CHP 3
CHP 3
icû«e _âMZò
(ARITHMETIC PROGRESSION)
[ 42 ]
_âùZýK _âMZò ùMûUòG _âKûee iõLýû @^êKâc iéÁò Keò[û«ò ö Gjò @¤ûdùe ùKak icû«e _âMZò
iµKðùe @ûùfûP^û Keû~òa I RýûcòZòK _âMZò Z[û jeûcôK _âMZò iµKðùe Cycû¤còK MYòZùe @¤d^
Keòa ö
3.2 icû«e _âMZò (Arithmetic Progression (A.P.)) :
icû«e _âMZòKê iõùl_ùe (A. P.) ùfLû~ûG ö ~\ò ùKøYiò @^êKâce _âùZýK _\eê (_â[cUòKê QûWÿ)ò
_ìað_\e aòùdûM`k iað\û icû^ jêG, ùZùa @^êKâcUòKê icû«e _âMZò (A. P.) Kêjû~ûG ö GVûùe
aòùdûM`kKê iû]ûeY @«e (Common difference) Kêjû~ûG I GjûKê iõùl_ùe 'd' \ßûeû iìPòZ
Keû~ûG ö
@ZGa icû«e _âMZò _ûAñ t2 – t1 = t3 – t2 = t4 – t3 = ......... = tn – tn – 1 = d @ùU ö
3.2.1 icû«e _âMZòe n-Zc _\ ^òðd :
ùKøYiò A.P. e _â[c _\ a Gaõ iû]ûeY @«e d ùjùf Gjò @^êKâce iû]ûeY eì_
t1 = a
t2 = a + d = a + (2 – 1) d
t3 = a + 2d = a + (3 – 1) d
t4 = a + 3d = a + (4 – 1) d
.........................................
.........................................
tn = a + (n – 1) d
@[ðûZþ A.P. ùe [ôaû @^êKâce iû]ûeY eì_Uò a, a + d, a + 2d, a + 3d, ........, a + (n –1)d
iêZeûõ n Zc _\e iìZâ : tn = a + (n –1)d
GVûùe _â[c _\ a = 1
3
I iû]ûeY @«e d=
2
3
–
1
3
=1 –
2
3
=
4
3
1
–1= 3
[ 43 ]
C_ùe [ôaû A.P. cû^ue iû]ûeY _\ tn MêWÿòK ~[ûKâùc
(i) tn = –18 + (n – 1) 2 = –18 + 2n – 2 = 2n – 20 (Qtn = a + (n –1)d)
(ii) tn = –11 + (n – 1)11 = –11+ 11n – 11 = 11n – 22
1 1 1 1 1 1
(iii) tn = 3
+ (n – 1) 3 = 3
+ 3
n – 3
= 3
n
_ê^½ ùKøYiò A.P. GK ^òòðÁ _\ ^òðd KeòaûKê ùjùf, C_ùeûq iìZâùe a, n cû^ iÚû_^ Keò tn
c¤ ^òðd Keû~ûA_ûeòa ö
cù^Ke C_ùeûq _â[c A.P. e \gc _\ ^òðd KeòaûKê ùja ö
t10 = – 18 + (10–1)2 = –18 + 18 = 0
[ 44 ]
@[ûðZþ Sn = n
2
(_â[c _\ + n Zc _\)
_ê^½ C_ùeûq iìZâùe l = a + (n – 1) d iÚû_^ Kùf
Sn = n
{ a + a + (n – 1) d} Þ Sn = n
{ 2a + (n – 1) d}
2 2
n( n +1)
\âÁaý : 1. _â[c n ùMûUò MY^iõLýûe ù~ûM`k Sn = 2
KûeY _â[c _\ = 1 I n Zc _\ = n ö
\âÁaý : 2. ~\ò _â[c _\ a Gaõ iû]ûeY @«e d = 0 jêG ùZùa _âMZòUò
a, a, a, a, .......... ùja Gaõ Sn = a+a+a+.... n iõLýK _\ _~ðý« = na ùja ö
\âÁaý : 3. GK icû«e _âMZòe
(i) _âùZýK _\ùe icû^ iõLýû ù~ûMKùf;
(ii) _âùZýK _\eê icû^ iõLýû aòùdûM Kùf;
(iii) _âùZýK _\Kê gì^ aýZúZ icû^ iõLýû \ßûeû MêY^ Kùf;
(iv) _âùZýK _\Kê gì^ aýZúZ icû^ iõLýû \ßûeû bûM Kùf _âùZýK iÚkùe
f² @^êKâcMêWÿòK c¤ icû«e _âMZòùe ejòùa ö
_âcûY : cù^Ke icû«e _âMZòe _â[c _\ a I iû]ûeY @«e d
I icû«e _âMZòUò a, a+d, a + 2d, ..., a+(n–1)d,
(i) e iZýZû _ûAñ _âùZýK _\ùe k iõLýûUò ù~ûM Kùf f² @^êKâcUò
(a +k), (a+k) + d, (a+k) + 2d, ...., (a+k) + (n–1)d ùja ö
Gjû c¤ GK icû«e _âMZò ù~Cñ[ôùe _â[c _\ a+k I iû]ûeY @«e d,
VòKþ @^êeì_ bûùa (ii), (iii) I (iv) e iZýZû _âZò_û\^ Keû~ûA_ûeòa ö
C\ûjeY - 2 :
(a) IfUûA cògûAaû _¡Zòùe 15 Vûeê 85 _~ðý« MY^ iõLýûcû^ue ù~ûM`k ^òðd Ke ö
(b) ùMûUòG A.P. e _â[c _\ 4 I iû]ûeY @«e 3 ùjùf
(i) A.P. Uò ùfL,
(ii) A.P. e 33 Zc _\ (t33) ^òðd Ke I
(iii) A.P. e _â[c 40 Uò _\e icÁò (s40) ^òðd Ke ö
icû]û^ :
(a) 1 eê 85 _~ðý« [ôaû MY^ iõLýûcûù^ ùjùf 85 ùMûUò I 1 eê 14 _~ðý« [ôaû MY^ iõLýûcûù^
ùjùf 14 ùMûUò ö
\ 15 eê 85 _~ðý« [ôaû MY^ iõLýûcû^ue iõLýû = 85 – 14 = 71
[ 45 ]
aòKÌ jòiûa : 15 eê 85 _~ðý« iõLýûcû^ue iõLýû = (85 – 15) + 1 = 71
cù^Ke 15 eê 85 _~ðý« MY^ iõLýûMêWÿòKe ù~ûM`k = S71 ö @ZGa
S71 = 15 + 16 + 17 + 18 +.... + 83 + 84 + 85
S71 = 85 + 84 + 83 + 82 +.... + 17 + 16 + 15 (IfUûA ùfLòùf)
2S71 = 100 + 100 + 100 + 100 ..... + 100 + 100 + 100
\ 2S71 = 100 x 71
100 x 71
Þ S71 =
2
= 50 x 71 = 3550 (Ce)
71 n
iìZâ _âùdûM Kùf, S71 = 2
(15+85) = 50 x 71 = 3550 [Q Sn=
2
{a+l} ]
GVûùe _â[c _\ (a) = 15 Gaõ ùgh_\ (l) = 85 ö
(b) (i) A. P. = 4, 7, 10, 13, 17, ... ... [Q a = 4 Gaõ d = 3]
(ii) t33 = 4 + (33 – 1) x 3 = 100 [Q tn = a + (n–1)d]
40
(iii) 40 Uò _~ðý« cògûY`k (S40) = {2x 4 + (40 – 1) 3}=20(8+117)
2
n
Þ S40 = 20 x 125 [Q Sn = {2a + (n–1)d}]
2
Þ S40 = 2500 (Ce)
C\ûjeY - 3 : ùMûUòG A.P. e t4 = 11, t10 = 16 ùjùf, t21 Gaõ _â[c 40 ùMûUò _\e ù~ûM`k
^òeì_Y Ke ö
icû]û^ : cù^Ke _â[c _\ = a Gaõ iû]ûeY @«e = d
\ @Qò : t4 = 11 Þ a + (4 – 1) d = 11Þ a + 3d = 11 .... (1)
\ t10 = 16 Þ a + (10 – 1) d = 16 Þ a + 9d = 16 .... (2)
5
(1) I (2) eê Þ (a + 9d) – (a + 3d) = 16 – 11 Þ 6d = 5 Þ d =
6
5 5 17
aðcû^ (1) Þ a + 3 x 6 = 11 Þ a = 11 – 2 = 2
17 5 151 1
ùZYê t21 = a + (21 – 1) d = + 20 x = = 25 (Ce)
2 6 6 6
40 17 5
iìZâ _âùdûM Kùf S40 = {2 x +(40–1) }
6
2 2
65
Þ S40 = 20(17 +
2
) = 340 +650 = 990 (Ce)
[ 46 ]
C\ûjeY - 4 : 2, 4, 6, 8, ... @^êKâce S50 ^òðd Ke ö
icû]û^ : GVûùe t2 – t1 = 4 – 2 = 2, t3 – t2 = 6 – 4 = 2, t4 – t3 = 8 – 6 = 2 ....AZýû\ò ö
\ \ @^êKâcUò GK A.P. @ùU Gaõ Gjûe a = 2 I d = 2
\ S50 = 50
2
{2 x 2 + (50 – 1)2} = 2550 [ Q Sn = n
2
{2a + (n – 1) d} ] (Ce)
C\ûjeY - 5 : 27 + 24 + 21+ ... ... e ùKùZûUò _\ ù~ûMKùf ù~ûM`k 132 ùja ?
\êAUò Cee Zû_ô~ðý aêSû@ ö
icû]û^ : GVûùe _â[c _\ a = 27 I iû]ûeY @«e d = 24 – 27 = 21 – 24 = – 3 AZýû\ò ö
ùZYê \ @^êKâcUò 27, 24, 21, .... A.P. ùe @Qò ö
cù^Ke _\ iõLýû n ùjùf ù~ûM`k = 132 \ Sn = 132
Þ n
2
{2a + (n – 1) d} = 132 Þ n
2
{2 x 27 + (n – 1)( – 3)} = 132
Þ n
2
(57 – 3n) = 132 Þ n ( 57 – 3n) = 264 Þ –3n2 + 57n – 264 = 0
Þ n2 – 19n + 88 = 0 Þ (n – 11)(n – 8) = 0
Þ n = 11 aû 8 @[ûðZþ A.P. e 11 ùMûUò _\e ù~ûM`k 132 ùja Gaõ 8 ùMûUò _\e ù~ûM`k
c¤ 132 ùja ö ö
Zû_ô~ðý : aðcû^ t9 = 27 + (9 – 1) ( – 3) = 3, t10 = t9 + d = 3 + (–3) = 0
t11 = t10 + d = 0 + (– 3) = – 3
Þ t9 + t10 + t11 = 3 + 0 + (– 3) = 0
Þ S11 = S8 + t9 + t10 + t11 = S8 + 0 = S8
@[ûðZþ ù~ûM`kùe 8 Kò´û 11 ùMûUò _\ ejòùf ù~ûM`k 132 ùja ö (Ce)
C\ûjeY - 6 : ùMûUòG @^êKâce tn = 2n + 3 ùjùf Sn ^òðd Ke ö
icû]û^ : tn = 2n + 3 \êA _ûgßðùe n a\kùe 1 ùfLòùf _ûAaû
t1 = 2 x 1 + 3 = 5 Þ a = 5
ùijòbkò n a\kùe 2 ùfLòùf Gaõ 3 ùfLòùf _ûAaû
t2 = 2 x 2 + 3 = 7 Gaõ t3 = 2 x 3 + 3 = 9
t3 – t2 = 9 – 7 = 2 Gaõ t2 – t1 = 7 – 5 = 2 \ t3 – t2 = t2 – t1 = 2
\ \ iû]ûeY @«e 2 ùjZê f² @^êKâcUò GK A.P. ~ûjûe d = 2
n n
Sn = 2
[2a + (n – 1) d] = 2
[2 x 5 + (n – 1) x 2]
= n
2
(10+2n – 2) = n
2
(2n + 8) = n (n + 4) = n2 + 4n (Ce)
[ 47 ]
UúKû: n iÚû^ùe ùMûUòG ù~ùKøYiò ^òòðÁ iõLýû ù^A GK ^òòðÁ iõLýK _\e icÁò c¤ ^òðd
Keû~ûA_ûeòa ö @[ûðZþ n = 30 ù^ùf, S30 ^òòðZ ùjûA_ûeòa ö
\ S30 = 302 + 4 x 30 = 900 + 120 = 1020
C\ûjeY - 7 : ùMûUòG @^êKâce Sn = 3n + 4n2 ùjùf, t7 ùKùZ ?
icû]û^ : \ @Qò Sn = 3n + 4n2
(n–1) iõLýK _\e icÁò Sn – 1 ùjùf (Sn ùe n _eòaùð n–1 ùfLòùf)
Sn – 1 = 3 (n – 1) + 4 (n – 1)2 = 3n –3 + 4n2 – 8n + 4 = – 5n + 4n2 + 1
cûZâ Sn = Sn – 1 + tn Þ 3n + 4n2 = – 5n + 4n2 + 1+ tn
Þ tn = 8n – 1 ............. (i)
\ t7 = 8 x 7 – 1 = 55 [(i) ùe n = 7 ùfLòùf ] (Ce)
C\ûjeY - 8 : _âcûY Ke ù~, ~\ò a2, b2, c2 iõLýûZâd A.P ùe ej«ò, ùZùa
1 1 1
, , A.P. ùe ejòùa ö
b+c c+a a+b
icû]û^ : ù~ùjZê a2, b2, c2 iõLýûZâd A.P. ùe ejòQ«ò ùZYê _âùZýK iõLýûùe ab + bc + ca ù~ûM
Kùf ^ìZ^ iõLýûZâd c¤ A.P. ùe ejòùa ö (\âÁaý - 3)
\ a2+ab + bc + ca, b2 + ab + bc + ca, c2 + ab + bc + ca A.P. ùe ejòùa ö
Þ a(a+b) + c(a+b), b(a+b) + c(a+b), c(b+c)+a(b+c) A.P. ùe ejòùa ö
Þ (a+b)(c+a), (a+b)(b+c), (b+c)(c+a) A.P. ùe ejòùa ö
_âùZýK _\Kê (a+b)(b+c)(c+a) \ßûeû bûM Kùf ^ìZ^ iõLýûZâd c¤ A.P. ùe ejòùa ö
( a + b)( c + a ) ( a + b)( b + c) ( b + c)( c + a )
, ,
( a + b)( b + c)( c + a ) ( a + b)( b + c)( c + a ) (a + b)( b + c)( c + a )
A.P. ùe ejòùa ö
1 1 1
\ , , A.P. ùe ejòùa ö (_âcûYòZ)
b+c c+a a+b
C\ûjeY - 9 : \gðû@ ù~, ùMûUòG A.P. e tm+n + tm–n = 2tm
icû]û^ : cù^Ke A.P. e _â[c _\ Gaõ iû]ûeY @«e ~[ûKâùc a I d
\ tm+n = a + (m+n–1)d Gaõ tm – n = a + (m – n–1)d
tm+n + tm–n = (a+a) + (m+n–1 + m –n – 1)d = 2a + (2m –2)d
= 2{a+(m–1)d} = 2tm
\ tm+n + tm–n = 2tm (_âcûYòZ)
[ 48 ]
@^êgúk^ú - 3 (a)
(K - aòbûM)
1. ^òcÜfòLôZ _âùZýK ùlZâùe i¸ûaý Ce c¤eê iVòKþ CeUò aûQ ö
(i) 1, 2, 3, 4, .... @^êKâcùe t8 = .................... [(a) 6 (b) 7 (c) 8 (d) 9 ]
(ii) 2, 4, 6, 8, .... @^êKâcùe t7 = .................... [(a) 12 (b) 14 (c) 16 (d) 18]
(iii) -5, -3, -1, 1, .... @^êKâcùe t11 = .................. [(a) 13 (b) 15 (c) 17 (d) 19]
(iv) 3, 6, 9, .... ùe iû]ûeY @«e d = .............. [(a) 3 (b) 4 (c) 5 (d) 6]
(v) -4, -2, 0, 2, .... A.P. ùe iû]ûeY @«e d = .......[(a) -2 (b) -3 (c) 2 (d) 3]
(vi) 10.2,10.4, 10.6, 10.8, .... ùe t5 = ............... [(a) 11.0 (b) 11.2 (c) 11.4 (d) 11.6]
(vii) 2.5, 2.9, 3.3, 3.7, .... A.P. ùe iû]ûeY @«e d = .......[(a) 1.5 (b) 1.4 (c) 0.5 (d) 0.4]
(viii) 3, x, 9, .... GK A.P. ùjùf x = .............. [(a) 4 (b) 5 (c) 6 (d) 7]
(ix) 1.01, 1.51, 2.01, 2.51, .... A.P. ùe iû]ûeY @«e d = ........ [(a) 1 (b) 0.5 (c) 1.5 (d) 1.05]
(x) 5, 0, -5, -10, .... A.P. ùe iû]ûeY @«e d = ..... [(a) –5 (b) 5 (c) –10 (d) 10]
2. ^òcÜfòLôZ @^êKâc c¤eê ùKCñMêWÿòK A.P. ùiMêWÿòKê PòjÜU Ke :
(i) 1, 4, 7, 10, 15, 16, 19, 22 (ii) 1, 8, 15, 22, 29, 36, 43, 50
(iii) 1, 6, 11, 15, 22, 28, 34, 40 (iv) 1, 4, 7, 9, 11, 14, 17, 20
(v) –5, –3, –1, 0, 2, 4, 6, 8
(vi) a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, a + 6d, a + 7d
(vii) 0.6, 0.8, 1.0, 1.5, 1.7, 1.8, 1.9, 2.0 (viii) –7, –4, –1, 2, 5, 8, 11, 14
3. _âgÜ 2 ùe ù~Cñ MêWÿòK A.P. ùicû^u ùlZâùe iû]ûeY @«e ^òeì_Y Ke ö
4. _â[c _\ a = 5 ù^A A.P. e _â[c PûeòùMûUò _\ ùfL ù~_eòKò iû]ûeY @«e
(i) d = 5 (ii) d = 4 (iii) d = 2 (iv) d = –2 (v) d = –3 ùja
ö
5. GK A.P. e n Zc _\ tn ^òcÜùe _â\ ùjûAQò ö _âùZýK ùlZâùe t5, t8 I t10 ùKùZ ^òeì_Y Ke ö
n +1
(i) tn = (ii) tn = –10 + 2n
2
(iii) tn = 10n + 5 (iv) tn = 4n – 6
6. ^òcÜfòLôZ A.P. MV^ Ke (ùKak \ßòZúd, ZéZúd I PZê[ð _\ Zâd @ûagýK) ù~CñVûùe
(i) _â[c _\ a = 4, iû]ûeY @«e d = 3 (ii) _â[c _\ a = -8, iû]ûeY @«e d = –2
(iii) _â[c _\ a = 7, iû]ûeY @«e d = –4 (iv) _â[c _\ a = 10, iû]ûeY @«e d = 5
1 3 1
(v) _â[c _\ a = , iû]ûeY @«e d = (vi) _â[c _\ a = , iû]ûeY @«e d = –1
2 2 2
[ 49 ]
7. ^òcÜùe _â\ CqòMêWÿòK bêfþ aû VòKþ ùfL ö
(a) 1, 2, 3, 4....... icû«e _âMZò iéÁò Ke«ò ö
(b) 1, –1, 1, –1,......... @^êKâcUò icû«e _âMZò @ùU ö
(c) 2, 1, –1, –2 iõLýû PûeòùMûUò icû«e _âMZòùe aò\ýcû^ ö
(d) ù~Cñ @^êKâce tn = n – 1, Zûjû GK A. P. @ùU ö
(e) ù~Cñ @^êKâce Sn = n(n – 1)
2
Zûjû A. P. @ùU ö
~\ò ùKøYiò ZâòbêRe ùKûYZâde _eòcûYe @^ê_ûZ 2 : 3 : 4 jêG, ùZùa ùKûYZâde _eòcûY
(f)
ùMûUòG A.P. MV^ Keòùa ö
(g) ùMûUòG icùKûYú ZâòbêRe aûjêZâde ù\÷Nðý ùMûUòG A.P. ùe ejò_ûeòùa ö
(h) @~êMà iõLýûcûù^ A.P. MV^ Ke«ò ^ûjó ö
(i) 5 \ßûeû aòbûRý icÉ MY^ iõLýû GK A.P. @U«ò ö
(j) 5, x, 9 iõLýûZâd icû«e _âMZòùe ejòùf x = 6
(L - aòbûM)
8. (a) 1 + 2 + 3 + ... ùe S30 ùKùZ ? (b) 1 + 3 + 5 + ... ùe S10 ùKùZ ?
(c) 2 + 4 + 6 + ... ùe S15 ùKùZ ? (d) 1 – 2 + 3 – 4 + ... ùe S30 ùKùZ ?
(e) 1 – 2 + 3 – 4 + ... ùe S41 ùKùZ ? (f) 1+1 +2 + 2 + 3 + 3 ... ùe S17 ùKùZ ?
(g) 1 + 2 + 3 + 2 + 3 + 4 + 3 + 4 + 5 ... ùe S39 ùKùZ ?
(h) – 7 – 10 – 13 - ... ùe S21 ùKùZ ? (i) 10 + 6 + 2 + ... ùe S15 ùKùZ ?
(j) 20 + 9 – 2 + ... ùe S25 ùKùZ ? (k) n+(n– 1) + (n – 2) + ... ùe Sn ùKùZ?
[ 50 ]
(f) ~\ò tn =2 – 3n, ùZùa Sn ^òðd Ke ö
(g) ~\ò Sn = n2, ùZùa t15 ùKùZ ?
(h) GK A. P. e a = 3, d = 4, Sn = 903, ùZùa n ùKùZ ?
(i) GK A. P. e d = 2, S15 = 285, ùZùa a ùKùZ ?
(j) GK A. P. e t15 = 30, t20 = 50, ùZùa S17 ùKùZ ?
10. (i) "IfUûA cògûAaû ùKøgkùe' ù~ûM`k ^òðd Ke ö
(a) 1 Vûeê 105 _~ðý« icÉ MY^ iõLýû ö
(b) 25 Vûeê 93 _~ðý« icÉ MY^ iõLýû ö
(c) 111 Vûeê 222 _~ðý« icÉ MY^ iõLýû ö
(ii) 1, 2, 3, ... ... @^êKâce
(a) S20 ^òðd Ke ö (b) S50 ^òðd Ke ö
(iii) 32 Vûeê 85 _~ðý« icÉ MY^ iõLýûe icÁò ^òðd Ke ö
(iv) 100 Vûeê lê\âZe icÉ ]^ûcôK ~êMà iõLýûe icÁò ^òðd Ke ö
(v) 150 Vûeê lê\âZe icÉ ]^ûcôK @~êMà iõLýûe icÁò ^òðd Ke ö
(M - aòbûM)
11 . ù~Cñ icû«e @^êKâce _â[c _\ 17 I iû]ûeY @«e – 2 Zûjûe ùKùZûUò _\e icÁò 72 ùja?
Gjûe \êAUò Ce còkòaûe KûeY ùfL ö
12.(i) GK icû«e @^êKâcùe @aiÚòZ Zòù^ûUò eûgòe ù~ûM`k18 Gaõ MêY`k 192 ùjùf, iõLýû
MêWÿòK iÚòe Ke ö
(iìP^û : iõLýûcû^uê a – d, a, a + d jòiûaùe ù^A _âgÜUò icû]û^ Ke ö)
(ii) GK icû«e @^êKâcùe @aiÚòZ Q@Uò eûgò c¤eê _âû« eûgò\ßde ù~ûM`k 16 Gaõ c¤ eûgò\ßde
MêY`k 63 ùjùf, iõLýûMêWÿòK iÚòe Ke ö
(iìP^û : cù^Ke eûgòMêWÿòK a – 5d, a – 3d, a –d, a+d, a + 3d Gaõ a + 5d)
13 . GK icû«e @^êKâcùe @aiÚòZ Zòù^ûUò eûgòe ù~ûM`k 21 Gaõ ùicû^u aMðe ù~ûM`k 155;
iõLýûMêWÿòK ùKùZ?
14 . ùMûUòG icùKûYú Zâb ò Rê e aûjêMWê Kòÿ e ù\÷Nýð GK icû«e @^êKcâ ùe [ôùf _âcûY Ke ù~ ùicû^ue
@^ê_ûZ 3 : 4 : 5 ùja ö
15. 100 eê lê\âZe Gaõ 5 \ßûeû aòbûRý icÉ ]^ûcôK _ìðiõLýûcû^ue ù~ûM`k ^òðd Ke ö
16. 200 eê lê\âZe I 3 \ßûeû @aòbûRý icÉ ]^ûcôK _ìðiõLýûcû^ue ù~ûM`k ^òðd Ke ö
(iìP^û : 1+2+....+199 I 3+6+....+198 ^òeì_Y Keò _â[ceê \ßòZúdKê aòùdûM Ke ö)
[ 51 ]
17 . 15 Kê G_eò 3 bûMùe aòbq Ke ù~_eòKò ùicûù^ GK icû«e @^êKâcùe ejòùa I ùicû^ue
MêY`k 120 ùja ö
18. A. P. ùe [ôaû Zòù^ûUò iõLýûe ù~ûM`k 15 Gaõ _âû«iõLýû\ßde aMðe ù~ûM`k 58 ùjùf
iõLýûZâd ^òðd Ke ö
19. A. P. ùe [ôaû PûùeûUò iõLýû c¤eê _âû« iõLýû \ßde ù~ûM`k 8 Gaõ c¤ iõLýû \ßde MêY`k
15 ùjùf iõLýûMêWÿòK iÚòe Ke ö
(iìP^û : iõLýûcû^uê a – 3d, a – d, a + d Gaõ a + 3d cù^Keò icû]û^ Ke ö)
20. A. P. ùe [ôaû Zòù^ûUò eûgòcûkûe n iõLýK _\cû^ue icÁò S1, S2 Gaõ S3 _âùZýK eûgòcûkûe
_â[c _\ 1 Gaõ iû]ûeY @«e ~[ûKâùc 1, 2, 3 ùjùf _âcûY Ke ù~, S1 + S3 = 2S2
21 . GK A.P. e Zc, P - Zc, q - Zc Gaõ r - Zc _\MêWÿòKe cû^ ~[ûKâùc a, b Gaõ c ùjùf _âcûY
Ke ù~, a (q – r) + b (r – p) + c (p – q) = 0
22. Zòù^ûUò iõLýû a, b, c icû«e _âMZòùe ejòùf _âcûY Ke ù~ ^òcÜùe _â\ iõLýû Zâd c¤ icû«e
_âMZòùe ejòùa ö
1 1 1
(i) bc
, ca
, ab
(ii) b + c, c + a, a + b
FG
1 1 1 IJ 1 FG 1 1IJ 1 FG 1 1 IJ
(iii) b + c–a, c + a– b, a + b– c H K H K H K
(iv) a b + c , b c + a , c a + b
1 1 1
23. (i) , , A.P
a b c
ùe ejòùf Gaõ a + b + c ¹ 0 ùjùf, _âcûY Ke ù~,
[ 52 ]
26. ùMûUòG icû«e ùgâYúe _â[c p, q, r iõLýK _\e icÁò a,b,c ùjùf _âcûY Ke ù~,
a b c
p
( q − r ) + ( r − p) + ( p − q ) = 0
q r
ùja ö
27. ùKøYiò A.P. e tp = q, tq = p ùjùf, _âcûY Ke ù~ tm = p + q – m ö
iìP^û : a+(p–1)d = q I a+(q–1)d = p Kê icû]û^ Keò a I d ^òeì_Y Keò tpq ^òðd Ke ö
28. ùKøYiò A.P. e Sm = n, Sn = m ùjùf, _âcûY Ke ù~ Sm+n = –(m+n) ùja ö
@«e iìZâ :
1 1
= −
1 1
Q −
LM
1
=
n +1− n
=
1 OP
n( n + 1) n n + 1 N
n n + 1 n( n + 1) n( n + 1) Q
Gjò iìZâUòKê @«e iìZâ Kêjû~ûG ö KûeY GVûùe ùMûUòG _\Kê \êAUò _\e @«e eìù_ _âKûg
Keû~ûAQò ö Gjò iìZâ _âùdûM Keò _ûAaû : 1
1x 2 = 1
1
– 1
2
Gaõ 1
2x3 = 1
2
– 1
3
.........
1 1 1
n( n + 1)
= −
n n +1
1 1 1
cògûAùf, 1
1x 2 + 1
2x3 + 3x4
+..... + n( n + 1)
= 1– n( n + 1)
n +1−1 n
\ Sn =
n +1
=
n +1
(Ce)
_ìaðeê _â[c n iõLýK MY^ iõLýû, @~êMà MY^ iõLýû I ~êMà MY^ iõLýûcû^ue ù~ûM`k ^òðd
Keòaûe ùKøgk Zêùccûù^ RûYòQ, ~ûjûKê ^òcÜùe \ò@û~ûAQò ö
[ 53 ]
(i) _â[c n iõLýK MY^ iõLýû (Natural Numbers) e ù~ûM`k :
cù^Ke Sn = 1 + 2 + 3 +.... n
GVûùe _â[c _\ = 1, iû]ûeY @«e = 1, _\iõLýû= n
n n n( n + 1)
Sn = {2x1+(n-1)1} = (2+n–1) = ..............(1)
2 2 2
n( n + 1)
iìZâ : 1 + 2 + 3 + ........ + n = 2
(ii) _â[c n iõLýK @~êMà MY^ iõLýû (Odd Natural Numbers) cû^ue ù~ûM`k
cù^Ke, Sn = 1 + 3 + 5 + ........ n iõLýK _\ _~ðý«
GVûùe _â[c _\ = 1, iû]ûeY @«e = 2, _\iõLýû = n
n n n
Sn = {2x1+(n-1)2} = (2+n–2) = . 2n = n2..............(2)
2 2 2
iìZâ : 1 + 3 + 5 + ........ + n iõLýK _\ _~ðý« = n2
(iii) _â[c n iõLýK ~êMà MY^ iõLýû (Even Natural Numbers) cû^ue ù~ûM`k :
cù^Ke, Sn = 2 + 4 + 6 + .... n iõLýK _\ _~ðý«
= 2 ( 1+ 2 + 3 + ..... n iõLýK _\ _~ðý«)
n( n + 1)
=2. = n (n + 1); [(1) iûjû~ýùe] ...........(3)
2
iìZâ : 2 + 4 + 6 + ............ + n iõLýK _\ _~ðý« = n ( n + 1)
aðcû^ _â[c n iõLýK MY^ iõLýûcû^u aMðe ù~ûM`k Z[û N^e ù~ûM`k ^òeì_Y Keû~òa ö
G[ô_ûAñ Gjò @^êùz\e _âûe¸ùe @ûùfûPòZ @«e iìZâe _âùdûM Keû~òa ö
(A) _â[c n iõLýK MY^ iõLýûe aMðe (Squares of Natural Numbers) ù~ûM`k :
cù^Ke, Sn = 12 + 22 + 32 + .... + n2
@ûùc RûYê ù~, n3 – (n–1)3= n3 – (n3 – 3n2+3n–1) = 3n2 – 3n +1
Gjû GK @ùb\ ~ûjûKò GK @«e @ùU ö G[ôùe n a\kùe 1, 2, 3, 4............. AZýû\ò Kâcùe
ùfLòùf
13 – 03 = 3.12 – 3.1 + 1
23 – 13 = 3.22 – 3.2 + 1
33 – 23 = 3.32 – 3.3 + 1
..................
[ 54 ]
...................
(n–1)3 – (n –2)3 = 3(n–1)2 –3(n–1) + 1
n3– (n –1)3 = 3 . n2 –3 . n+ 1
n3 = 3 (12 + 22 + 32 + ........... + n2) – 3 (1 + 2 + 3 + ...... + n ) + n
aûc_ûgßð I \lòY _ûgßðe _\MêWÿòK ù~ûM Keòaûeê
1
Þ n3 = 3Sn – 3 . n (n+1) + n (iìZâ (1) @^êiûùe)
2
3n 3n
Þ –3Sn = –n3 + n - (n+1) Þ 3Sn = n3 - n + (n+1)
2 2
3n
= n(n2 –1) + (n+1)
FG IJ
2
3 2n − 2 + 3 n( n + 1)(2 n + 1)
= n(n+1) {(n-1)+ } = n(n+1)
2 2
= H 2 K
n( n + 1)(2 n + 1)
Þ Sn = ...................... (4)
6
n (n + 1) (2n + 1)
iìZâ : 12 + 22 + 32 + ........... + n2 = 6
(B) _â[c n iõLýK MY^ iõLýûcû^ue N^ (Cubes of Natural Numbers)e ù~ûM`k :
cù^Ke, Sn = 13 + 23 + 33 + .... + n3
@ûùc RûYê ù~, (r + 1)2 – (r – 1)2 = 4r
Cbd _ûgßðKê r2 \ßûeû MêY^ Kùf, r2 (r+1)2 – (r – 1)2 r2 = 4r3
Gjû GK @ùb\ I r a\kùe 1, 2, 3............. n ùfLòùf @ûùc ^òcÜfòLòZ n ùMûUò ]ûWÿò _ûAaû ö
12 . 22 – 02 . 12 = 4 . 13
22 .32 – 12 . 22 = 4 . 23
32 . 42 – 22 .32 = 4 . 33
..................
...................
(n–1)2 .n2 – (n –2)2 . (n–1)2 = 4(n–1)3
n2 (n +1)2 – (n –1)2 . n2 = 4n3
ù~ûMKùf, n2 (n+1)2 = 4 (13 + 23 + 33 +........... + n3)
\ 4Sn = n2 (n+1)2
n 2 ( n + 1)2
=
RS
n( n + 1) UV 2
\ Sn =
4 T
2 W ...............(5)
[ 55 ]
iìZâ : 1 + 2 + 3 + ........... + n =
RS n( n + 1) UV 2
T 2 W
3 3 3 3
n( n + 1)( 2 n + 1)
12+22+32 + ......... + n2 = Sn2 = ,
6
R n(n + 1) U
1 +2 +3 + ......... + n = Sn = S 2 V AZýû\ò ö
2
T W
3 3 3 3 3
_eaðú _âgÜcû^u icû]û^ _ûAñ (1) Vûeê (5) _~ðý« iìZâ MêWÿòKe aýajûe Keû~òa ö
\âÁaý : S n(n+1) = S(n2 + n) = Sn2 + Sn,
n( n + 1)( n + 2)
\ Sn = (Ce)
3
UúKû : Sn2 I Sn iìZâ\ßde iò]ûikL _âùdûM Keû~ûAQò ö
[ 56 ]
C\ûjeY -12 : 1. 2. 3 + 2 . 3 . 4 + 3 . 4 . 5 + ......e n iõLýK _\ _~ðý« ù~ûM`k ^òðd Ke ö
icû]û^ : GVûùe tn = n (n + 1) (n + 2) = n(n2+3n+2)= n3+3n2+2n
\ Sn = Stn = S (n3 + 3n2 + 2n) = Sn3 + 3 Sn2 + 2Sn
R n(n + 1) UV
=S
2
n(n + 1)(2 n + 1) n(n + 1)
T 2 W + 3.
6
+2
2
[Sn3,Sn2, Sn iìZe
â aýajûe Keû~ûAQò)
{ n( n + 1)} 2 n( n + 1)(2 n + 1) n( n + 1)
= + + n( n + 1) = {n(n+1)+2(2n+1)+4}
4 2 4
n( n + 1) 2 n( n + 1)( n 2 + 5n + 6)
= (n + n + 4n + 2 + 4) =
4 4
n( n + 1)( n 2 + 2 n + 3n + 6)
=
4
n( n + 1){ n( n + 2) + 3( n + 2)} n( n + 1)( n + 2)( n + 3)
= 4
= 4
n( n + 1)( n + 2)( n + 3)
\ Sn = (Ce)
4
UúKû : @ûcKê ~\ò \ _â[c 10 ùMûUò _\e ù~ûM`k ^òðd Keòaû _ûAñ Kêjû~ûA[û@û«û ùZùa Sn ùe
n = 10 ù^A S10 iÚòe Keò_ûeòaû ö
10 x 11 x 12 x 13
S10 =
2
= 8580 Ce ^òeì_Y KeòaûKê _Wÿò[û«û ö
C\ûjeY - 13 : 1+ (1+2) + (1+2+3) + (1 + 2 + 3 + 4) + ...... e n iõLýK _\ _~ðý« ù~ûM`k
^òðd Ke ö
n( n + 1) 1 2 n
icû]û^ : GVûùe n Zc _\Uò tn = (1 + 2 + ..... + n) = 2
= n +
2 2
1 1
\ Sn = Stn = Sn2 + Sn
2 2
1 n( n + 1)(2 n + 1) 1 n( n + 1) 1 2n + 1 FG IJ
=
2 6
+
2 2
= n( n + 1)
4 3
+1
H K
1 n( n + 1)(2 n + 4) 1
= = n( n + 1( n + 2)
4 3 6
n( n + 1)( n + 2)
\ Sn = (Ce)
6
[ 57 ]
C\ûjeY - 14 : 12 + 32 + 52 + 72 + .......... n iõLýK _\ _~ðý« ù~ûM`k ^òðd Ke ö
icû]û^ : GVûùe @ûagýKúd ù~ûM`kùe n Zc _\ tn ùjùf
tn = {1 + (n -1) 2}2 = ( 2n - 1 )2 = 4n2 - 4n + 1
\ Sn = Stn = 4 Sn2 – 4 Sn + S1
n( n + 1)(2 n + 1) n( n + 1) FG
2n + 1 IJ
=4
6
−4
2
+ n = 2n (n+1)
H
3 K
− 1 +n
T 3 W H 3 K 3
2
=
3
n
Sn = (4n2 – 1) (Ce)
3
C\ûjeY - 15 : 1 + 3 + 6 + 10 + 15 + ............ (n iõLýK _\ _~ðý«) ù~ûM`k ^òðd Ke ö
icû]û^ : Gjò iÚkùe ~\òI \ eûgòcûkû A.P ^êjñ«ò Z[û_ò Kâcû^ßdùe @«eMêWÿòK (@[ûðZþ 2,3,4,5,....
AZýû\ò) A.P. @U«ò ö
Sn = 1 + 3 + 6 + .... + tn–1 + tn
_ê^½ Sn = 1 + 3 + .... + tn–2 + tn–1 + tn (ùMûUòG _\Kê NêûA ùfLû~ûAQò)
aòùdûM Kùf, 0 = 1 + (3 –1) + (6 – 3) + (10 – 6) + .... + (tn – tn–1) – tn
\ tn = 1 + 2 + 3 + ....... + n iõLýK _\ _~ðý«
1 1 1
Þ tn = n (n + 1) = n2 + n
2 2 2
1 2 1 1 n( n + 1)(2 n + 1) 1 n( n + 1)
Sn = Stn = Sn + Sn = +
2 2 2 6 2 2
1 RS
(2 n + 1)
+1 =
UV
1 n( n + 1)(2 n + 4) 1
=
4
n(n+1)
T3 4W 3
= n(n+1)(n+2)
6
1
\ Sn = n(n+1)(n+2) (Ce)
6
3.4 icû«e c¤K (Arithmetic mean) :
a+b
\êAùMûUò iõLýû a I b \ò@û~ûA[ôùf ùi iõLýû\ßde icû«e c¤K x =
2
RýûcòZòK @^êgúk^ cû¤cùe aòPûe Keòaû ö (a) x (b)
AB e A I B e iÚû^ûu ~[ûKâùc a I b (b > a) ö A M B
(PòZâ 3.1)
[ 58 ]
a+b
AB e c¤aò¦ê M e iÚû^ûu x = (RýûcòZòùe @¤d^ KeòQ)
2
a+b
GVûùe a, 2
,b eûgòZâd icû«e _âMZò (A.P.) ùe ej«ò KûeY,
a+b a+b b−a
–a=b– = =d (iû]eY @«e) [GVûùe flý Ke AB e ù\÷Nðý = b–a ]
2 2 2
a +b a +b
a, ,b A.P. ùe ejòùf Kê a I b e icû«e c¤K aû A.M. Kêjû~ûG ö
2 2
a+b a+b
iìZâ : A.M. = 2
(ù~CñVûùe a, 2
, b A.P. ùe @Q«ò)
7 + 15 22 −1 + 10
C\ûjeY Êeì_, 7 I 15 e A.M. = = = 11, ùijò_eò –1 I 10 e AM = = 4.5
2 2 2
AZýû\ò ö
3.4.1 \êAUò \ eûgò a I b c¤ùe n iõLýK A.M. ^òðd :
(i) cù^Ke a I b \ eûgò ö _â[ùc Gjò eûgò\ßd c¤ùe \êAùMûUò A.M. ~[û x1 I x2 iÚû_^ Keòaû ö
ùMûUòG c¤Ke iÚû_^ _ûAñ AB ùeLûLKê icû^ \êA bûM Keò aûKê _Wÿò[ôfû ö AB ùeLûLe
a+b
c¤aò¦êUòKê iìPûC [ôaû iõLýû , a I b e icû«e c¤K ö \êAUò c¤K _ûAñ AB ùeLûL Kê icû^
2
b−a
Zò^ò bûMùe aòbq Keòaû @ûagýK I _âùZýK bûMe ù\÷Nðý ~ûjû a, x1, x2, b icû«e _âMZòe
3
b−a
iû]ûeY @«e d ij icû^ö @ZGa GVûùe d = 3
ö (Q AB e ù\÷Nðý = b–a)
b−a 2a + b (a) x1 x2 (b)
iêZeûõ x1 = a + d = a + 3
=
3
Gaõ
A P Q B
FG b − a IJ = a + 2b (PòZâ
x2 = a + 2d = a + 2 H 3 K 3 3.2)
2a + b a + 2b
@ZGa \êAUò eûgò a I b c¤ùe [ôaû icû«e c¤K\ßd x1 = , x2 =
3
.........(iii)
3
(ii) aðcû^ @ûùc a I b c¤ùe Zò^òùMûUò A.M. iÚû_^ Keòaû ö
a I b c¤ùe Zò^òùMûUò icû«e c¤K ~[û x1, x2 I x3 jê@«ê ö GVûùe a, x1, x2, x3, b _û ùMûUò eûgò
icû«e _âMZò ùe ejòùa ö x1, x2 I x3 Kê a I b cû¤cùe RûYòaû _ûAñ AB ùeLûLKê icû^ Pûeò bûM
b−a
Keòaû @ûagýK I _âùZýK bûM e ù\÷Nðý d = ö (Q AB e ù\÷Nðý = b – a)
4
(a) x1 x2 x3 (b)
A T R S B
(PòZâ 3.3)
[ 59 ]
b−a 3a + b b−a a+b
x1 = a + d = a + = , x2 = a + 2d = a + 2 ¨ =
4 4 4 2
b−a a + 3b
Gaõ x3 = a + 3d = a + 3 ¨ =
4 4
3a + b a + b a + 3b
\ \êAUò eûgò a I b c¤ùe [aû icû«e c¤KZâd , Gaõ ...... (iv)
4 2 4
(iii) ùijò_eò a I b c¤ùe n iõLýK icû«e c¤K (A.M.) iÚû_^ KeòaûKê ùjùf AB Kê (n+1) icû^
b−a
bûùa aòbq KeòaûKê ùja; ù~CñVûùe _âùZýK bûMe ù\÷Nðý n +1
ùja ö ~\ò c¤KMêWÿòK x1, x2, x3, ......xn
b−a 2(b − a ) 3( b − a ) n( b − a )
jê@«ò, ùZùa, x1 = a + n +1
, x2 = a +
n +1
, x3 = a +
n +1
, ..........., xn = a +
n +1
ùja ö
b−a
GVûùe, a, x1, x2, x3 ................. xn, b A.P. ùe ejòùa, ~ûjûe iû]ûeY @«e d= n + 1 ùja ö
C\ûjeY - 16 : 2 I 62 c¤ùe (i) ùMûUòG (ii) \êAùMûUò (iii) Zò^ùò MûUò (iv) PûeòùMûUò icû«e c¤K
(A.M.) iÚû_^ Ke ö
icû]û^ : GVûùe a = 2 I b = 62 ö \ b – a = 60
b−a 60
(i) icû«e c¤KUò x1 ùjùf, x1 = a + =2+ = 2 + 30 = 32
2 2
\ 32, 2 I 62 c¤ùe ùMûUòG icû«e c¤K ö
(ii) icû«e c¤K \ßd x1 I x2 ùjùf, 2, x1, x2, 62 icû«e _âMZò aògòÁ I GVûùe
b−a 60
iû]ûeY @«e d = = = 20
3 3
\ x1 = a + d = 2 + 20 = 22 Gaõ x2 = a + 2d = 2 + 2 ¨ 20 = 42 ö
\ 22 I 42, 2 Gaõ 62 c¤ùe \êAUò icû«e c¤K ö
(iii) icû«e c¤K Zâd x1, x2 I x3 ùjùf,
b − a 60
2, x1, x2 , x3, 62 icû«e _âMZòùe ejòùa I iû]ûeY @«e d = = = 15 ö ùZYê
4 4
[ 60 ]
(iv) icû«e c¤K PûeòUò x1, x2 , x3 I x4 ùjùf,
b − a 60
2, x1, x2 , x3, x4 , 62 icû«e _âMZòùe ejòùa Gaõ iû]ûeY @«e d = = = 12 ö @ZGa
5 5
x1 = a + d = 2 + 12 = 14, x2 = a + 2d = 2 + 2 ¨ 12 = 26, x3 = a + 3d = 2 + 3 ¨ 12 = 38,
Gaõ x4 = a + 4d = 2 + 4 ¨ 12 = 50 ö
\ 14, 24, 38 I 50, 2 Gaõ 62 c¤ùe PûùeûUò icû«e c¤K ö
@^êgúk^ú - 3 (b)
1. gì^ýiÚû^ _ìeY Ke ö
1 1 1 1
(a) =.....– (b) = –..............
15 x16 16 12 x 11 11
1 1 1 1
(c) =...............– (d) = –...........
n( n + 1) n +1 ( n + 1)n n
1 1 1
(b) 5 x 6 + 6 x 7 + 7 x 8 ... ... 16 Uò _\ _~ðý«;
3. (a) 7 x 15 + 8 x 20 + 9 x 25 +...e tn ^òðd Ke ö
(b) 6Sn2 + 4Sn3 e iekúKéZ cû^ ^òðd Ke ö
(c) 1 x 2 + 2 x 3 + 3 x 4 ... + n (n + 1) _ûAñ Sn I S20 ^òðd Ke ö
(d) 1 x 3 + 2 x 4 + 3 x 5 ... e tn , Sn I S10 ^òðd Ke ö
4. ^òcÜfòLòZ ùgâYúMêWÿòKe n iõLýK _\ _~ðý« ù~ûM`k ^òðd Ke ö
(a) 1. 1. + 2. 3. + 3. 5 + 4. 7 + ...... (b) 1 . 3 + 3 . 5 + 5 . 7 + 7 . 9 + .......
(c) 3 . 8 + 6 . 11 + 9 . 14 + .......... (d) 1 + (1 + 3 ) + ( 1 +3 + 5) + .....
[ 61 ]
(e) 12 + 42 + 72 + 102 + ...... (f) 22 + 42 + 62 + 82 + ...........
(g) 1 + 5 + 12 + 22 + 35 + ........
(h) 12 + (12 + 22 ) + (12 + 22 + 32) + (12 + 22 + 32 + 42 ) + ...........
5. 15 I 27 c¤ùe (i) ùMûUòG I (ii) \êAùMûUò icû«e c¤K iÚû_^ Ke ö
6. 12 I 36 c¤ùe (i) \êAùMûUò I (ii) Zò^òùMûUò icû«e c¤K iÚû_^ Ke ö
7. 6 I 46 c¤ùe (i) \êAùMûUò I (ii) PûeòùMûUò icû«e c¤K iÚû_^ Ke ö
8. 5 I 65 c¤ùe (i) Zò^òùMûUò I (ii) _ûùMûUò icû«e c¤K iÚû_^ Ke ö
9. 11 I 71 c¤ùe _ûùMûUò icû«e c¤K iÚû_^ Ke ö
10. 20 I 80 c¤ùe n iõLýK A.M. @Qò ö ~\ò _â[c c¤K : ùgh c¤K = 1:3 jêG ùZùa, n e
cû^ iÚòe Ke ö
11. A.P. ùe[ôaû PûeòùMûUò iõLýû ^òðd Ke ~ûjûe ù~ûM`k 2 Gaõ @û\ý I _âû« eûgò\ßde
MêY`k c¤K \ßde MêY`ke 10 MêY ij icû^ ùja ö
[ 62 ]