0% found this document useful (0 votes)
37 views21 pages

CHP 3

The document discusses arithmetic progression (A.P.). It defines A.P. as a sequence where the difference between consecutive terms is constant. It provides the general term of an A.P. as tn = a + (n-1)d, where a is the first term and d is the common difference. It also describes the sum of the first n terms of an A.P. as Sn = n(2a + (n-1)d)/2. Examples of A.P.s and the calculation of terms are provided.

Uploaded by

Pinaki Sankar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
37 views21 pages

CHP 3

The document discusses arithmetic progression (A.P.). It defines A.P. as a sequence where the difference between consecutive terms is constant. It provides the general term of an A.P. as tn = a + (n-1)d, where a is the first term and d is the common difference. It also describes the sum of the first n terms of an A.P. as Sn = n(2a + (n-1)d)/2. Examples of A.P.s and the calculation of terms are provided.

Uploaded by

Pinaki Sankar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 21

ZéZúd @¤ûd

icû«e _âMZò
(ARITHMETIC PROGRESSION)

3.1. C_KâcYòKû (Introduction) :


ùMûUòG ^òdcKê bòò Keò ^òŸòðÁ Kâc (Order) ùe [ôaû iõLýûicìjKê GK @^êKâc (Sequence)
Kêjû~ûG ö
C\ûjeY Êeì_ : 2, 4, 6, 8...............; 1, 3, 5, 7 ................;
1 1 1 1
, , , .......... ; 2, 6, 18, 54............... AZýû\ò ö
2 3 4 5
@^êKâcùe [ôaû _âùZýK iõLýûKê ùMûUòG ùMûUòG _\ (term) Kêjû~ûG ö @^êKâce aòùghZß ùjfû,
_â[c Zò^òUò Kò´û PûeòUò _\Kê flý Keò Gjûe _eaðú _\MêWÿòKê RûYò jêG ö
iû]ûeY bûùa ùfLôùf @^êKâcKê t1, t2, t3, t4, ...... eìù_ ùfLû~ûG ö GVûùe t1, t2, t3, t4, .......
AZýû\òKê ~[ûKâùc _â[c _\ (first term), \ßòZúd _\ (second term), ZéZúd _\ (third term) Gaõ
PZê[ð _\ (fourth term) ùaûfò ùfLû~ûG ö ùijò_eò n - Zc _\Kê tn \ßûeû iìPû~ûA[ûG ö n - Zc _\Kê
@^êKâce iû]ûeY _\ (General term) Kêjû~ûG ö
~\ò tn+1 = tn+2 = ...... = 0 (gì^) ùZùa @^êKâcUò t1, t2, ..... tn I Gjû iiúc iõLýK _\ aògòÁ ö
@ûce @ûùfûP^ûùe @ûiê[ôaû ù~ ùKøYiò @^êKâc iiúc (Finite sequence) ö Cq @^êKâcKê { tn} ùaûfò
ùfLû~ûG ö @iúc @^êKâc iµKðùe @ûùfûP^û CyZe MYòZùe _Xÿÿòa ö
^òŸòðÁ ^òdcKê ù^A Kâcùe [ôaû @^êKâcKê ùMûUòG _âMZò (Progression) Kêjû~ûG ö
_âMZò iû]ûeYZü Zò^ò _âKûee -
(i) icû«e _âMZò (Arithmetic progression)
(ii) MêùYûe _âMZò (Geometric progression)
(iii) jeûcôK _âMZò (Harmonic progression)

[ 42 ]
_âùZýK _âMZò ùMûUòG _âKûee iõLýû @^êKâc iéÁò Keò[û«ò ö Gjò @¤ûdùe ùKak icû«e _âMZò
iµKðùe @ûùfûP^û Keû~òa I RýûcòZòK _âMZò Z[û jeûcôK _âMZò iµKðùe Cycû¤còK MYòZùe @¤d^
Keòa ö
3.2 icû«e _âMZò (Arithmetic Progression (A.P.)) :
icû«e _âMZòKê iõùl_ùe (A. P.) ùfLû~ûG ö ~\ò ùKøYiò @^êKâce _âùZýK _\eê (_â[cUòKê QûWÿ)ò
_ìað_\e aòùdûM`k iað\û icû^ jêG, ùZùa @^êKâcUòKê icû«e _âMZò (A. P.) Kêjû~ûG ö GVûùe
aòùdûM`kKê iû]ûeY @«e (Common difference) Kêjû~ûG I GjûKê iõùl_ùe 'd' \ßûeû iìPòZ
Keû~ûG ö
@ZGa icû«e _âMZò _ûAñ t2 – t1 = t3 – t2 = t4 – t3 = ......... = tn – tn – 1 = d @ùU ö
3.2.1 icû«e _âMZòe n-Zc _\ ^ò‰ðd :
ùKøYiò A.P. e _â[c _\ a Gaõ iû]ûeY @«e d ùjùf Gjò @^êKâce iû]ûeY eì_
t1 = a
t2 = a + d = a + (2 – 1) d
t3 = a + 2d = a + (3 – 1) d
t4 = a + 3d = a + (4 – 1) d
.........................................
.........................................
tn = a + (n – 1) d
@[ðûZþ A.P. ùe [ôaû @^êKâce iû]ûeY eì_Uò a, a + d, a + 2d, a + 3d, ........, a + (n –1)d
iêZeûõ n Zc _\e iìZâ : tn = a + (n –1)d

iìP^û : A.P. ùe iû]ûeYZü _â[c _\Kê a I iû]ûeY @«eKê d ^ò@û~ûA[ûG ö


C\ûjeY - 1 : ^òcÜfòLòZ _âùZýKUò ùMûUòG ùMûUòG A.P. @ùU ö
(i) –18, –16, –14, – 12.......

GVûùe _â[c _\ a = –18 iû]ûeY @«e d = – 16 – (–18)= –14–(–16) = –12 – (–14)=2

(ii) –11, 0, 11, 22, 33, 44.............

GVûùe _â[c _\ a = –11 I iû]ûeY @«e d = 0 – (–11) = 11 –0 = 22 –11 = 11


1 2 4
(iii) 3
, 3
, 1, 3
,.............

GVûùe _â[c _\ a = 1
3
I iû]ûeY @«e d=
2
3

1
3
=1 –
2
3
=
4
3
1
–1= 3

[ 43 ]
C_ùe [ôaû A.P. cû^ue iû]ûeY _\ tn MêWÿòK ~[ûKâùc
(i) tn = –18 + (n – 1) 2 = –18 + 2n – 2 = 2n – 20 (Qtn = a + (n –1)d)
(ii) tn = –11 + (n – 1)11 = –11+ 11n – 11 = 11n – 22
1 1 1 1 1 1
(iii) tn = 3
+ (n – 1) 3 = 3
+ 3
n – 3
= 3
n

_ê^½ ùKøYiò A.P. GK ^òŸòðÁ _\ ^ò‰ðd KeòaûKê ùjùf, C_ùeûq iìZâùe a, n cû^ iÚû_^ Keò tn
c¤ ^ò‰ðd Keû~ûA_ûeòa ö
cù^Ke C_ùeûq _â[c A.P. e \gc _\ ^ò‰ðd KeòaûKê ùja ö
t10 = – 18 + (10–1)2 = –18 + 18 = 0

3.2.2 icû«e _âMZòe _â[c n - iõLýK _\e ù~ûM`k :


A.P. e _â[c n iõLýK _\e ù~ûM`ke iìZâKê _â[ùc Rcûð^úe aòLýûZ MYòZm Miþ (Gauss)
Zûu aûfýKûkùe ^ò‰ðd Keò_ûeò[ôùf ö Zûue Äêf gòlK 1 eê 100 _~ðý« MY^ iõLýûcû^u ù~ûM`k
^ò‰ðd KeòaûKê Miþuê Kjòùf ö gòlKu ]ûeYû [ôfû G[ô_ûAñ ~ù[Á icd fûMòa I Miþ Pê_þPû_þ ejò Gjû
Keòùa ö cûZâ @Ì icdùe Miþ Gjûe Ce _ûA[ôùf ö ùi ù~Cñ _¡Zòùe Kùf Zûjû ^òcÜùe \ò@ûMfû :
cù^Ke 1 eê 100 _~ðý« MY^ iõLýûcû^u ù~ûM`k S100 ùZùa
S100 = 1 + 2 + 3 + ....... + 98 + 99 + 100
S100 = 100 + 99 + 98 + ....... + 3 + 2 + 1
cògûAùf 2S100 = 101 + 101 + 101 + ....... + 101 + 101 + 101

\ 2S100 = 101 x 100 Þ S100 = 101 x 100


2
= 5050
aðcû^ @ûùc a, a + d, a + 2d, a + 3d, icû«e _âMZòe _â[c n ùMûUò _\e ù~ûM`k ^òYðd Keòaû ö
cù^Ke n Zc _\Uò tn = a + (n – 1) d = l ùjC ö ùZùa ùgh _\ = l, Gjûe _ìaðaðú _\ l–d,
l–d e _ìaðaðú _\ l– 2d AZýû\ò ö
cù^Ke n Zc _\ _~ðý« ù~ûM`k Sn
\ Sn = a + (a + d) + .... + (l – d) + l
Sn = l + (l – d) + .... + (a + d) + a (_\MêWÿòK IfUûKâcùe ùfLû~ûAQò)
cògûAùf 2Sn = (a + l) + (a + l) + ..... n iõLýK _\_~ðý«
\ 2Sn = n (a + l) \ Sn = n
(a + l)
2

\ n iõLýK _\e icÁòe iìZâ : Sn = n


2
(a + l)

[ 44 ]
@[ûðZþ Sn = n
2
(_â[c _\ + n Zc _\)
_ê^½ C_ùeûq iìZâùe l = a + (n – 1) d iÚû_^ Kùf
Sn = n
{ a + a + (n – 1) d} Þ Sn = n
{ 2a + (n – 1) d}
2 2

\ n iõLýK _\e icÁòe @^ý GK iìZâ : Sn = n


2
{ 2a + (n – 1) d}

n( n +1)
\âÁaý : 1. _â[c n ùMûUò MY^iõLýûe ù~ûM`k Sn = 2
KûeY _â[c _\ = 1 I n Zc _\ = n ö
\âÁaý : 2. ~\ò _â[c _\ a Gaõ iû]ûeY @«e d = 0 jêG ùZùa _âMZòUò
a, a, a, a, .......... ùja Gaõ Sn = a+a+a+.... n iõLýK _\ _~ðý« = na ùja ö
\âÁaý : 3. GK icû«e _âMZòe
(i) _âùZýK _\ùe icû^ iõLýû ù~ûMKùf;
(ii) _âùZýK _\eê icû^ iõLýû aòùdûM Kùf;
(iii) _âùZýK _\Kê gì^ aýZúZ icû^ iõLýû \ßûeû MêY^ Kùf;
(iv) _âùZýK _\Kê gì^ aýZúZ icû^ iõLýû \ßûeû bûM Kùf _âùZýK iÚkùe
f² @^êKâcMêWÿòK c¤ icû«e _âMZòùe ejòùa ö
_âcûY : cù^Ke icû«e _âMZòe _â[c _\ a I iû]ûeY @«e d
I icû«e _âMZòUò a, a+d, a + 2d, ..., a+(n–1)d,
(i) e iZýZû _ûAñ _âùZýK _\ùe k iõLýûUò ù~ûM Kùf f² @^êKâcUò
(a +k), (a+k) + d, (a+k) + 2d, ...., (a+k) + (n–1)d ùja ö
Gjû c¤ GK icû«e _âMZò ù~Cñ[ôùe _â[c _\ a+k I iû]ûeY @«e d,
VòKþ @^êeì_ bûùa (ii), (iii) I (iv) e iZýZû _âZò_û\^ Keû~ûA_ûeòa ö
C\ûjeY - 2 :
(a) IfUûA cògûAaû _¡Zòùe 15 Vûeê 85 _~ðý« MY^ iõLýûcû^ue ù~ûM`k ^ò‰ðd Ke ö
(b) ùMûUòG A.P. e _â[c _\ 4 I iû]ûeY @«e 3 ùjùf
(i) A.P. Uò ùfL,
(ii) A.P. e 33 Zc _\ (t33) ^ò‰ðd Ke I
(iii) A.P. e _â[c 40 Uò _\e icÁò (s40) ^ò‰ðd Ke ö
icû]û^ :
(a) 1 eê 85 _~ðý« [ôaû MY^ iõLýûcûù^ ùjùf 85 ùMûUò I 1 eê 14 _~ðý« [ôaû MY^ iõLýûcûù^
ùjùf 14 ùMûUò ö
\ 15 eê 85 _~ðý« [ôaû MY^ iõLýûcû^ue iõLýû = 85 – 14 = 71

[ 45 ]
aòKÌ jòiûa : 15 eê 85 _~ðý« iõLýûcû^ue iõLýû = (85 – 15) + 1 = 71
cù^Ke 15 eê 85 _~ðý« MY^ iõLýûMêWÿòKe ù~ûM`k = S71 ö @ZGa
S71 = 15 + 16 + 17 + 18 +.... + 83 + 84 + 85
S71 = 85 + 84 + 83 + 82 +.... + 17 + 16 + 15 (IfUûA ùfLòùf)
2S71 = 100 + 100 + 100 + 100 ..... + 100 + 100 + 100
\ 2S71 = 100 x 71
100 x 71
Þ S71 =
2
= 50 x 71 = 3550 (Ce)

71 n
iìZâ _âùdûM Kùf, S71 = 2
(15+85) = 50 x 71 = 3550 [Q Sn=
2
{a+l} ]
GVûùe _â[c _\ (a) = 15 Gaõ ùgh_\ (l) = 85 ö
(b) (i) A. P. = 4, 7, 10, 13, 17, ... ... [Q a = 4 Gaõ d = 3]
(ii) t33 = 4 + (33 – 1) x 3 = 100 [Q tn = a + (n–1)d]
40
(iii) 40 Uò _~ðý« cògûY`k (S40) = {2x 4 + (40 – 1) 3}=20(8+117)
2
n
Þ S40 = 20 x 125 [Q Sn = {2a + (n–1)d}]
2
Þ S40 = 2500 (Ce)
C\ûjeY - 3 : ùMûUòG A.P. e t4 = 11, t10 = 16 ùjùf, t21 Gaõ _â[c 40 ùMûUò _\e ù~ûM`k
^òeì_Y Ke ö
icû]û^ : cù^Ke _â[c _\ = a Gaõ iû]ûeY @«e = d
\ @Qò : t4 = 11 Þ a + (4 – 1) d = 11Þ a + 3d = 11 .... (1)
\ t10 = 16 Þ a + (10 – 1) d = 16 Þ a + 9d = 16 .... (2)
5
(1) I (2) eê Þ (a + 9d) – (a + 3d) = 16 – 11 Þ 6d = 5 Þ d =
6
5 5 17
aðcû^ (1) Þ a + 3 x 6 = 11 Þ a = 11 – 2 = 2
17 5 151 1
ùZYê t21 = a + (21 – 1) d = + 20 x = = 25 (Ce)
2 6 6 6

40 17 5
iìZâ _âùdûM Kùf S40 = {2 x +(40–1) }
6
2 2
65
Þ S40 = 20(17 +
2
) = 340 +650 = 990 (Ce)

[ 46 ]
C\ûjeY - 4 : 2, 4, 6, 8, ... @^êKâce S50 ^ò‰ðd Ke ö
icû]û^ : GVûùe t2 – t1 = 4 – 2 = 2, t3 – t2 = 6 – 4 = 2, t4 – t3 = 8 – 6 = 2 ....AZýû\ò ö
\ \ @^êKâcUò GK A.P. @ùU Gaõ Gjûe a = 2 I d = 2
\ S50 = 50
2
{2 x 2 + (50 – 1)2} = 2550 [ Q Sn = n
2
{2a + (n – 1) d} ] (Ce)
C\ûjeY - 5 : 27 + 24 + 21+ ... ... e ùKùZûUò _\ ù~ûMKùf ù~ûM`k 132 ùja ?
\êAUò Cee Zû_ô~ðý aêSû@ ö
icû]û^ : GVûùe _â[c _\ a = 27 I iû]ûeY @«e d = 24 – 27 = 21 – 24 = – 3 AZýû\ò ö
ùZYê \ @^êKâcUò 27, 24, 21, .... A.P. ùe @Qò ö
cù^Ke _\ iõLýû n ùjùf ù~ûM`k = 132 \ Sn = 132
Þ n
2
{2a + (n – 1) d} = 132 Þ n
2
{2 x 27 + (n – 1)( – 3)} = 132

Þ n
2
(57 – 3n) = 132 Þ n ( 57 – 3n) = 264 Þ –3n2 + 57n – 264 = 0
Þ n2 – 19n + 88 = 0 Þ (n – 11)(n – 8) = 0
Þ n = 11 aû 8 @[ûðZþ A.P. e 11 ùMûUò _\e ù~ûM`k 132 ùja Gaõ 8 ùMûUò _\e ù~ûM`k
c¤ 132 ùja ö ö
Zû_ô~ðý : aðcû^ t9 = 27 + (9 – 1) ( – 3) = 3, t10 = t9 + d = 3 + (–3) = 0
t11 = t10 + d = 0 + (– 3) = – 3
Þ t9 + t10 + t11 = 3 + 0 + (– 3) = 0
Þ S11 = S8 + t9 + t10 + t11 = S8 + 0 = S8
@[ûðZþ ù~ûM`kùe 8 Kò´û 11 ùMûUò _\ ejòùf ù~ûM`k 132 ùja ö (Ce)
C\ûjeY - 6 : ùMûUòG @^êKâce tn = 2n + 3 ùjùf Sn ^ò‰ðd Ke ö
icû]û^ : tn = 2n + 3 \êA _ûgßðùe n a\kùe 1 ùfLòùf _ûAaû
t1 = 2 x 1 + 3 = 5 Þ a = 5
ùijòbkò n a\kùe 2 ùfLòùf Gaõ 3 ùfLòùf _ûAaû
t2 = 2 x 2 + 3 = 7 Gaõ t3 = 2 x 3 + 3 = 9
t3 – t2 = 9 – 7 = 2 Gaõ t2 – t1 = 7 – 5 = 2 \ t3 – t2 = t2 – t1 = 2
\ \ iû]ûeY @«e 2 ùjZê f² @^êKâcUò GK A.P. ~ûjûe d = 2
n n
Sn = 2
[2a + (n – 1) d] = 2
[2 x 5 + (n – 1) x 2]

= n
2
(10+2n – 2) = n
2
(2n + 8) = n (n + 4) = n2 + 4n (Ce)

[ 47 ]
UúKû: n iÚû^ùe ùMûUòG ù~ùKøYiò ^òŸòðÁ iõLýû ù^A GK ^òŸòðÁ iõLýK _\e icÁò c¤ ^ò‰ðd
Keû~ûA_ûeòa ö @[ûðZþ n = 30 ù^ùf, S30 ^ò‰òðZ ùjûA_ûeòa ö
\ S30 = 302 + 4 x 30 = 900 + 120 = 1020
C\ûjeY - 7 : ùMûUòG @^êKâce Sn = 3n + 4n2 ùjùf, t7 ùKùZ ?
icû]û^ : \ @Qò Sn = 3n + 4n2
(n–1) iõLýK _\e icÁò Sn – 1 ùjùf (Sn ùe n _eòaùð n–1 ùfLòùf)
Sn – 1 = 3 (n – 1) + 4 (n – 1)2 = 3n –3 + 4n2 – 8n + 4 = – 5n + 4n2 + 1
cûZâ Sn = Sn – 1 + tn Þ 3n + 4n2 = – 5n + 4n2 + 1+ tn
Þ tn = 8n – 1 ............. (i)
\ t7 = 8 x 7 – 1 = 55 [(i) ùe n = 7 ùfLòùf ] (Ce)
C\ûjeY - 8 : _âcûY Ke ù~, ~\ò a2, b2, c2 iõLýûZâd A.P ùe ej«ò, ùZùa
1 1 1
, , A.P. ùe ejòùa ö
b+c c+a a+b
icû]û^ : ù~ùjZê a2, b2, c2 iõLýûZâd A.P. ùe ejòQ«ò ùZYê _âùZýK iõLýûùe ab + bc + ca ù~ûM
Kùf ^ìZ^ iõLýûZâd c¤ A.P. ùe ejòùa ö (\âÁaý - 3)
\ a2+ab + bc + ca, b2 + ab + bc + ca, c2 + ab + bc + ca A.P. ùe ejòùa ö
Þ a(a+b) + c(a+b), b(a+b) + c(a+b), c(b+c)+a(b+c) A.P. ùe ejòùa ö
Þ (a+b)(c+a), (a+b)(b+c), (b+c)(c+a) A.P. ùe ejòùa ö
_âùZýK _\Kê (a+b)(b+c)(c+a) \ßûeû bûM Kùf ^ìZ^ iõLýûZâd c¤ A.P. ùe ejòùa ö
( a + b)( c + a ) ( a + b)( b + c) ( b + c)( c + a )
, ,
( a + b)( b + c)( c + a ) ( a + b)( b + c)( c + a ) (a + b)( b + c)( c + a )
A.P. ùe ejòùa ö

1 1 1
\ , , A.P. ùe ejòùa ö (_âcûYòZ)
b+c c+a a+b
C\ûjeY - 9 : \gðû@ ù~, ùMûUòG A.P. e tm+n + tm–n = 2tm
icû]û^ : cù^Ke A.P. e _â[c _\ Gaõ iû]ûeY @«e ~[ûKâùc a I d
\ tm+n = a + (m+n–1)d Gaõ tm – n = a + (m – n–1)d
tm+n + tm–n = (a+a) + (m+n–1 + m –n – 1)d = 2a + (2m –2)d
= 2{a+(m–1)d} = 2tm
\ tm+n + tm–n = 2tm (_âcûYòZ)

[ 48 ]
@^êgúk^ú - 3 (a)
(K - aòbûM)
1. ^òcÜfòLôZ _âùZýK ùlZâùe i¸ûaý Ce c¤eê iVòKþ CeUò aûQ ö
(i) 1, 2, 3, 4, .... @^êKâcùe t8 = .................... [(a) 6 (b) 7 (c) 8 (d) 9 ]
(ii) 2, 4, 6, 8, .... @^êKâcùe t7 = .................... [(a) 12 (b) 14 (c) 16 (d) 18]
(iii) -5, -3, -1, 1, .... @^êKâcùe t11 = .................. [(a) 13 (b) 15 (c) 17 (d) 19]
(iv) 3, 6, 9, .... ùe iû]ûeY @«e d = .............. [(a) 3 (b) 4 (c) 5 (d) 6]
(v) -4, -2, 0, 2, .... A.P. ùe iû]ûeY @«e d = .......[(a) -2 (b) -3 (c) 2 (d) 3]
(vi) 10.2,10.4, 10.6, 10.8, .... ùe t5 = ............... [(a) 11.0 (b) 11.2 (c) 11.4 (d) 11.6]
(vii) 2.5, 2.9, 3.3, 3.7, .... A.P. ùe iû]ûeY @«e d = .......[(a) 1.5 (b) 1.4 (c) 0.5 (d) 0.4]
(viii) 3, x, 9, .... GK A.P. ùjùf x = .............. [(a) 4 (b) 5 (c) 6 (d) 7]
(ix) 1.01, 1.51, 2.01, 2.51, .... A.P. ùe iû]ûeY @«e d = ........ [(a) 1 (b) 0.5 (c) 1.5 (d) 1.05]
(x) 5, 0, -5, -10, .... A.P. ùe iû]ûeY @«e d = ..... [(a) –5 (b) 5 (c) –10 (d) 10]
2. ^òcÜfòLôZ @^êKâc c¤eê ùKCñMêWÿòK A.P. ùiMêWÿòKê PòjÜU Ke :
(i) 1, 4, 7, 10, 15, 16, 19, 22 (ii) 1, 8, 15, 22, 29, 36, 43, 50
(iii) 1, 6, 11, 15, 22, 28, 34, 40 (iv) 1, 4, 7, 9, 11, 14, 17, 20
(v) –5, –3, –1, 0, 2, 4, 6, 8
(vi) a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, a + 6d, a + 7d
(vii) 0.6, 0.8, 1.0, 1.5, 1.7, 1.8, 1.9, 2.0 (viii) –7, –4, –1, 2, 5, 8, 11, 14
3. _âgÜ 2 ùe ù~Cñ MêWÿòK A.P. ùicû^u ùlZâùe iû]ûeY @«e ^òeì_Y Ke ö
4. _â[c _\ a = 5 ù^A A.P. e _â[c PûeòùMûUò _\ ùfL ù~_eòKò iû]ûeY @«e
(i) d = 5 (ii) d = 4 (iii) d = 2 (iv) d = –2 (v) d = –3 ùja
ö
5. GK A.P. e n Zc _\ tn ^òcÜùe _â\ ùjûAQò ö _âùZýK ùlZâùe t5, t8 I t10 ùKùZ ^òeì_Y Ke ö
n +1
(i) tn = (ii) tn = –10 + 2n
2
(iii) tn = 10n + 5 (iv) tn = 4n – 6
6. ^òcÜfòLôZ A.P. MV^ Ke (ùKak \ßòZúd, ZéZúd I PZê[ð _\ Zâd @ûagýK) ù~CñVûùe
(i) _â[c _\ a = 4, iû]ûeY @«e d = 3 (ii) _â[c _\ a = -8, iû]ûeY @«e d = –2
(iii) _â[c _\ a = 7, iû]ûeY @«e d = –4 (iv) _â[c _\ a = 10, iû]ûeY @«e d = 5
1 3 1
(v) _â[c _\ a = , iû]ûeY @«e d = (vi) _â[c _\ a = , iû]ûeY @«e d = –1
2 2 2
[ 49 ]
7. ^òcÜùe _â\ CqòMêWÿòK bêfþ aû VòKþ ùfL ö
(a) 1, 2, 3, 4....... icû«e _âMZò iéÁò Ke«ò ö
(b) 1, –1, 1, –1,......... @^êKâcUò icû«e _âMZò @ùU ö
(c) 2, 1, –1, –2 iõLýû PûeòùMûUò icû«e _âMZòùe aò\ýcû^ ö
(d) ù~Cñ @^êKâce tn = n – 1, Zûjû GK A. P. @ùU ö
(e) ù~Cñ @^êKâce Sn = n(n – 1)
2
Zûjû A. P. @ùU ö
~\ò ùKøYiò ZâòbêRe ùKûYZâde _eòcûYe @^ê_ûZ 2 : 3 : 4 jêG, ùZùa ùKûYZâde _eòcûY
(f)
ùMûUòG A.P. MV^ Keòùa ö
(g) ùMûUòG icùKûYú ZâòbêRe aûjêZâde ù\÷Nðý ùMûUòG A.P. ùe ejò_ûeòùa ö
(h) @~êMà iõLýûcûù^ A.P. MV^ Ke«ò ^ûjó ö
(i) 5 \ßûeû aòbûRý icÉ MY^ iõLýû GK A.P. @U«ò ö
(j) 5, x, 9 iõLýûZâd icû«e _âMZòùe ejòùf x = 6
(L - aòbûM)
8. (a) 1 + 2 + 3 + ... ùe S30 ùKùZ ? (b) 1 + 3 + 5 + ... ùe S10 ùKùZ ?
(c) 2 + 4 + 6 + ... ùe S15 ùKùZ ? (d) 1 – 2 + 3 – 4 + ... ùe S30 ùKùZ ?
(e) 1 – 2 + 3 – 4 + ... ùe S41 ùKùZ ? (f) 1+1 +2 + 2 + 3 + 3 ... ùe S17 ùKùZ ?
(g) 1 + 2 + 3 + 2 + 3 + 4 + 3 + 4 + 5 ... ùe S39 ùKùZ ?
(h) – 7 – 10 – 13 - ... ùe S21 ùKùZ ? (i) 10 + 6 + 2 + ... ùe S15 ùKùZ ?
(j) 20 + 9 – 2 + ... ùe S25 ùKùZ ? (k) n+(n– 1) + (n – 2) + ... ùe Sn ùKùZ?

(l) 5 + 4 13 + 3 23 + ... ùe S20 ùKùZ ?


9. (a) ~\ò a = 3, d = 4, n = 10, ùZùa Sn ùKùZ ?
(b) ~\ò a = – 5, d = – 3, ùZùa S17 ùKùZ ?
(c) ~\ò tn = 2n – 1, ùZùa _â[c 5 Uò _\ ùfL ö
(d) ~\ò tn = 3n + 2, S61 ^ò‰ðd Ke ö
(e) ~\ò tn =3n – 5, ùZùa S50 ^ò‰ðd Ke ö

[ 50 ]
(f) ~\ò tn =2 – 3n, ùZùa Sn ^ò‰ðd Ke ö
(g) ~\ò Sn = n2, ùZùa t15 ùKùZ ?
(h) GK A. P. e a = 3, d = 4, Sn = 903, ùZùa n ùKùZ ?
(i) GK A. P. e d = 2, S15 = 285, ùZùa a ùKùZ ?
(j) GK A. P. e t15 = 30, t20 = 50, ùZùa S17 ùKùZ ?
10. (i) "IfUûA cògûAaû ùKøgkùe' ù~ûM`k ^ò‰ðd Ke ö
(a) 1 Vûeê 105 _~ðý« icÉ MY^ iõLýû ö
(b) 25 Vûeê 93 _~ðý« icÉ MY^ iõLýû ö
(c) 111 Vûeê 222 _~ðý« icÉ MY^ iõLýû ö
(ii) 1, 2, 3, ... ... @^êKâce
(a) S20 ^ò‰ðd Ke ö (b) S50 ^ò‰ðd Ke ö
(iii) 32 Vûeê 85 _~ðý« icÉ MY^ iõLýûe icÁò ^ò‰ðd Ke ö
(iv) 100 Vûeê lê\âZe icÉ ]^ûcôK ~êMà iõLýûe icÁò ^ò‰ðd Ke ö
(v) 150 Vûeê lê\âZe icÉ ]^ûcôK @~êMà iõLýûe icÁò ^ò‰ðd Ke ö
(M - aòbûM)
11 . ù~Cñ icû«e @^êKâce _â[c _\ 17 I iû]ûeY @«e – 2 Zûjûe ùKùZûUò _\e icÁò 72 ùja?
Gjûe \êAUò Ce còkòaûe KûeY ùfL ö
12.(i) GK icû«e @^êKâcùe @aiÚòZ Zòù^ûUò eûgòe ù~ûM`k18 Gaõ MêY`k 192 ùjùf, iõLýû
MêWÿòK iÚòe Ke ö
(iìP^û : iõLýûcû^uê a – d, a, a + d jòiûaùe ù^A _âgÜUò icû]û^ Ke ö)
(ii) GK icû«e @^êKâcùe @aiÚòZ Q@Uò eûgò c¤eê _âû« eûgò\ßde ù~ûM`k 16 Gaõ c¤ eûgò\ßde
MêY`k 63 ùjùf, iõLýûMêWÿòK iÚòe Ke ö
(iìP^û : cù^Ke eûgòMêWÿòK a – 5d, a – 3d, a –d, a+d, a + 3d Gaõ a + 5d)
13 . GK icû«e @^êKâcùe @aiÚòZ Zòù^ûUò eûgòe ù~ûM`k 21 Gaõ ùicû^u aMðe ù~ûM`k 155;
iõLýûMêWÿòK ùKùZ?
14 . ùMûUòG icùKûYú Zâb ò Rê e aûjêMWê Kòÿ e ù\÷Nýð GK icû«e @^êKcâ ùe [ôùf _âcûY Ke ù~ ùicû^ue
@^ê_ûZ 3 : 4 : 5 ùja ö
15. 100 eê lê\âZe Gaõ 5 \ßûeû aòbûRý icÉ ]^ûcôK _ì‰ðiõLýûcû^ue ù~ûM`k ^ò‰ðd Ke ö
16. 200 eê lê\âZe I 3 \ßûeû @aòbûRý icÉ ]^ûcôK _ì‰ðiõLýûcû^ue ù~ûM`k ^ò‰ðd Ke ö
(iìP^û : 1+2+....+199 I 3+6+....+198 ^òeì_Y Keò _â[ceê \ßòZúdKê aòùdûM Ke ö)

[ 51 ]
17 . 15 Kê G_eò 3 bûMùe aòbq Ke ù~_eòKò ùicûù^ GK icû«e @^êKâcùe ejòùa I ùicû^ue
MêY`k 120 ùja ö
18. A. P. ùe [ôaû Zòù^ûUò iõLýûe ù~ûM`k 15 Gaõ _âû«iõLýû\ßde aMðe ù~ûM`k 58 ùjùf
iõLýûZâd ^ò‰ðd Ke ö
19. A. P. ùe [ôaû PûùeûUò iõLýû c¤eê _âû« iõLýû \ßde ù~ûM`k 8 Gaõ c¤ iõLýû \ßde MêY`k
15 ùjùf iõLýûMêWÿòK iÚòe Ke ö
(iìP^û : iõLýûcû^uê a – 3d, a – d, a + d Gaõ a + 3d cù^Keò icû]û^ Ke ö)
20. A. P. ùe [ôaû Zòù^ûUò eûgòcûkûe n iõLýK _\cû^ue icÁò S1, S2 Gaõ S3 _âùZýK eûgòcûkûe
_â[c _\ 1 Gaõ iû]ûeY @«e ~[ûKâùc 1, 2, 3 ùjùf _âcûY Ke ù~, S1 + S3 = 2S2
21 . GK A.P. e Zc, P - Zc, q - Zc Gaõ r - Zc _\MêWÿòKe cû^ ~[ûKâùc a, b Gaõ c ùjùf _âcûY
Ke ù~, a (q – r) + b (r – p) + c (p – q) = 0
22. Zòù^ûUò iõLýû a, b, c icû«e _âMZòùe ejòùf _âcûY Ke ù~ ^òcÜùe _â\ iõLýû Zâd c¤ icû«e
_âMZòùe ejòùa ö
1 1 1
(i) bc
, ca
, ab
(ii) b + c, c + a, a + b

FG
1 1 1 IJ 1 FG 1 1IJ 1 FG 1 1 IJ
(iii) b + c–a, c + a– b, a + b– c H K H K H K
(iv) a b + c , b c + a , c a + b

(v) a2(b+c), b2(c+a), c2(a+b)

1 1 1
23. (i) , , A.P
a b c
ùe ejòùf Gaõ a + b + c ¹ 0 ùjùf, _âcûY Ke ù~,

b+c c+a a+b


a
, b , c c¤ A.P.ùe ejòùa ö
a b c
(ii) , ,
b+c c+a a+b
@^êKâc A.P ùe ejòùf Gaõ a + b + c ¹0 ùjùf _âcûY Ke ù~,
1 1 1
, , A.P.ùe ejòùa ö
b+c c+a a+b
24. ~\ò ùKøYiò A.P.e _â[c _\ a Gaõ ùgh _\ l jêG _âcûY Ke ù~ @^êKâce _â[ceê r- Zc _\
Gaõ ùgheê r-Zc _\e icÁò, _â[c I ùgh _\e icÁò ijòZ icû^ ö
25. ùMûUòG icû«e _âMZòe _â[c p iõLýK _\e icÁò r, _â[c q iõLýK _\e icÁò s Gaõ iû]ûeY
r s d
@«e d, ùjùf _âcûY Ke ù~, − = (p − q)
p q 2
ùja ö

[ 52 ]
26. ùMûUòG icû«e ùgâYúe _â[c p, q, r iõLýK _\e icÁò a,b,c ùjùf _âcûY Ke ù~,
a b c
p
( q − r ) + ( r − p) + ( p − q ) = 0
q r
ùja ö
27. ùKøYiò A.P. e tp = q, tq = p ùjùf, _âcûY Ke ù~ tm = p + q – m ö
iìP^û : a+(p–1)d = q I a+(q–1)d = p Kê icû]û^ Keò a I d ^òeì_Y Keò tpq ^ò‰ðd Ke ö
28. ùKøYiò A.P. e Sm = n, Sn = m ùjùf, _âcûY Ke ù~ Sm+n = –(m+n) ùja ö

3.3. @«e iìZâ (Difference formula) :


_ìaðeê icû«e _âMZòùe [ôaû _\cû^ue cògûY _ûAñ "IfUûA cògûAaû' ùKøgk Zêùc RûYòQ ö
ùijò_eò @^ý GK ùKøgk "@«e iìZâ' c¤ GK iê¦e ùKøgk ~ûjûe _âùdûM aòhdùe aðcû^
RûYòaû ö

@«e iìZâ :
1 1
= −
1 1
Q −
LM
1
=
n +1− n
=
1 OP
n( n + 1) n n + 1 N
n n + 1 n( n + 1) n( n + 1) Q
Gjò iìZâUòKê @«e iìZâ Kêjû~ûG ö KûeY GVûùe ùMûUòG _\Kê \êAUò _\e @«e eìù_ _âKûg
Keû~ûAQò ö Gjò iìZâ _âùdûM Keò _ûAaû : 1
1x 2 = 1
1
– 1
2
Gaõ 1
2x3 = 1
2
– 1
3

^òcÜ C\ûjeYKê flý Ke ö


1 1
C\ûjeY - 10 : 1
1x 2 + 1
2x3 + 3x4
+..... + n( n + 1)
e icÁò ^ò‰ðd Ke ö

icû]û^ : @«e iìZâ _âùdûM Kùf 1


1x 2 = 1
1
– 1
2
1
2x3 = 1
2
– 13
1
3x 4 = 1
3
– 1
4

.........
1 1 1
n( n + 1)
= −
n n +1
1 1 1
cògûAùf, 1
1x 2 + 1
2x3 + 3x4
+..... + n( n + 1)
= 1– n( n + 1)
n +1−1 n
\ Sn =
n +1
=
n +1
(Ce)
_ìaðeê _â[c n iõLýK MY^ iõLýû, @~êMà MY^ iõLýû I ~êMà MY^ iõLýûcû^ue ù~ûM`k ^ò‰ðd
Keòaûe ùKøgk Zêùccûù^ RûYòQ, ~ûjûKê ^òcÜùe \ò@û~ûAQò ö
[ 53 ]
(i) _â[c n iõLýK MY^ iõLýû (Natural Numbers) e ù~ûM`k :
cù^Ke Sn = 1 + 2 + 3 +.... n
GVûùe _â[c _\ = 1, iû]ûeY @«e = 1, _\iõLýû= n
n n n( n + 1)
Sn = {2x1+(n-1)1} = (2+n–1) = ..............(1)
2 2 2

n( n + 1)
iìZâ : 1 + 2 + 3 + ........ + n = 2
(ii) _â[c n iõLýK @~êMà MY^ iõLýû (Odd Natural Numbers) cû^ue ù~ûM`k
cù^Ke, Sn = 1 + 3 + 5 + ........ n iõLýK _\ _~ðý«
GVûùe _â[c _\ = 1, iû]ûeY @«e = 2, _\iõLýû = n
n n n
Sn = {2x1+(n-1)2} = (2+n–2) = . 2n = n2..............(2)
2 2 2
iìZâ : 1 + 3 + 5 + ........ + n iõLýK _\ _~ðý« = n2
(iii) _â[c n iõLýK ~êMà MY^ iõLýû (Even Natural Numbers) cû^ue ù~ûM`k :
cù^Ke, Sn = 2 + 4 + 6 + .... n iõLýK _\ _~ðý«
= 2 ( 1+ 2 + 3 + ..... n iõLýK _\ _~ðý«)
n( n + 1)
=2. = n (n + 1); [(1) iûjû~ýùe] ...........(3)
2
iìZâ : 2 + 4 + 6 + ............ + n iõLýK _\ _~ðý« = n ( n + 1)
aðcû^ _â[c n iõLýK MY^ iõLýûcû^u aMðe ù~ûM`k Z[û N^e ù~ûM`k ^òeì_Y Keû~òa ö
G[ô_ûAñ Gjò @^êùz\e _âûe¸ùe @ûùfûPòZ @«e iìZâe _âùdûM Keû~òa ö
(A) _â[c n iõLýK MY^ iõLýûe aMðe (Squares of Natural Numbers) ù~ûM`k :
cù^Ke, Sn = 12 + 22 + 32 + .... + n2
@ûùc RûYê ù~, n3 – (n–1)3= n3 – (n3 – 3n2+3n–1) = 3n2 – 3n +1
Gjû GK @ùb\ ~ûjûKò GK @«e @ùU ö G[ôùe n a\kùe 1, 2, 3, 4............. AZýû\ò Kâcùe
ùfLòùf
13 – 03 = 3.12 – 3.1 + 1
23 – 13 = 3.22 – 3.2 + 1
33 – 23 = 3.32 – 3.3 + 1
..................

[ 54 ]
...................
(n–1)3 – (n –2)3 = 3(n–1)2 –3(n–1) + 1
n3– (n –1)3 = 3 . n2 –3 . n+ 1
n3 = 3 (12 + 22 + 32 + ........... + n2) – 3 (1 + 2 + 3 + ...... + n ) + n
aûc_ûgßð I \lòY _ûgßðe _\MêWÿòK ù~ûM Keòaûeê
1
Þ n3 = 3Sn – 3 . n (n+1) + n (iìZâ (1) @^êiûùe)
2
3n 3n
Þ –3Sn = –n3 + n - (n+1) Þ 3Sn = n3 - n + (n+1)
2 2
3n
= n(n2 –1) + (n+1)
FG IJ
2
3 2n − 2 + 3 n( n + 1)(2 n + 1)
= n(n+1) {(n-1)+ } = n(n+1)
2 2
= H 2 K
n( n + 1)(2 n + 1)
Þ Sn = ...................... (4)
6
n (n + 1) (2n + 1)
iìZâ : 12 + 22 + 32 + ........... + n2 = 6
(B) _â[c n iõLýK MY^ iõLýûcû^ue N^ (Cubes of Natural Numbers)e ù~ûM`k :
cù^Ke, Sn = 13 + 23 + 33 + .... + n3
@ûùc RûYê ù~, (r + 1)2 – (r – 1)2 = 4r
Cbd _ûgßðKê r2 \ßûeû MêY^ Kùf, r2 (r+1)2 – (r – 1)2 r2 = 4r3
Gjû GK @ùb\ I r a\kùe 1, 2, 3............. n ùfLòùf @ûùc ^òcÜfòLòZ n ùMûUò ]ûWÿò _ûAaû ö
12 . 22 – 02 . 12 = 4 . 13
22 .32 – 12 . 22 = 4 . 23
32 . 42 – 22 .32 = 4 . 33
..................
...................
(n–1)2 .n2 – (n –2)2 . (n–1)2 = 4(n–1)3
n2 (n +1)2 – (n –1)2 . n2 = 4n3
ù~ûMKùf, n2 (n+1)2 = 4 (13 + 23 + 33 +........... + n3)
\ 4Sn = n2 (n+1)2

n 2 ( n + 1)2
=
RS
n( n + 1) UV 2

\ Sn =
4 T
2 W ...............(5)
[ 55 ]
iìZâ : 1 + 2 + 3 + ........... + n =
RS n( n + 1) UV 2

T 2 W
3 3 3 3

\âÁaý : 13 + 23 + 33 + ........... + n3 = (1+2+3+............+n)2


@[ûðZþ n iõLýK MY^ iõLýûe N^e icÁò, _â[c n iõLýK MY^ iõLýûe ù~ûM`ke aMð
iùw icû^ ö
aò.\â. : n4 – (n – 1)4 = 4n3 – 6n2 + 4n –1 @ùb\e _âùdûMùe c¤ Sn iÚòe Keû~ûA_ûeòa ö
S PòjÜ (Sigma notation) :
iêaò]û iKûùg ùKùZMêWòG _\cû^ue icÁòKê iõùl_ùe MâúKþ @le iòMþcû (S) aýajûe Keû~ûA
_âKûg Keû~ûA[ûG ö
n( n + 1)
1+2+3 + ......... + n = Sn = ,
2

n( n + 1)( 2 n + 1)
12+22+32 + ......... + n2 = Sn2 = ,
6

R n(n + 1) U
1 +2 +3 + ......... + n = Sn = S 2 V AZýû\ò ö
2

T W
3 3 3 3 3

_eaðú _âgÜcû^u icû]û^ _ûAñ (1) Vûeê (5) _~ðý« iìZâ MêWÿòKe aýajûe Keû~òa ö
\âÁaý : S n(n+1) = S(n2 + n) = Sn2 + Sn,

S(n+1) (n+2) = S(n2 + 3n + 2) = Sn2 + 3Sn + S2 = Sn2 + 3Sn + 2n

C\ûjeY - 11 : 1 . 2 + 2 . 3 + 3. 4 + .................... + n(n+1) e ù~ûM`k ^ò‰ðd Ke ö


icû]û^ : GVûùe tn = n(n+1) cù^Ke n iõLýK _\e ù~ûM`k = Sn
\ Sn = Stn = Sn (n + 1) = S(n2 +n) = Sn2 +Sn
n( n + 1)(2 n + 1) n( n + 1) n( n + 1) 2 n + 1 FG IJ
=
6
+
2
=
2 3
+1
H K
n( n + 1) 2( n + 2) 1
= . = (n + 1) (n + 2)
2 3 3

n( n + 1)( n + 2)
\ Sn = (Ce)
3
UúKû : Sn2 I Sn iìZâ\ßde iò]ûikL _âùdûM Keû~ûAQò ö

[ 56 ]
C\ûjeY -12 : 1. 2. 3 + 2 . 3 . 4 + 3 . 4 . 5 + ......e n iõLýK _\ _~ðý« ù~ûM`k ^ò‰ðd Ke ö
icû]û^ : GVûùe tn = n (n + 1) (n + 2) = n(n2+3n+2)= n3+3n2+2n
\ Sn = Stn = S (n3 + 3n2 + 2n) = Sn3 + 3 Sn2 + 2Sn

R n(n + 1) UV
=S
2
n(n + 1)(2 n + 1) n(n + 1)
T 2 W + 3.
6
+2
2
[Sn3,Sn2, Sn iìZe
â aýajûe Keû~ûAQò)
{ n( n + 1)} 2 n( n + 1)(2 n + 1) n( n + 1)
= + + n( n + 1) = {n(n+1)+2(2n+1)+4}
4 2 4
n( n + 1) 2 n( n + 1)( n 2 + 5n + 6)
= (n + n + 4n + 2 + 4) =
4 4
n( n + 1)( n 2 + 2 n + 3n + 6)
=
4
n( n + 1){ n( n + 2) + 3( n + 2)} n( n + 1)( n + 2)( n + 3)
= 4
= 4
n( n + 1)( n + 2)( n + 3)
\ Sn = (Ce)
4
UúKû : @ûcKê ~\ò \ _â[c 10 ùMûUò _\e ù~ûM`k ^ò‰ðd Keòaû _ûAñ Kêjû~ûA[û@û«û ùZùa Sn ùe
n = 10 ù^A S10 iÚòe Keò_ûeòaû ö
10 x 11 x 12 x 13
S10 =
2
= 8580 Ce ^òeì_Y KeòaûKê _Wÿò[û«û ö
C\ûjeY - 13 : 1+ (1+2) + (1+2+3) + (1 + 2 + 3 + 4) + ...... e n iõLýK _\ _~ðý« ù~ûM`k
^ò‰ðd Ke ö
n( n + 1) 1 2 n
icû]û^ : GVûùe n Zc _\Uò tn = (1 + 2 + ..... + n) = 2
= n +
2 2
1 1
\ Sn = Stn = Sn2 + Sn
2 2
1 n( n + 1)(2 n + 1) 1 n( n + 1) 1 2n + 1 FG IJ
=
2 6
+
2 2
= n( n + 1)
4 3
+1
H K
1 n( n + 1)(2 n + 4) 1
= = n( n + 1( n + 2)
4 3 6
n( n + 1)( n + 2)
\ Sn = (Ce)
6

[ 57 ]
C\ûjeY - 14 : 12 + 32 + 52 + 72 + .......... n iõLýK _\ _~ðý« ù~ûM`k ^ò‰ðd Ke ö
icû]û^ : GVûùe @ûagýKúd ù~ûM`kùe n Zc _\ tn ùjùf
tn = {1 + (n -1) 2}2 = ( 2n - 1 )2 = 4n2 - 4n + 1
\ Sn = Stn = 4 Sn2 – 4 Sn + S1

n( n + 1)(2 n + 1) n( n + 1) FG
2n + 1 IJ
=4
6
−4
2
+ n = 2n (n+1)
H
3 K
− 1 +n

2 n( n + 1).2( n − 1) R 4n(n − 1) + nUV = n FG 4n − 4) + 1IJ = n (4n – 1)


+n = S
2 2

T 3 W H 3 K 3
2
=
3

n
Sn = (4n2 – 1) (Ce)
3
C\ûjeY - 15 : 1 + 3 + 6 + 10 + 15 + ............ (n iõLýK _\ _~ðý«) ù~ûM`k ^ò‰ðd Ke ö
icû]û^ : Gjò iÚkùe ~\òI \ eûgòcûkû A.P ^êjñ«ò Z[û_ò Kâcû^ßdùe @«eMêWÿòK (@[ûðZþ 2,3,4,5,....
AZýû\ò) A.P. @U«ò ö
Sn = 1 + 3 + 6 + .... + tn–1 + tn
_ê^½ Sn = 1 + 3 + .... + tn–2 + tn–1 + tn (ùMûUòG _\Kê NêûA ùfLû~ûAQò)
aòùdûM Kùf, 0 = 1 + (3 –1) + (6 – 3) + (10 – 6) + .... + (tn – tn–1) – tn
\ tn = 1 + 2 + 3 + ....... + n iõLýK _\ _~ðý«
1 1 1
Þ tn = n (n + 1) = n2 + n
2 2 2

1 2 1 1 n( n + 1)(2 n + 1) 1 n( n + 1)
Sn = Stn = Sn + Sn = +
2 2 2 6 2 2

1 RS
(2 n + 1)
+1 =
UV
1 n( n + 1)(2 n + 4) 1
=
4
n(n+1)
T3 4W 3
= n(n+1)(n+2)
6

1
\ Sn = n(n+1)(n+2) (Ce)
6
3.4 icû«e c¤K (Arithmetic mean) :
a+b
\êAùMûUò iõLýû a I b \ò@û~ûA[ôùf ùi iõLýû\ßde icû«e c¤K x =
2
RýûcòZòK @^êgúk^ cû¤cùe aòPûe Keòaû ö (a) x (b)
AB e A I B e iÚû^ûu ~[ûKâùc a I b (b > a) ö A M B
(PòZâ 3.1)
[ 58 ]
a+b
AB e c¤aò¦ê M e iÚû^ûu x = (RýûcòZòùe @¤d^ KeòQ)
2
a+b
GVûùe a, 2
,b eûgòZâd icû«e _âMZò (A.P.) ùe ej«ò KûeY,
a+b a+b b−a
–a=b– = =d (iû]eY @«e) [GVûùe flý Ke AB e ù\÷Nðý = b–a ]
2 2 2
a +b a +b
a, ,b A.P. ùe ejòùf Kê a I b e icû«e c¤K aû A.M. Kêjû~ûG ö
2 2
a+b a+b
iìZâ : A.M. = 2
(ù~CñVûùe a, 2
, b A.P. ùe @Q«ò)
7 + 15 22 −1 + 10
C\ûjeY Êeì_, 7 I 15 e A.M. = = = 11, ùijò_eò –1 I 10 e AM = = 4.5
2 2 2
AZýû\ò ö
3.4.1 \êAUò \ eûgò a I b c¤ùe n iõLýK A.M. ^ò‰ðd :
(i) cù^Ke a I b \ eûgò ö _â[ùc Gjò eûgò\ßd c¤ùe \êAùMûUò A.M. ~[û x1 I x2 iÚû_^ Keòaû ö
ùMûUòG c¤Ke iÚû_^ _ûAñ AB ùeLûLŠKê icû^ \êA bûM Keò aûKê _Wÿò[ôfû ö AB ùeLûLŠe
a+b
c¤aò¦êUòKê iìPûC [ôaû iõLýû , a I b e icû«e c¤K ö \êAUò c¤K _ûAñ AB ùeLûLŠ Kê icû^
2
b−a
Zò^ò bûMùe aòbq Keòaû @ûagýK I _âùZýK bûMe ù\÷Nðý ~ûjû a, x1, x2, b icû«e _âMZòe
3
b−a
iû]ûeY @«e d ij icû^ö @ZGa GVûùe d = 3
ö (Q AB e ù\÷Nðý = b–a)
b−a 2a + b (a) x1 x2 (b)
iêZeûõ x1 = a + d = a + 3
=
3
Gaõ
A P Q B
FG b − a IJ = a + 2b (PòZâ
x2 = a + 2d = a + 2 H 3 K 3 3.2)

2a + b a + 2b
@ZGa \êAUò eûgò a I b c¤ùe [ôaû icû«e c¤K\ßd x1 = , x2 =
3
.........(iii)
3
(ii) aðcû^ @ûùc a I b c¤ùe Zò^òùMûUò A.M. iÚû_^ Keòaû ö
a I b c¤ùe Zò^òùMûUò icû«e c¤K ~[û x1, x2 I x3 jê@«ê ö GVûùe a, x1, x2, x3, b _û ùMûUò eûgò
icû«e _âMZò ùe ejòùa ö x1, x2 I x3 Kê a I b cû¤cùe RûYòaû _ûAñ AB ùeLûLŠKê icû^ Pûeò bûM
b−a
Keòaû @ûagýK I _âùZýK bûM e ù\÷Nðý d = ö (Q AB e ù\÷Nðý = b – a)
4
(a) x1 x2 x3 (b)
A T R S B
(PòZâ 3.3)

[ 59 ]
b−a 3a + b b−a a+b
x1 = a + d = a + = , x2 = a + 2d = a + 2 ¨ =
4 4 4 2

b−a a + 3b
Gaõ x3 = a + 3d = a + 3 ¨ =
4 4

3a + b a + b a + 3b
\ \êAUò eûgò a I b c¤ùe [aû icû«e c¤KZâd , Gaõ ...... (iv)
4 2 4
(iii) ùijò_eò a I b c¤ùe n iõLýK icû«e c¤K (A.M.) iÚû_^ KeòaûKê ùjùf AB Kê (n+1) icû^
b−a
bûùa aòbq KeòaûKê ùja; ù~CñVûùe _âùZýK bûMe ù\÷Nðý n +1
ùja ö ~\ò c¤KMêWÿòK x1, x2, x3, ......xn
b−a 2(b − a ) 3( b − a ) n( b − a )
jê@«ò, ùZùa, x1 = a + n +1
, x2 = a +
n +1
, x3 = a +
n +1
, ..........., xn = a +
n +1
ùja ö

b−a
GVûùe, a, x1, x2, x3 ................. xn, b A.P. ùe ejòùa, ~ûjûe iû]ûeY @«e d= n + 1 ùja ö
C\ûjeY - 16 : 2 I 62 c¤ùe (i) ùMûUòG (ii) \êAùMûUò (iii) Zò^ùò MûUò (iv) PûeòùMûUò icû«e c¤K
(A.M.) iÚû_^ Ke ö

icû]û^ : GVûùe a = 2 I b = 62 ö \ b – a = 60
b−a 60
(i) icû«e c¤KUò x1 ùjùf, x1 = a + =2+ = 2 + 30 = 32
2 2
\ 32, 2 I 62 c¤ùe ùMûUòG icû«e c¤K ö
(ii) icû«e c¤K \ßd x1 I x2 ùjùf, 2, x1, x2, 62 icû«e _âMZò aògòÁ I GVûùe
b−a 60
iû]ûeY @«e d = = = 20
3 3
\ x1 = a + d = 2 + 20 = 22 Gaõ x2 = a + 2d = 2 + 2 ¨ 20 = 42 ö
\ 22 I 42, 2 Gaõ 62 c¤ùe \êAUò icû«e c¤K ö
(iii) icû«e c¤K Zâd x1, x2 I x3 ùjùf,
b − a 60
2, x1, x2 , x3, 62 icû«e _âMZòùe ejòùa I iû]ûeY @«e d = = = 15 ö ùZYê
4 4

x1 = a + d = 2 + 15 = 17, x2 = a + 2d = 2 + 2 ¨ 15 = 32 Gaõ x3 = a + 3d = 2 + 3 ¨ 15 = 47ö


\ 17, 32 I 47, 2 I 62 c¤ùe Zòù^ûUò icû«e c¤K ö

[ 60 ]
(iv) icû«e c¤K PûeòUò x1, x2 , x3 I x4 ùjùf,

b − a 60
2, x1, x2 , x3, x4 , 62 icû«e _âMZòùe ejòùa Gaõ iû]ûeY @«e d = = = 12 ö @ZGa
5 5
x1 = a + d = 2 + 12 = 14, x2 = a + 2d = 2 + 2 ¨ 12 = 26, x3 = a + 3d = 2 + 3 ¨ 12 = 38,
Gaõ x4 = a + 4d = 2 + 4 ¨ 12 = 50 ö
\ 14, 24, 38 I 50, 2 Gaõ 62 c¤ùe PûùeûUò icû«e c¤K ö

@^êgúk^ú - 3 (b)
1. gì^ýiÚû^ _ìeY Ke ö
1 1 1 1
(a) =.....– (b) = –..............
15 x16 16 12 x 11 11
1 1 1 1
(c) =...............– (d) = –...........
n( n + 1) n +1 ( n + 1)n n

(e) 5 I 9 c¤ùe [ôaû icû«e c¤KUò ..................


(f) x I 7 c¤iÚ icû«e c¤KUò 5 ùjùf x = ................
(g) (a+b) I (a–b) c¤ùe icû«e c¤KUò ..................
(h) \êAUò eûgòe A.M. 11, ~\ò ùMûUòG eûgò 7 jêG, ùZùa @^ýUò ..................
2. ^òcÜfòLòZ @^êKâcMêWÿòKe icÁò ^ò‰ðd Ke ö
1 1 1
(a) 1 x 2 + 2 x 3 + 3 x 4 ... ... 20 Uò _\ _~ðý«;

1 1 1
(b) 5 x 6 + 6 x 7 + 7 x 8 ... ... 16 Uò _\ _~ðý«;
3. (a) 7 x 15 + 8 x 20 + 9 x 25 +...e tn ^ò‰ðd Ke ö
(b) 6Sn2 + 4Sn3 e iekúKéZ cû^ ^ò‰ðd Ke ö
(c) 1 x 2 + 2 x 3 + 3 x 4 ... + n (n + 1) _ûAñ Sn I S20 ^ò‰ðd Ke ö
(d) 1 x 3 + 2 x 4 + 3 x 5 ... e tn , Sn I S10 ^ò‰ðd Ke ö
4. ^òcÜfòLòZ ùgâYúMêWÿòKe n iõLýK _\ _~ðý« ù~ûM`k ^ò‰ðd Ke ö
(a) 1. 1. + 2. 3. + 3. 5 + 4. 7 + ...... (b) 1 . 3 + 3 . 5 + 5 . 7 + 7 . 9 + .......
(c) 3 . 8 + 6 . 11 + 9 . 14 + .......... (d) 1 + (1 + 3 ) + ( 1 +3 + 5) + .....

[ 61 ]
(e) 12 + 42 + 72 + 102 + ...... (f) 22 + 42 + 62 + 82 + ...........
(g) 1 + 5 + 12 + 22 + 35 + ........
(h) 12 + (12 + 22 ) + (12 + 22 + 32) + (12 + 22 + 32 + 42 ) + ...........
5. 15 I 27 c¤ùe (i) ùMûUòG I (ii) \êAùMûUò icû«e c¤K iÚû_^ Ke ö
6. 12 I 36 c¤ùe (i) \êAùMûUò I (ii) Zò^òùMûUò icû«e c¤K iÚû_^ Ke ö
7. 6 I 46 c¤ùe (i) \êAùMûUò I (ii) PûeòùMûUò icû«e c¤K iÚû_^ Ke ö
8. 5 I 65 c¤ùe (i) Zò^òùMûUò I (ii) _ûùMûUò icû«e c¤K iÚû_^ Ke ö
9. 11 I 71 c¤ùe _ûùMûUò icû«e c¤K iÚû_^ Ke ö
10. 20 I 80 c¤ùe n iõLýK A.M. @Qò ö ~\ò _â[c c¤K : ùgh c¤K = 1:3 jêG ùZùa, n e
cû^ iÚòe Ke ö
11. A.P. ùe[ôaû PûeòùMûUò iõLýû ^ò‰ðd Ke ~ûjûe ù~ûM`k 2 Gaõ @û\ý I _âû« eûgò\ßde
MêY`k c¤K \ßde MêY`ke 10 MêY ij icû^ ùja ö

[ 62 ]

You might also like