" stant "Gh
rt considere constant volume
> SF eth wt gid ed, olan
"do _tds" a A
Pelmbiolts fee ener
p-u-ts :
— \
dle. du 7 Tds- SatSome useful vretations wag G and Fae =
a G- H-TS
Age du-td
wet. ds dut pav+ vd P. -
AG- aut Pdy evdp—Teas- SAT
ana fiero 15F Law to &q- Sw dU
69- Pav ~ du Crees be eceti)
Sa- du t+ Pav Sw~ Pav
oe
s- SAT
dAc- 64+ yap Tas sat
ble peg
From 0” Law C peuey StLL
Ny
ju aG\_
co) =
P
ic.
° Gas =} —-AS
a1
Pp. :
DG = Diffrcoce a fies energy of products p reodkanls
plow.  dF~ —Pdv —SdT
oe leer
Ov
Bie Ve. = S
ar
Vv i
cur dn much
souds, the external pres
Ahan the yolume. thus Gibbs
Jo dhe case of
\ than Helmholtz
asits tO usmliol
mort &
free ener8y ys much mort usefa
Sree nerdy.
2g Nee
Ts. Pav? = du Most basic
eq*! hue
Tas+vdr- 44 ee
dvp- sdr = AG
— Pav —Sdt oar
Rib ee
 
_ 1» a RBAAR ADDS EER A 7© Rewustble isolhomal
panne
e- AUVs CYATHO @
OO 6w2dau =O
} ba = éw
 
 
 
expansin of an ideol_ ge
Ysodhumal ideal go>
  
Reerstble dws PAV
SH = S= pdv
Vo v2, Pv-RT
[oner.fipay = dv p=RT
aN Vv
F yes :
p Ng = ORK = RT In vex, Cvr™)
C 1
~ W270 aaa
As = (E@e - (6®)e = = a0 Ger n¥s
| as 1 om “)
=RIn ve
s a Mi
: Re “(v2ew) =a BS) < oO
BM ond 3)
OS
(AS) 2 AS geo EO on heat
Reservior yeserior
= Net change in nex =OFor cormpyession case
(as) = (82) _ Wo RTI Ne
ma eerie Beets Rn
d rE ae li ay
suace V2eM
(AD on BNE :
dure com pres scam heat Wan s fev lakes place from
get? Summunciag
erate
@s)
Sussouncea
AS =O Cro change ey the total enliopy of
he syste)
= e224 O52,
OP is
Resewwiny (GR.
   
 
 
 
i ee ee a ee a
a See Rmmeecec kh KE
a a as