HSIC Routing Guidelines
HSIC Routing Guidelines
NVIDIA® TEGRA™ 2
Interface Design Guide
Abstract
This document contains recommendations and guidelines for engineers to follow to create a product that is optimized
® ™
to achieve the best performance from the common interfaces supported by NVIDIA Tegra 2 processors.
® ™
Tegra 2 processors incorporate a low-power, high performance Dual-core ARM Cortex-A9 MPCore processor and
includes dedicated 2D, 3D, audio and HD video processing capabilities. These are accessed through a full set of
interfaces including multiple memory, storage, video, audio and peripheral interfaces.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL
Tegra 2 Interface Design Guide
Table of Contents
1.0 Introduction .............................................................................................................................................................................5
1.1 Abbreviations and Definitions ............................................................................................................................................5
1.2 Signal Name Conventions.................................................................................................................................................6
1.3 Routing Guidelines ............................................................................................................................................................6
1.4 Signal Routing Conventions ..............................................................................................................................................7
1.5 Routing Guideline Format .................................................................................................................................................7
1.6 Features & Functions ........................................................................................................................................................8
1.7 Block Diagram...................................................................................................................................................................9
2.0 Power ...................................................................................................................................................................................10
2.1 Power Solution Requirements .........................................................................................................................................10
2.2 Optimal Power Solution...................................................................................................................................................10
2.3 Power Sequencing ..........................................................................................................................................................11
2.4 System Power States ......................................................................................................................................................11
2.5 Power Saving Features ...................................................................................................................................................12
2.6 Power Management Controller .......................................................................................................................................12
2.7 Adjustable Core & CPU Voltages ....................................................................................................................................13
2.7.1 Interface & Miscellaneous Power Control .................................................................................................................................... 13
2.8 Power Routing Guidelines...............................................................................................................................................14
2.9 Core Voltage Sense Signals ...........................................................................................................................................14
2.9.1 Routing guidelines for Core/CPU Sense signals: ........................................................................................................................ 14
2.10 5.2.4. Power Decoupling Guidelines .............................................................................................................................15
3.0 Interface Routing Guidelines.................................................................................................................................................17
3.1 Clocks .............................................................................................................................................................................18
3.1.1 32.768kHz Clock ........................................................................................................................................................................ 18
3.1.2 Oscillator Clock........................................................................................................................................................................... 18
3.2 DRAM Memory Configurations .......................................................................................................................................21
3.2.1 DDR2 Design Guidelines ............................................................................................................................................................ 21
3.2.2 8-bit Memory Configurations ....................................................................................................................................................... 21
3.2.3 16-bit Memory Configurations ..................................................................................................................................................... 27
3.2.4 LPDDR2 PoP (on PCB) or Discrete Design Guidelines ............................................................................................................... 34
3.3 NAND ..............................................................................................................................................................................38
3.3.1 NAND/NOR Design Guidelines ................................................................................................................................................... 39
3.4 USB.................................................................................................................................................................................41
3.4.1 Force Recovery .......................................................................................................................................................................... 41
3.4.2 Mini-Card .................................................................................................................................................................................... 42
3.4.3 USB Design Guidelines .............................................................................................................................................................. 42
3.5 ULPI ................................................................................................................................................................................43
3.5.1 ULPI Design Guidelines .............................................................................................................................................................. 43
3.6 HSIC ...............................................................................................................................................................................44
3.6.1 HSIC Design Guidelines ............................................................................................................................................................. 44
3.7 PCIE (Tegra 250 Only)....................................................................................................................................................45
3.7.1 PCIE Design Guidelines ............................................................................................................................................................. 45
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 2
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 3
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 4
Tegra 2 Interface Design Guide
1.0 INTRODUCTION
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 5
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 6
Tegra 2 Interface Design Guide
Note: For differential signals, the trace spacing to other signals must be the larger of the specified × dielectric height or the intra-
pair spacing. In other words, the spacing to other signals/pairs cannot be smaller than the spacing between the
complementary signals (intra-pair).
The total trace length depends on signal velocity which is different between the outer (microstrip) and inner layers (stripline)
of a PCB.
Unless otherwise specified, all trace length calculations (for matching and min/max) must include Tegra 2 substrate trace
length or delay (refer to the substrate trace length/delay chapter).
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 7
Tegra 2 Interface Design Guide
- WMA8, WMA9, and WMA10, MP3, PCM/WAV, SBC - I2S, left/right-justified, PCM, TDM (multi-slot mode)
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 8
Tegra 2 Interface Design Guide
LCD
DAP3 SDIO3 2ND
SPI3 Main
LCD
DSI LCD
DISPLAY
WiFi SDIO1 SPI4
UART5 CONTROLLERS
1&2
HDMI
UART3 HD TV
BLUE-
TOOTH
DDC
DAP4
TV/
VDAC CRT
DAP5 AUDIO
FM PMC
CONTROLLER
RADIO Keypad
UART4
Keybrd
Ref
Temp SPI
32 Clock eMMC
Sensor KHZ FLASH
DRAM NAND/
Out
DDR2, NOR
Speaker LDOs & POWER LPDDR2 FLASH
AUDIO DC-DCs SOLUTION
Mic
CODEC 32
Headset Charger Battery KHZ
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 9
Tegra 2 Interface Design Guide
2.0 POWER
32.768KHz Clock This must be on before Tegra 2 reset (SYS_RESET_N) is de-asserted and remain on as long as Tegra 2 is
powered
Reference clock 12MHz, 13MHz, 19.2MHz or 26MHz clock connected to Tegra 2 XTAL_OUT pin if provided externally. This
clock can also be generated internally by connecting a Crystal to the XTAL_IN/OUT pins.
Note: If the PEX (PCI Express) interface is implemented in a design, the reference clock or crystal must be
12MHz. This frequency is required to generate the PEX 100MHz internal clock
System Reset Reset output connected to the SYS_RESET_N pin. This is low during the power-on sequence until all
required powers/clocks are stable
DC/DC and LDO Adequate number of supplies at voltage/power levels needed, including programmable RTC, Core and CPU
Supplies voltages
Power Sequencing Power, clock and reset sequences that meet Tegra 2 and peripheral requirements
Power Control I2C & SPI supported for control I/F
Over-voltage protection Required for USB1_VBUS if standard USB Device connector would allow Charger connection
Battery management monitoring and charging as required by design
CPU Switcher 0.75 -1.0V nominal voltage range with 25mV steps
VDD_CORE must be ≥ VDD_CPU + 100mV
Turn off if CPU_PWR_REQ de-asserted – on at 1.0V when CPU_PWR_REQ asserted
PLL LDO Use 1.1V LDO from 1.8V DC/DC switcher to optimize efficiency and noise
Very good line regulation ensured using DC/DC switcher as LDO source
Turn off in when entering Deep Sleep mode when CORE_PWR_REQ is de-asserted
Host Interface Supply all signals between PMU and Tegra 2 (SYSTEM domain)
Optimized when Host rail is connected to 1.8V switcher
Power Sequence Power Up/Down sequence programmable by OTP ensures flexibility for any system design
Power-down sequence is reverse order of Power-up sequence
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 10
Tegra 2 Interface Design Guide
SUSPEND
DEEP
SLEEP
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 11
Tegra 2 Interface Design Guide
Tegra 2 is partitioned into power domains and power islands to optimize mobile device standby time (by limiting leakage current)
and to reduce power consumption for different use cases.
Power gating cuts an unused power island’s leakage current. There are two core power-gated islands and one non-power-gated
island. The L2 cache, which is located on the Core domain, is not powered off if the CPU domain is off. This allows it to
maintain its contents while Tegra 2 is in a suspend state. The NPG blocks are clock-gated (Off) when not used, to reduce
unnecessary power consumption and consist of the 2D, Display, AVP, IRAM, and MC modules.
The PMC contains logic for maintaining the state and control of power domains. It also signals the PMU to provide power to
Tegra 2 CPU and/or Core rails, and is part of the RTC power domain. The PMC manages the interface with the PMU including:
PWR_I2C – Main control interface between PMC and PMU. Alternately, SPI is supported if PMU does not support I2C
control interface. PMC is the master and PMU the slave.
CORE_PWR_REQ – Driven by the PMC to request VDD_CORE power be removed or asserted when transitioning
between ON and Deep Sleep states
CPU_PWR_REQ – Driven by the PMC to request VDD_CPU power be removed or asserted when transitioning
between ON and either CPU Idle or Deep Sleep states
SYS_CLK_REQ – Driven by the PMC to request an external reference clock be disabled or enabled when transitioning
between different power states
Note: CORE_PWR_REQ, CPU_PWR_REQ and SYS_CLK_REQ default to tri-state once VDDIO_SYS is applied and should therefore be
pulled-up to VDDIO_SYS or down to GND to ensure the PMU and/or clock source will provide core power and reference clock
during power-up. Alternately, the source of VDD_CORE and VDD_CPU can be designed to ignore the state of these pins during a
Power-on sequence.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 12
Tegra 2 Interface Design Guide
Note: Depending on Tegra 2 device & application, adjustable core voltage may have to be implemented to meet Thermal Design Power
(TDP) limits
Additionally, the Core & CPU rails need to maintain the following relationships:
VDD_CORE – VDD_CPU >/= 100mV
VDD_CORE must stay within 170mV of VDD_RTC when VDD_CORE is powered
Note: VDD_CPU should be brought up by the DVFS software (running on the AVP) which will determine the correct voltages
VDD_RTC Must always be powered – Contains PMC, & allows core logic to communicate with IO pins
VDDIO_SYS Rail associated with SYS_RESET_N, CLK_32K_IN, PWR_I2C, CORE/CPU_PWR_REQ & SYS_CLK_REQ
VDDIO_DDR Powers the Tegra 2 DRAM interface – required even in Deep Sleep for DRAM Self-refresh mode. VDD_DDR_RX is not
VDD_DDR_RX required, but leakage current is reduced if it is left powered along with VDDIO_DDR
VDD_DDR_1 Powers LPDDR2 Cores when AP20 (PoP) is used. These are also required to support Self-refresh mode
VDD_DDR_2
Power rails that can be off in Deep Sleep, but must return under hardware control (using CORE_PWR_REQ) are:
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 13
Tegra 2 Interface Design Guide
Other rails can be left disabled or enabled during Deep Sleep, Suspend or one of the active states, depending on need. This
includes the following power rails:
The following guidelines should be used when routing the connection between the Tegra 2 package and the filter capacitors.
Run thick trace (at least 16 mils wide) from power ball & drop via to power plane as soon as possible.
After via, continue running thick trace to decoupling capacitor or mount capacitor on underside of board & connect to
via.
Use thick trace (at least 16 mils wide) on GND side of decoupling capacitor to connect with GND plane via.
Position decoupling capacitors no more than 150 mils away from Tegra 2 package & keep trace length between
capacitor SMT pads & power/GND vias to a minimum.
Place all 0.1 μF capacitors within 100 mil of power balls & ≤ 2.2μF capacitors near power balls (& under Tegra 2).
4.7μF capacitors can be somewhat further from the power balls, but for critical interfaces such as DRAM, keep as close
as possible.
If space is limited, PLL power balls within a group can share one 0.1μF capacitor provided capacitor is within 100 mils
of all power balls.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 14
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 15
Tegra 2 Interface Design Guide
Note: 1. Tegra 250 requires fewer external capacitors due to on-package capacitors in these cases
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 16
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 17
Tegra 2 Interface Design Guide
3.1 Clocks
Tegra 2 has a large number of internal functional blocks as well as supports a broad range of interfaces. Each of these has its
own clocking requirements. The RTC (Real Time Clock) and PMC (Power Management Controller) require a 32.768KHz clock,
to be provided externally. In addition, a higher frequency reference clock (OSC) is required. This can come from a crystal or an
external source, and feeds several integrated PLLs that provide a variety of clocking options for the core and I/O blocks. The
Tegra 2 clocking scheme is shown in Figure 3.
Figure 3. Tegra 2 Clocking Block Diagram (External clock source shown, but Crystal connection supported as well)
PMU Tegra 2
RTC
CLK_32K_IN
32KHz RTC PLLS
PLLC
PMC
SYS_CLK_REQ
PLLM
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 18
Tegra 2 Interface Design Guide
XTAL_IN XTAL_OUT
RBIAS
CL1 CL2
Notes: 1: Routing as differential pair provides immunity and easier to reach target impedance.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 19
Tegra 2 Interface Design Guide
1.8V
External Tegra 2
OSC
EN OUT XTAL_OUT
VDDIO_SYS XTAL_IN
100KΩ
1.8V AVDD_OSC
SYS_CLK_REQ
1.8V VDDIO_SYS
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 20
Tegra 2 Interface Design Guide
The topology for each signal must be followed exactly as shown in the following figures. Starburst topology for 8 SDRAM (Dual
Rank) assumes four devices on the top layer and four on the bottom.
DDR_DQS0P DQS+ #1 #2 #3 #4
DDR_DQS0N DQS-
DDR_DQM0 DQM
DDR_DQ[7:0] DATA
VDDQ
VSSQ
VDDL
VREF
VSSL
VDD
VSS
DDR_DQS1P
DDR_DQS1N
DDR_DQM1
DDR_DQ[15:8]
DDR_DQS2P
DDR_DQS2N
DDR_DQM2
DDR_DQ[23:16]
DDR_DQS3P
DDR_DQS3N
DDR_DQM3
DDR_DQ[31:24]
DDR_QUSE0
2.8V –
VDD_RX_DDR DDR_QUSE1
3.3V
DDR_QUSE2
1.8V VDDIO_DDR DDR_QUSE3
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 21
Tegra 2 Interface Design Guide
Table 13. Single & Dual Rank, 8-bit DDR2 Addr/Cmd/Ctl Signal Routing Requirements
Parameter Requirement (Single Rank) Requirement (Dual Rank)
Topology Starburst (T-T) Starburst (T-T-T)
Operational Constraints Address / Command = 1T Address / Command = 1T
Configuration / Device Organization 4 loads 8 loads (4 for Control – See Note)
Maximum Loading (per pin) 2pf 2pf
Reference plane GND GND
Breakout Region Impedance Minimum width & spacing Minimum width & spacing
Max PCB breakout length 48ps (~0.3”) 48ps (~0.3”)
Trace Impedance 47-50Ω ±15% 47-50Ω ±15%
Trace Spacing Microstrip 4x dielectric 4x dielectric
Stripline 3x dielectric 3x dielectric
Max Trace Length: Package+PCB main trunk ≤480ps ≤480ps
Max Trace Length: Seg 1 ≤167ps ≤167ps
Max Trace Length: Seg 2 ≤89ps ≤89ps
Max Trace Length: Seg 3 (Dual Rank) na ≤45ps
Max Trace Length Skew in Seg 1 ≤13ps ≤13ps
Max Trace Length Skew in Seg 2 ≤15ps ≤15ps
Max Trace Length Skew in Seg 3 (Dual Rank) na ≤6ps
Max Trace Length Skew between Addr/Cmd/Ctl & Clk
Single Rank:
Package + PCB Main Trunk +Seg1 + Seg2 (Addr/Cmd)
compared w/Package + PCB Main Trunk + Seg1 + Seg2 (Clk) <160ps
Dual Rank:
Package + PCB Main Trunk +Seg1 + Seg2 + Seg3 (Addr/Cmd)
<160ps
compared w/Package + PCB Main Trunk + Seg1 + Seg2 + Seg3 (Clk)
Table 14. Single & Dual Rank, 8-bit DDR2 Addr/Cmd/Ctl Signal Group Connections
Ball Name Type Termination Description
DDR_A[14:0] O None Address: Connect DDR_A to A pins of all SDRAM
DDR_BA[2:0] O None Bank Address: Connect DDR_BA to BA pins of all SDRAM
DDR_CAS_N O None Column Address Strobe
Connect DDR_CAS_N to CAS_N pins of all SDRAMs
DDR_RAS_N O None Row Address Strobe:
Connect DDR_RAS_N to RAS_N pins of all SDRAMs
DDR_WE_N O None Write Enable:
Connect DDR_WE_N to WE_N pins of all SDRAMs
DDR_CS[1:0]_N O None Chip Select:
Connect DDR_CS0_N to CS_N pins of all SDRAM on Rank 0
Connect DDR_CS1_N to CS_N pins on all SDRAM on Rank 1
DDR_CKE[1:0] O None Clock Enable
Connect DDR_CKE0 to CKE pins of all SDRAM on Rank 0
Connect DDR_CKE1 to CKE pins on all SDRAM on Rank 1
DDR_ODT0 O None On-Die Termination Control
Connect DDR_ODT0 to ODT pins of all SDRAMs
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 25
Tegra 2 Interface Design Guide
Figure 12. Single Rank, 8-bit DDR2 Clock [Starburst (T-T) Topology]
Figure 13. Dual Rank, 8-bit DDR2 Clock [Starburst (T-T-T) Topology)
Table 15. Single & Dual Rank, 8-bit DDR2 Clock Routing Requirements
Parameter Requirement (Single Rank) Requirement (Dual Rank)
Clock
Topology Starburst Starburst
Configuration / Device Organization 4 loads 8 loads
Maximum Loading (per pin) 2pf 2pf
Reference plane GND GND
Breakout Region Impedance Minimum width & spacing Minimum width & spacing
Max PCB breakout length 48ps (~0.3”) 48ps (~0.3”)
Trace Impedance 90Ω diff pair ±15% 90Ω diff pair ±15%
Trace Spacing Microstrip 4x dielectric 4x dielectric
Stripline 3x dielectric 3x dielectric
Max Trace Length: Package+PCB main trunk ≤480ps ≤480ps
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 26
Tegra 2 Interface Design Guide
T-Branch Topology: 16-bit DDR2 Address, Command & Control (Single Rank), Control (Dual Rank)
Figure 18. T-Branch Topology: 16-bit DDR2 Address, Command & Control (Single Rank), Control (Dual Rank)
Rank 0
Branch A DDR2
Package Main trunk #1
Tegra 2
Branch B DDR2
#2
Table 19. T-Branch Topology: 16-bit DDR2 Addr, Cmd & Ctl (Single Rank), Ctl (Dual Rank) Group Signal Routing Requirements
Parameter Requirement (Add/Cmd/Ctl Single Rank, Ctl Dual Bank)
Address/Command/Control
Topology T-Branch
Operational Constraints Address / Command = 1T
Configuration / Device Organization 2 loads
Maximum Loading (per pin) 2pf
Reference plane GND
Breakout Region Impedance Minimum width & spacing
Max PCB breakout length 48ps (~0.3”)
Trace Impedance 47-50Ω ±15%
Trace Spacing Microstrip 4x dielectric
Stripline 3x dielectric
Max Trace Length: Package+PCB main trunk ≤560ps
Max Trace Length: Branch A/B ≤100ps
Max Trace Length Skew between Addr/Cmd/Ctl & Clk <160ps
Package + PCB Main Trunk +Branch A/B (Addr/Cmd/Ctl)
compared with Package + PCB Main Trunk + Branch A/B (Clk)
Max Trace Length Skew (Addr/Cmd) in Branch A/B ≤30ps
Starburst (T-T) Topology: 16-bit DDR2 Address & Command (Dual Rank)
Figure 19. Starburst (T-T) Topology: 16-bit DDR2 Address & Command (Dual Rank)
Rank 0
Seg 2 DDR2
Seg 1 #1
Rank 1
DDR2
Package Main Trunk #3
Tegra 2 Rank 0
DDR2
#2
Rank 1
DDR2
#4
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 30
Tegra 2 Interface Design Guide
Table 20. Dual Rank, 16-bit DDR2 Addr & Cmd Group Signal Routing Requirements
Parameter Requirement (Dual Rank)
Address/Command
Topology Starburst (T-T)
Operational Constraints Address / Command = 1T
Configuration / Device Organization 4 loads: Address & Command
2 loads: Control (See Note)
Maximum Loading (per pin) 2pf
Reference plane GND
Breakout Region Impedance Minimum width & spacing
Max PCB breakout length 48ps (~0.3”)
Trace Impedance 47-50Ω ±15%
Trace Spacing Microstrip 4x dielectric
Stripline 3x dielectric
Max Trace Length: Package+PCB main trunk ≤480ps
Max Trace Length: Seg 1 ≤167ps
Max Trace Length: Seg 2 ≤89ps
Max Trace Length Skew in Seg 1 ≤13ps
Max Trace Length Skew in Seg 2 ≤15ps
Max Trace Length Skew between Addr/Cmd/Ctl & Clk <160ps
Package + PCB Main Trunk +Seg1 + Seg2 (Addr/Cmd)
compared w/Package + PCB Main Trunk + Seg1 + Seg2 (Clk)
Table 21. Single & Dual Rank, 16-bit DDR2 Addr, Cmd & Ctl Group Connections
Ball Name Type Termination Description
DDR_A[14:0] O None Address: Connect DDR_A to A pins of all SDRAMs
DDR_BA[2:0] O None Bank Address: Connect DDR_BA to BA pins of all SDRAMs
DDR_CAS_N O None Column Address Strobe: Connect DDR_CAS to CAS_N pins of all SDRAMs
DDR_RAS_N O None Row Address Strobe: Connect DDR_RAS to RAS_N pins of all SDRAMs
DDR_WE_N O None Write Enable: Connect DDR_WE_N to WE_N pins of all SDRAMs
DDR_CS[1:0]_N O None Chip Select:
Connect DDR_CS0 to CS_N pins of all SDRAM on Rank 0
Connect DDR_CS1 to CS_N pins on all SDRAM on Rank 1
DDR_CKE[1:0] O None Clock Enable
Connect DDR_CKE0 to CKE pins of all SDRAM on Rank 0
Connect DDR_CKE1 to CKE pins on all SDRAM on Rank 1
DDR_ODT0 O None On-Die Termination Control: Connect DDR_ODT0 to ODT pins of all
SDRAMs
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 31
Tegra 2 Interface Design Guide
Branch A Rank 0
+ DDR2
Package Main trunk -- #1
CLK
Tegra 2 + +
CLK_N
-- -- Branch B
+ DDR2
-- #2
Figure 21. Dual Rank, 16-bit DDR2 Clock (Starburst (T-T) Topology)
Seg 2 Rank 0
+ DDR2
Seg 1 -- #1
+
-- Rank 1
+ DDR2
Package Main Trunk -- #3
CLK
Tegra 2 + +
CLK_N
-- -- Rank 0
+ DDR2
-- #2
+
-- Rank 1
+ DDR2
-- #4
Table 22. Single & Dual Rank, 16-bit DDR2 Clock Routing Requirements
Parameter Requirement (Single Rank) Requirement (Dual Rank)
Clock
Topology T-Branch Starburst (T-T)
Configuration / Device Organization 2 loads 4 loads
Maximum Loading (per pin) 2pf 2pf
Reference plane GND GND
Breakout Region Impedance Minimum width & spacing Minimum width & spacing
Max PCB breakout length 48ps (~0.3”) 48ps (~0.3”)
Trace Impedance 90Ω diff pair ±15% 90Ω diff pair ±15%
Trace Spacing Microstrip 4x dielectric 4x dielectric
Stripline 3x dielectric 3x dielectric
Max Trace Length: Package+PCB main trunk ≤605ps ≤480ps
Max Trace Length: Branch A/B (Single Rank) ≤115ps na
Max Trace Length Skew in Branch A/B (Single Rank) <30ps na
Max Trace Length Skew CLK/CLK_N (Single Rank) <1ps na
(Package + Main Trunk + T-Branch A/B)
Max Trace Length: Seg 1 (Dual Rank) na ≤167ps
Max Trace Length: Seg 2 (Dual Rank) na ≤89ps
Max Trace Length Skew CLK/CLK_N (Dual Rank) na <1ps
Package + Main Trunk + Seg1 + Seg2
Note: All Max Trace Length Skew matching must include substrate pin delays unless otherwise specified.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 32
Tegra 2 Interface Design Guide
Table 23. Single & Dual Rank, 16-bit DDR2 Clock Connections
Ball Name Type Termination Description
DDR_CLK DIFF None Clock
DDR_CLK_N OUT Connect DDR_CLK to CLK pins of all SDRAM
Connect DDR_CLK_N to CLK_N pins of all SDRAM
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 33
Tegra 2 Interface Design Guide
Note: LPDDR2 PoP (on PCB) or discrete devices contain from 1 to 4 memory devices stacked inside
The topology for each signal must be followed exactly as shown in the following figures.
2.94KΩ,1%
2.94KΩ,1%
VDDIO_DDR DDR_A[9:0] CA[9:0] VDDQ
DDR_CS[1:0]_N CS[1:0]_N VDDCA
DDR_CKE[1:0] CKE[1:0]
49.9Ω,1%
VREF(CA)
DDR_DQS[3:0]P DQS[3:0]_T VREF(DQ)
DDR_DQS[3:0]N DQS[3:0]_C
2.94KΩ,1%
2.94KΩ,1%
DDR_COMP_PU DDR_DQM[3:0] DQM[3:0] ZQ0
DDR_COMP_PD DDR_DQ[31:0] DQ[31:0] ZQ1
49.9Ω,1%
VSS
243Ω,1%
243Ω,1%
VSSQ
VSSCA
Figure 23. LPDDR2 DQ, DQS, DQM & Address/Control (Point-Point) Topology
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 34
Tegra 2 Interface Design Guide
Note: All Max Trace Length Skew matching must include substrate pin delays unless otherwise specified.
Table 28. LPDDR2 Cmd/Addr & Ctl Group Signal Routing Requirements
Parameter Requirement (PoP) Requirement (Discrete)
Command/Address & Control
Topology Point-Point
Operational Constraints Address / Command = 1T
Max Number of Loads 1 (up to 4 internal address & 2 control loads)
Minimum Loading (per pin) 1pf
Maximum Loading (per pin) 2pf
Reference plane GND
Breakout Region Impedance Minimum width & spacing
Max PCB breakout length 48ps (~0.3”)
Trace Impedance 50Ω ±15%
Trace Spacing Microstrip 4x dielectric
Stripline 3x dielectric
Max Trace Length: Package+PCB main trunk ≤445ps ≤565ps
Max Trace Length Skew between Addr/Cmd/Ctl & Clk (Package + PCB Main Trunk) <10ps
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 35
Tegra 2 Interface Design Guide
Note: All Max Trace Length Skew matching must include substrate pin delays unless otherwise specified.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 36
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 37
Tegra 2 Interface Design Guide
3.3 NAND
Tegra 2 contains a Raw NAND and GMI (General Memory Interface) controller. Between these two blocks, Tegra 2 supports a
broad range of devices including a variety of NAND and NOR devices and configurations.
Raw NAND (SLC, MLC - Up to 8 devices/8 chip selects)
OneNAND / Mux OneNAND / Flex Mux OneNAND
mLBA NAND
NOR, Sync NOR
10KΩ
NAND_ALE
Tegra 2 GMI_ADV_N
NAND_CLE
ALE NAND
GMI_CLK
NAND_RE_N
CLE 1
GMI_OE_N
NAND_WE_N
RE_N 2
GMI_WE_N
NAND_D[7:0]
WE_N 3
GMI_AD[7:0]
NAND_BSY0
D[7:0] 4
GMI_WAIT BSY 5
GMI_WP_N WP 6
100KΩ 7
NAND_CE0_N
8
GMI_CS2_N CE0_N
NAND_CE1_N
GMI_CS3_N CE1_N
NAND_CE2_N
GMI_CS4_N CE2_N
NAND_CE3_N
GMI_IORDY CE3_N
NAND_CE4_N
GMI_CS6_N CE4_N
NAND_CE5_N CE5_N
GMI_CS5_N
NAND_CE6_N
GMI_CS0_N CE6_N
1.8V, 2.8V- NAND_CE7_N
VDDIO_NAND GMI_CS1_N CE7_N
3.3V
100KΩ
100KΩ
100KΩ
100KΩ
GMI_INT1
GMI_WP_N INT1
GMI_INT2
GMI_AD16 INT2
1.8V VDDIO_NAND GMI_RST_N RP_N
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 38
Tegra 2 Interface Design Guide
Notes: If PWR reference, use 0.01uf decoupling cap between PWR and GND for return current
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 39
Tegra 2 Interface Design Guide
Notes: Ball location can be on NAND (Primary) or SYSTEM (Secondary) interface blocks. Refer to Tegra 2 EMT Datasheet “Signal List
and Multiplexing Functions” section for actual Ball Names.
Notes: Depending on what signals are used, the ball locations can be on NAND, UART and AUDIO interface blocks. Refer to Tegra 2
EMT Datasheet “Signal List and Multiplexing Functions” section for actual Ball Names.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 40
Tegra 2 Interface Design Guide
3.4 USB
Tegra 2 has three USB controllers which can be brought out on a variety of interfaces including USB PHY, ULPI, HSIC and
IC_USB.
Note: USB VBUS overvoltage protection: VBUS must be protected until AVDD_USB is powered as shown in Figure 30.
Controller #1
Routed to integrated PHY (USB1) and supports low, full and high speed mode
Both Host and Device modes are supported. VBUS available to support Type A, B or A/B connectors
USB1 required for Recovery mode and must be configurable as a USB Device (See Force Recovery section below)
Controller #2
Used for either ULPI or HSIC (Only one can be used per design)
ULPI is a 12-pin I/F used to connect to compatible external USB PHYs, Baseband or other compatible devices
- Example connection to SMSC USB3315 ULPI to USB PHY shown in ULPI section
HSIC is a 2-pin I/F for high-speed chip-to-chip communications to compatible external PHYs, hubs, Basebands, etc.
Controller #3
Either routed to second integrated USB PHY (USB3) or to IC_USB interface. Only one can be used per design.
USB3 supports low, full and high speed and Host mode. VBUS provided.
- Typical Smartbook designs use USB3 to interface to USB Hub
IC_USB interface is used to connect to compatible SIM Cards
1.8V,
VDDIO_NAND
2.8-3.3V
USB1 VBUS
1
90R@100MHz DN
USB1_DN 2
DP USB
USB1_DP 3
ACC1_DET
ID
4
Micro B
USB1_VBUS 5
220R@100MHz PWR 6
3.3V 1 DM
2 DP 4
NC 5
NC
3 ID 7
AVDD_USB
GND
AVDD_USB_PLL
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 41
Tegra 2 Interface Design Guide
3.4.2 Mini-Card
Figure 31 shows USB & SMB (I2C) from Tegra 2 connected to a Mini-Card socket. The Mini-Card socket is one method for
supporting Baseband modules (currently using only the USB interface portion of the Mini-Cards). A SIM socket is provided off
one of the Mini-Card connectors for this purpose..
2
SIM
GND VCC
UIM_VPP UIM_RESET
VPP RST
UIM_DATA UIM_CLK
IO CLK
UIM_IC_DM UIM_IC_DP
DN DP
NC NC
1 6
5
3 4
2
3.3V
3.3V VDDIO_UART
1 2
WAKE_N 3.3VAUX 1.5V
3 RESERVED GND 4
5 RESERVED 1.5V 6
7 8
2.2KΩ
2.2KΩ
2.2KΩ
2.2KΩ
CLKREQ_N UIM_PWR
9
11
GND
REFCLKn
UIM_DATA
UIM_CLK
10
12 Tegra 2
13 REFCLKp UIM_RESET 14
15 GND UIM_VPP 16
17 18
19
RES/UIM_C8 GND
20
3.3V VDDIO_UART UART
RES/UIM_C4 RESERVED
21 22
GND PERST_N VCCB VCCA
23 PERn0 24
25 PERp0 Mini 3.3VAUX
GND 26 B1 Level A1 GEN1_I2C_SCL
27 GND 1.5V 28 B2 Shifter A2 GEN1_I2C_SDA VDDIO_UART 1.8V
29
31
GND Card SMB_CLK 30
32
DIR GND
PETn0 SMB_DATA
33 PETp0 GND 34
3.3V 35 GND USB_Dn 36 USB
37 GND USB_Dp 38
39 3.3VAUX GND 40
41 42 USB3_DN AVDD_USB
3.3VAUX LED_WWAN_N
43 GND LED_WLAN_N 44 USB3_DP AVDD_USB_PLL 3.3V
45 RESERVED LED_WPAN_N 46
47 RESERVED 1.5V 48
49 RESERVED GND 50
51 RESERVED 3.3VAUX 52
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 42
Tegra 2 Interface Design Guide
3.5 ULPI
Tegra 2 supports ULPI (UMTI+ Low Pin Interface) as an option for the USB Controller #2. This can be used to connect to
external USB PHYs, or other compatible devices. Figure 32 shows Tegra 2 connecting to ULPI-USB PHY. The PHY can then
interface to a compatible Baseband, USB Hub, etc. The ULPI Interface supports an 8-bit SDR data interface only – 4-bit DDR
data I/F is not supported.
Figure 32. Example ULPI connection to External SMSC USB3315 USB PHY
Notes: If PWR reference, use 0.01uf decoupling cap between PWR and GND for return current
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 43
Tegra 2 Interface Design Guide
3.6 HSIC
An alternative for the USB Controller #2 is to support HSIC (High Speed Inter-Chip). This 2-pin, 1.2V CMOS I/F can connect to
compatible USB PHYs, hubs, peripherals, etc. Figure 33 shows Tegra 2 as the Host interfacing with an external HSIC-USB
Hub.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 44
Tegra 2 Interface Design Guide
Tegra 2
PEX PEX_CLK_OUT1_N
PEX_CLK_OUT1_P
PEX_CLK_OUT2_N
PEX_CLK_OUT2_P
0.1uf
PEX_L0_TXN
0.1uf
PEX_L0_TXP
PEX_L0_RXN
PEX_L0_RXP
0.1uf
PEX_L1_TXN
0.1uf
PEX_TERMP PEX_L1_TXP
PEX_L1_RXN
2.49KΩ,1%
PEX_L1_RXP
0.1uf
PEX_L2_TXN
0.1uf
PEX_L2_TXP
PEX_L2_RXN To PCIE Mini-Card,
direct to peripheral or
PEX_L2_RXP proprietary connector
3.3V VDDIO_PEX_CLK
0.1uf
PEX_L3_TXN
1.05V 0.1uf
PEX_L3_TXP
PEX_L3_RXN
VDD_PEX
PEX_L3_RXP
AVDD_PCIE
AVDD_PEX PEX_REFCLKP
AVDD_PEX_PLL PEX_REFCLKN
120R@100MHz
100KΩ 3.3V
PEX_WAKE_N
SDIO SDIO3_DAT1
PEX_CLKREQ0_N
GPIO_PV6
PEX_CLKREQ1_N
SDIO3_DAT0
PEX_RST0_N
GPIO_PV5
PEX_RST1_N
3.3V VDDIO_SDIO SDIO3_DAT4
PEX_PRSNT0_N
GPIO_PV4
PEX_PRSNT1_N
SDIO3_DAT5
Note: Void region under BGA pads. Remove slivers between BGA pads and feedthru to vias
Do trace length matching before the vias to transition to different layers
For PCIE Mini-Card: 100nF discrete 0402 on PCB halfway between Tegra 2 & socket pins
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 45
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 46
Tegra 2 Interface Design Guide
LCD_D[17:12] R[5:0]
LCD_D[11:6] G[5:0]
LCD_D[5:0] B[5:0]
1.8V,
VDDIO_LCD
2.8V-3.3V
Figure 36 shows a 24-bit Parallel RGB interface with serial (SPI like) interface for control/register programming. SPI3 is routed
to LCD_CS0, LCD_SCK, LCD_SDOUT and LCD_SDIN. Tegra 2 can write or read from the LCD display driver. RGB data is
still transferred over the parallel interface. Note that the lower two bits of Red, Green and Blue to the panel come from the upper
6-bits (LCD_D[23:18]) of the 24-bit LCD interface on the Tegra 2.
LCD_CS0 SPI_CS
Optional LCD_SCK SPI_CLK
Control
LCD_SDOUT SPI_DIN
I/F (SPI)
LCD_SDIN SPI_DOUT
1.8V,
VDDIO_LCD
2.8V-3.3V
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 47
Tegra 2 Interface Design Guide
Figure 37 shows basic connections to a 16-bit Host type LCD display. Since these devices usually have their own frame
buffers, they can optionally perform self-refresh of the display so the Tegra 2 does not have to always drive the pixel data. This
can be useful to lower power or signal noise in some situations.
Figure 37. 16-bit Host I/F LCD Connection Example
LCD_D[15:11] R[4:0]
LCD_D[10:5] G[5:0]
LCD_D[4:0] B[4:0]
1.8V,
VDDIO_LCD
2.8V-3.3V
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 48
Tegra 2 Interface Design Guide
LVDS_CLKOUTP/N
LVDS_Y0P/M R1 R0 G0 R5 R4 R3 R2 R1 R0 G0
LVDS_Y1P/M G2 G1 B1 B0 G5 G4 G3 G2 G1 B1
LVDS_Y2P/M B3 B2 DE VS HS B5 B4 B3 B2 De
Table 46. LCD Interface Signal Routing Requirements (External LVDS Transmitter)
Parameter Requirement
Max Frequency 50MHz – Flex display, 133MHz – External transceiver
Topology Point to Point
Configuration / Device Organization 1 load
Max Loading 40pf (Flex display), 20pf (External transceiver)
Reference plane GND or PWR (In case of PWR reference, use decoupling cap (0.01uf)
between PWR and GND for return current)
Breakout Region Impedance Minimum width & spacing
Max PCB breakout length 45ps (~0.3”)
Trace Impedance 90Ω diff pair ±15% / 90Ω ±15%
Trace Spacing Microstrip 4x dielectric
Stripline 2x dielectric
Max Trace Length <900ps (Flex display), <450ps (External transceiver)
Max Trace Length Skew between CLK & Data <100ps
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 49
Tegra 2 Interface Design Guide
DSI_CSI_RDN 49.9Ω,1%
AVDD_DSI_CSI 1.2V
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 50
Tegra 2 Interface Design Guide
3.9.1 HDMI
A standard 3-lane HDMI V1.3 interface is supported as one option for an external display.
DDC_SCL/SDA pins are 5V tolerant (no level shifter required). Lines pulled up to 5V supply.
HP_DET drives HDMI_INT on Tegra 2 (Also 5V tolerant - no level shifter required).
D S D1_SHIELD
HDMI_TXD1N 5
G D1+
HDMI_TXD1P 4
1.8V D2-
HDMI_TXD2N 3
D D2_SHIELD
HDMI_TXD2P 2
D2+
G 1
S
HDMI_RSET
1 5
1KΩ,1%
PWR +5V_F
3 2
AVDD_HDMI_PLL 4 NC
6 7
GND
SHIELD GND
Notes: Routing Over void not allowed (Anti-pad at connector pins causes voids. Route traces w/min. void references)
If signals switch ref. layers, add symmetrical stitching via close to signal vias. Max GND via distance = 1x diff pair via pitch
EMI: It is recommended that the length of the data pairs be skewed 50ps – 75ps from each other to reduce EMI (all data
pairs should have different lengths)
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 51
Tegra 2 Interface Design Guide
Below is an example of a connection between Tegra 2 and the various components to implement a VGA (CRT) connection.
Tegra 2 GND-R
68nH
R ID0 SHIELD
VDAC_R
VDAC 68nH
GND-G
G DDC_DATA
VDAC_VREF VDAC_G
68nH GND-B
B HSYNC
VDAC_RSET VDAC_B
0.1uf 5V
1KΩ, 1%
150 Ω
150 Ω
150 Ω
150 Ω
150 Ω
GND
GND DDC_CLOCK
VDDIO_LCD +5V
SHIELD
2.8V –
AVDD_VDAC Level Shifter 220R@100MHz
3.3V
VCAA VCCB 33Ω
A1 B1 220R@100MHz
LCD CRT_VSYNC A2 B2 33Ω
47pf 47pf
CRT_HSYNC DIR GND
0.1uf
1.8KΩ +5V 0.1uf
1.8KΩ 220R@100MHz
DDC_SCL 33Ω +5V
220R@100MHz
1.8, 2.8V
VDDIO_LCD DDC_SDA 33Ω
– 3.3V 4.7pf 4.7pf 1 5
3 PWR
2
4 NC
6 7
GND
For TV Output, VDAC_R, VDAC_G and VDAC_B carry Composite Video or S-Video. Composite Video can be programmed to
come out on any of the 3 but the example below shows it coming out on VDAC_B.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 52
Tegra 2 Interface Design Guide
150 Ω
150 Ω
VDAC_G
0.1uf
VDAC_VREF
2.8V –
AVDD_VDAC VDAC_RSET 1KΩ, 1%
3.3V
150 Ω
150 Ω
150 Ω
VDAC_VREF
2.8V –
AVDD_VDAC VDAC_RSET 1KΩ, 1%
3.3V
Termination Placement
Two 150 Ω terminations (to GND) are needed for each of the three RGB lines. One should be placed near Tegra 2
(within 600 mils) and the other near the connector.
The three-pole filter should be placed within 600 mil of the connector, using values 8pF/100nH / 12pF (see Figure 45
for more detail).
ESD protection diodes (place-holders) should be placed close to the connector, preferably between the 150Ω
termination and the three-pole filter. Connect to +3.3V and GND vias with >15 mil trace width and no longer than 75 mil.
Routing
Unless otherwise specified, follow these guidelines for routing RGB signals:
Tegra 2 BGA Breakout (< 150 mil):
Route nominal impedance and 1.5× dielectric height spacing
After Breakout:
RGB signals should be routed at specified impedance for each segment, 15 mil spacing to each other, and 20 mil
spacing to other signals.
All three RGB signals should be matched as close as possible with a maximum length of 10 inches.
Keep RGB signals >250 mil away from any areas of the board that experience high switching currents, such as
switching voltage regulator FETs and inductors, and CPU signals. Keep >50 mil away from clocks, high current power
traces, and vias.
RGB signals should reference a solid GND plane for the entire route. If this is not possible, vias should be kept to a
minimum.
Ground elements of the filter and terminations can be routed together and tied to a single point grounded to a quiet
area of the digital plane.
Optionally, a trace tied to GND at several points can encircle the RGB signals on each layer to assist in keeping them
quiet. Highly recommended for signal length ~ 10 inches.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 53
Tegra 2 Interface Design Guide
L1
DAC A B C C D To Connector
Diodes
150 Ω
150 Ω
C1 C2
ESD
Figure 2-6. Placement of RGB Three-Pole Filter
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 54
Tegra 2 Interface Design Guide
Tegra 2 100KΩ
2.2KΩ
2.2KΩ
VI VI_MCLK REFCLOCK
CAM_I2C_SCL I2C_SCL
CAM_I2C_SDA I2C_SDA
CAM_RST_N
VI_GP5 RESET
VI_GP4 CAM_PDWN
PWRDOWN
CAM_AF_PDWN_N
1.8V–3.3V VDDIO_VI VI_GP0 AF_PDWN
100KΩ
100KΩ
CSI CSI_CLKAP
Clock A
CSI_CLKAN
CSI_D1AP
Channel 1A
CSI_D1AN
CSI_D2AP
Channel 2A
CSI_D2AN
REFCLOCK
I2C_SCL
I2C_SDA
AVDD_DSI_CSI RESET
PWRDOWN
453Ω,1% DSI_CSI_RUP CSI_CLKBP
Clock B
CSI_CLKBN
49.9Ω,1% DSI_CSI_RDN
CSI_D1BP
Channel 1B
1.2V AVDD_DSI_CSI CSI_D1BN
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 55
Tegra 2 Interface Design Guide
Note: If two imagers are implemented, both using the digital parallel interface, only one at a time can be driving the imager clock, sync
and data lines. The other must tri-state these pins. Separate resets are often used for this purpose.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 56
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 57
Tegra 2 Interface Design Guide
3.11 SDIO
Tegra 2 has four SD/MMC controllers: SDIO1, SDIO2, SDIO3 and HSMMC (SDIO4). These are all capable of supporting a
variety of devices and protocols including SD/MMC Memories, eSD and MMC devices and SDIO peripherals. SD/eSD/SDIO
can be supported up to 4-bits and at standard or High Speed. MMC/eMMC supports 4 or 8-bit devices Standard or High Speed
devices.
0.1uf
CMD_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
CMD_PU & DAT_PU: See Termination
Tegra 2 recommendations in SD / MMC Card Socket
Signal Connections table D4
D5
SDIO3_CLK
D2
SDIO3_CMD
D3
CMD
SDIO3_DAT0
GND
SDIO3_DAT1
VDD
SDIO3_DAT2
CLK
SDIO3_DAT3
GND
SDIO3_DAT4
D0
SDIO3_DAT5
D1
SDIO3_DAT6
D6
SDIO3_DAT7
D7
SDIO CD_N
GPIO_PV6
SDIO WP_N
GPIO_PV5
D2
VDDIO_SD
D3
5 1 CMD
PWR 3
2 GND
NC 4
7 6 VDD
GND
CLK
5 1 GND
PWR 3
2 D0
NC 4 0.1uf
7 6 D1
GND
5 1 C_DETECT_N
PWR 3
2.8V – 2 WP_N
VDDIO_SDIO NC 4
3.3V 7
GND 6
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 58
Tegra 2 Interface Design Guide
2. Secondary: CLK – GMI_CLK, CMD – GMI_WAIT, DAT[7:0] – GMI AD[3, 11, 2, 10, 1, 9, 0, 8]
The Primary boot location for eMMC can be selected with Fuses or Straps (see section on Strapping Pins). The Secondary boot
location can only be selected with Fuses. The Secondary boot location is usually only used for the AP20 PoP configuration with
eMMC on the PoP module. Figure 50 shows a typical eMMC external connection.
DAT_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
DAT_PU
SD / MMC Card Socket Signal
Connections table
Tegra 2
HSMMC_CLK
GMI_CS5_N
HSMMC_CMD
CLK eMMC
GMI_DPD CMD
HSMMC_DAT7
GMI_AD27 DATA7
HSMMC_DAT6
GMI_AD26 DATA6
HSMMC_DAT5
GMI_AD25 DATA5
HSMMC_DAT4
GMI_AD24 DATA4
HSMMC_DAT3
GMI_AD23 DATA3
HSMMC_DAT2
GMI_AD22 DATA2
HSMMC_DAT1
GMI_AD21 DATA1
1.8V, HSMMC_DAT0
VDDIO_NAND GMI_AD20 DATA0
2.8V-3.3V
Tegra 2 WiFi
BB SDIO1_CLK SDIO_CLK
SDIO1_CMD SDIO_CMD
SDIO1_DAT0 SDIO_DAT0
SDIO1_DAT1 SDIO_DAT1
SDIO1_DAT2 SDIO_DAT2
SDIO1_DAT3 SDIO_DAT3
GPIO_PVx WLAN_SYS_RST_N
1.8V VDDIO_BB GPIO_PVx WLAN_PWD_N
100KΩ 100KΩ
DAP4_SCLK BT_PCM_CLK
DAP4_FS BT_PCM_SYNC
DAP4_DOUT BT_PCM_IN
DAP4_DIN BT_PCM_OUT
GPIO_PU6 BT_IRQ_N
GPIO_PU0 BT_RST_N
1.8V VDDIO_UART GPIO_PU1 BT_WAKEUP
SYSTEM
1.8V VDDIO_SYSTEM CLK_32K_OUT WLAN_CLK_32K_IN
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 59
Tegra 2 Interface Design Guide
Notes:
10KΩ strongly recommended for
MMC/eMMC to ensure CMD reaches
High level during Card ID Mode
xxx is I/O block where I/F resides)
SDIO1_DAT[3:0] I/O MMC/eMMC SDIO/MMC Data: Connect to Data pins of device or socket
SDIO2_DAT[7:0] (1.8V): 10KΩ – 50KΩ to VDDIO_xx
SDIO3_DAT[7:0] (2.8V-3.3V): 10KΩ – 100KΩ to VDDIO_xxx
HSMMC_DAT[7:0]
SD/SDIO
10KΩ – 100KΩ to VDDIO_xxx
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 60
Tegra 2 Interface Design Guide
3.12 Audio
Tegra 2 supports PCM, I2S and AC97 digital audio interfaces and includes a flexible audio port switching architecture. The
example below shows a typical connection for a Smartbook design. This includes interfacing to a single Codec using I2S
protocol as well as the I2C for control (PWR_I2C I/F shown in example). A master audio reference clock is provided on the
Tegra 2 DAP_MCLK1 pin and an interrupt on the SPI2_CS0_N pin configured as GPIO_PX3. Other configurations are
possible.
Note: A limit of two Tegra 2 device DAPs can be masters at any time.
If the Tegra 2 device is the master, the Master Clock should be provided to the Codec on DAP_MCLK[2:1].
Figure 52. Simple Audio Codec Connection Example and Audio DAP Connections
DAP_MCLK1 MCLK
SPI2_CS0_N
1.8V VDDIO_AUDIO INTERRUPT
(GPIO_PX3)
Tegra 2 (Slave) Audio Device
(Master)
SYSTEM
PWR_I2C_SCL SCLK DAPn_SCLK SCLK
1.8V VDDIO_SYSTEM PWR_I2C_SDA SDIN DAPn_FS FS
DAPn_DOUT DIN
DAPn_DIN DOUT
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 61
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 62
Tegra 2 Interface Design Guide
3.13.2 SPI
Tegra 2 has four SPI controllers. Table 63 shows the SPI controllers and where they are available on the Tegra 2 pins. The
function is shown in the left column & the Location column shows the I/O Blocks where the SPI functions can be located. See
the appropriate Tegra 2 Datasheet for complete Multiplexing tables. Work closely with your NVIDIA support team when
choosing the locations of the various interfaces to ensure there are no conflicts and the configurations are fully supported by the
software.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 63
Tegra 2 Interface Design Guide
3.13.3 UART
Tegra 2 has five UARTs. Table 66 shows the UARTs and where they are available on the Tegra 2 pins. The pin function is
shown in the left column and the Location column shows the I/O Blocks where the UART functions can be located. See the
Tegra 2 Datasheet for complete Multiplexing tables. Work closely with your NVIDIA support team when choosing the locations
of the various interfaces to ensure there are no conflicts and the configurations are fully supported by the software.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 64
Tegra 2 Interface Design Guide
Interconnection Examples
Figure 54 below shows a simple example of a 4-wire UART on Tegra 2 connecting to a UART on a peripheral. UART1 supports
up to four additional handshake signals, but these are not typically used as part of the UART interface in a Smartbook design.
When these UART1 pins are available (not used for ULPI, SPI2 or HSI on
Baseband interface block), they are typically used as GPIOs for signal
handshaking between Tegra 2 and a Baseband when direct Baseband
interfaces are used.
3.14 Miscellaneous
3.14.1 Keyboard
Tegra 2 keyboard controller eliminates the requirement for de-bounce capacitors and pull up resistors. It can handle any two
button key press ghosting without diodes or any unique key press combination if diodes are present. If only certain keys may be
pressed at once (such as direction keys) these can be placed on a single Row or Column and eliminate the need for diodes. The
Row and Column pins can be configured for a keyboard matrix of up to 16-by-8.
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 65
Tegra 2 Interface Design Guide
2.2KΩ
10KΩ
10KΩ
G
VDDIO_SYS 3.3V
Tegra 2 S
200Ω
ADT7461AARMZ
100KΩ
100KΩ
DDR THERMD_P 100Ω D+ Temp Sensor
1000pf D- VDD
1.8V VDDIO_DDR THERMD_N 100Ω Level Shifter
THERM TEMP ALERT
VCAA VCCB
ALERT (LCD_DC0/
SYSTEM PWR_I2C_SCL SCL1 SCL2 SCL GPIO_PN6)
PWR_I2C_SDA SDA1 SDA2 SDA GND
0.1uf
1.8V VDDIO_SYS DIR GND
0.1uf 0.1uf
Figure 56: Thermal Diode Connection Example (Using NCT8001 Thermal Sensor)
VDDIO_SYS VDDIO_LCD
ON/OFF
3.3V 1.8V D (To Power Off)
2.2KΩ
2.2KΩ
Tegra 2 S
200Ω
NCT8001
100KΩ
100KΩ
DDR THERMD_P 100Ω D+ Temp Sensor
1000pf VDD
1.8V VDDIO_DDR THERMD_N 100Ω D-
THERM TEMP ALERT
ALERT (LCD_DC0/
SYSTEM PWR_I2C_SCL SCL GPIO_PN6)
PWR_I2C_SDA SDA GND
0.1uf
1.8V VDDIO_SYS
Table 68. Thermal Diode / Temperature Sensor (ADT074xx) Interface Signal Routing Requirements
Parameter Requirement
Configuration / Device Organization 1 loads
Reference plane GND
Breakout Region Impedance Minimum width & spacing
Max PCB breakout length < 0.6 inch, minimum spacing rules
Trace Impedance 90 Ω differential, nominal single-end impedance
Trace Spacing Microstrip 4x dielectric
Stripline 3x dielectric
Max Trace Length 10 inch / >= 4 mil
Max Trace Intra-pair Skew 5 ps (between all discontinuity and overall)
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 66
Tegra 2 Interface Design Guide
3.14.3 JTAG
Implementing JTAG functionality in a system is not required, but may be useful when bringing up a new design. The pull-up and
pull-down resistors shown in Figure 57 are required.
For designs that do implement a JTAG connector for connection to an In-Circuit-Emulator or similar debugging device, note that
the JTAG_TRST_N line is not connected to Tegra 2. This pin instead selects whether the JTAG interface is to be used for
communicating with the Tegra 2 CPU complex, or for Test/Scan purposes. When JTAG_TRST_N is pulled low, the JTAG
interface is enabled for access to the CPU complex. When high, it is in Test/Scan mode. In order to reset the JTAG block, a
reset command is used rather than toggling the JTAG_TRST_N pin.
VDDIO_SYS
VDDIO_SYS
10KΩ
100KΩ
100KΩ
100KΩ
10KΩ
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 67
Tegra 2 Interface Design Guide
ForceRecovery
47KΩ Button
Tegra 2
100KΩ
100KΩ
100KΩ
100KΩ
100KΩ
100KΩ
100KΩ
100KΩ
FORCE_RECOVERY_N
GMI_OE_N 47KΩ
JTAG_ARM1
GMI_CLK
JTAG_ARM0
GMI_ADV_N
RAM_CODE3
GMI_AD07
RAM_CODE2
GMI_AD06 Install either the
RAM_CODE1 pullup or pulldown
GMI_AD05
RAM_CODE0 resistor in location
GMI_AD04
BOOT_SELECT CODE3 indicated by dotted
GMI_AD15 outlines to select
BOOT_SELECT CODE2
GMI_AD14 desired strapping
BOOT_SELECT CODE1
GMI_AD13
BOOT_SELECT CODE0
GMI_AD12
100KΩ
100KΩ
100KΩ
100KΩ
100KΩ
100KΩ
10KΩ
10KΩ
10KΩ
10KΩ
VDDIO_NAND 1.8V-3.3V
Note that stronger 10KΩ pulldown resistors are required for the
Boot Select straps at GMI_AD[15:12] due to active internal pull-ups
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 68
Tegra 2 Interface Design Guide
3.14.5 EFUSE
Designs must provide a way to supply a 3.3V power source to the VPP_FUSE pin on Tegra 2 to allow fuses to be burned
(unless fuses are burned before assembly). This supply is only required when fuses are burned and should be powered off
during normal operation. VPP_FUSE must be powered OFF when Tegra 2 is in Deep Sleep mode. VPP_KFUSE must be
always low.
The supply for VPP_FUSE can be provided using a test point for external supply, output of on-board LDO controlled by the
Tegra 2 GPIO or output of PMU, controlled by PWR_I2C from Tegra 2. The power source must provide a nominal voltage of
3.3V and be able to supply a minimum of 100mA. When not powered, a 10KΩ pull-down resistor on VPP_FUSE is required. A
0.1uf bypass capacitor is also recommended on this line.
VPP_FUSE
0.1uf
10KΩ
VPP_KFUSE 10KΩ
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 69
Tegra 2 Interface Design Guide
SFIO Option Pin multiplexor programmed to select Primary, Alternate 1, Alternate 2 or Alternate 3 function
SFIO / GPIO Multiplexor set to select SFIO or GPIO functionality
Tristate Controls the enable of the output buffer in the I/O pad.
Pull-up / Pulldown Selects whether internal Pull-up or Pulldown resistor is active. These are roughly in the range of
75KΩ to 150KΩ
SFIO Output
Control in HW
Primary SFIO
Alternate 2 SFIO
~75KΩ-
100KΩ
SFIO Select (by Pin Group) Pull-down Control (by Pin Group)
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 70
Tegra 2 Interface Design Guide
See the Tegra 2 Datasheets for the GPIO mapping for each capable pin. This information (like the POR & SFIO above) can be
found in the tables in the “Signal List and Multiplexing Functions” section. In addition, this section contains a table of the Wake
capable pins for Tegra 2. Note that several pins are different between Tegra 250 and AP20, so use the document that matches
the Tegra 2 device to be used.
This is most critical in the period after initial Power-on, before the pins can be re-programmed to the desired functionality with
Pull-up/down, Tristate, Output Enable/Disable, etc. set.
Some of the pad controls, such as Pull-up/down and Tri-State selection are by Pin Group (Except Pull-up/Down control for LCD
Pins as described below), so GPIOs should be chosen such that other pins in the Pin Group are not adversely effected if these
controls need to be changed.
For the LCD pins, the Pull-up/down controls are not simply grouped by Pin Group but are combined together as follows:
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 71
Tegra 2 Interface Design Guide
For most of the Digital CMOS pins that support internal Pull-up/down control, this functionality is disabled during Deep Sleep.
The following pins are exceptions – they retain their internal Pull-up/down capabilities during Deep Sleep:
Note: If other GPIOs require pull-up/down during Deep Sleep, external resistors are required
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 72
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 73
Tegra 2 Interface Design Guide
Ball Name Ball # Delay (ps) Length (mils) Ball Name Ball # Delay (ps) Length (mils)
DDR_A11 C20 252.10 1680.7 LCD_D10 AA28 102.58 683.8
DDR_A12 C18 232.00 1546.6 LCD_D11 AA27 137.60 917.4
DDR_A13 E28 247.30 1648.7 LCD_D12 U25 115.29
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 74
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 77
Tegra 2 Interface Design Guide
Ball Name Ball # Delay (ps) Length (mils) Ball Name Ball # Delay (ps) Length (mils)
GEN2_I2C_SCL L11 76.58 510.5 SDIO1_CLK F20 73.94 492.9
GEN2_I2C_SDA F10 63.63 424.2 SDIO1_CMD C21 53.96 359.7
GMI_AD0 A11 74.35 495.6 SDIO1_DAT0 C23 84.64 564.2
GMI_AD1 C9 48.67 324.5 SDIO1_DAT1 A21 76.78 511.9
GMI_AD10 A9 76.24 508.3 SDIO1_DAT2 J21 60.01 400.1
GMI_AD11 D6 54.53 363.6 SDIO1_DAT3 G21 83.63 557.5
GMI_AD12 E3 80.05 533.7 SDIO3_CLK J15 72.61 484.0
GMI_AD13 G5 56.80 378.7 SDIO3_CMD F14 55.11 367.4
GMI_AD14 J5 95.86 639.1 SDIO3_DAT0 D14 42.61 284.1
GMI_AD15 J1 88.56 590.4 SDIO3_DAT1 G15 93.84 625.6
GMI_AD16 F6 76.54 510.3 SDIO3_DAT2 E13 63.50 423.4
GMI_AD17 E11 82.35 549.0 SDIO3_DAT3 C13 56.15 374.3
GMI_AD18 G9 53.05 353.7 SDIO3_DAT4 J13 80.76 538.4
GMI_AD19 E9 55.20 368.0 SDIO3_DAT5 E15 62.52 416.8
GMI_AD2 C7 70.32 468.8 SDIO3_DAT6 C15 88.92 592.8
GMI_AD20 G11 62.04 413.6 SDIO3_DAT7 H14 72.91 486.1
GMI_AD21 F8 74.47 496.4 SPDIF_IN AE21 65.76 438.4
GMI_AD22 J11 84.70 564.6 SPDIF_OUT AG21 85.74 571.6
GMI_AD23 K6 88.93 592.9 SPI1_CS0_N AH20 58.43 389.5
GMI_AD24 H8 77.19 514.6 SPI1_MISO AC19 75.74 504.9
GMI_AD25 H10 85.68 571.2 SPI1_MOSI AJ23 65.90 439.3
GMI_AD26 K8 63.74 424.9 SPI1_SCK AF20 47.26 315.1
GMI_AD27 E7 52.03 346.9 SPI2_CS0_N AG25 126.95 846.3
GMI_AD3 C5 89.29 595.2 SPI2_CS1_N AJ21 87.11 580.7
GMI_AD4 D2 81.76 545.1 SPI2_CS2_N AH24 103.83 692.2
GMI_AD5 G3 88.88 592.5 SPI2_MISO AD20 47.70 318.0
GMI_AD6 H4 66.29 441.9 SPI2_MOSI AG23 109.11 727.4
GMI_AD7 J3 72.56 483.7 SPI2_SCK AG19 71.40 476.0
GMI_AD8 D12 64.30 428.6 SYS_CLK_REQ L27 24.53 163.6
GMI_AD9 C11 111.14 740.9 SYS_RESET_N P26 25.55 170.3
GMI_ADV_N N9 108.94 726.3 TEST_MODE_EN Y30 33.70 224.6
GMI_CLK B4 56.25 375.0 THERMD_N G29 17.58 117.2
GMI_CS0 J7 63.28 421.9 THERMD_P H28 15.35 102.3
GMI_CS1 H6 99.72 664.8 UART2_CTS_N D26 67.92 452.8
GMI_CS2 L5 79.49 529.9 UART2_RTS_N C27 87.17 581.1
GMI_CS3 F12 88.13 587.5 UART2_RXD J25 72.53 483.5
GMI_CS4 D8 50.02 333.4 UART2_TXD H22 53.50 356.7
GMI_CS5 L7 88.51 590.0 UART3_CTS_N H24 65.68 437.9
GMI_DPD J9 65.49 436.6 UART3_RTS_N A27 107.36 715.7
GMI_IORDY F4 89.30 595.3 UART3_RXD G23 60.13 400.9
GMI_OE_N L9 116.23 774.9 UART3_TXD C25 110.53 736.9
GMI_RST_N M10 69.65 464.4 ULPI_CLK C19 60.21 401.4
GMI_WAIT E5 78.09 520.6 ULPI_DATA0 H20 75.51 503.4
GMI_WP_N M8 113.12 754.2 ULPI_DATA1 J17 89.68 597.9
GMI_WR_N L3 69.66 464.4 ULPI_DATA2 D20 55.68 371.2
GPIO_PU0 D24 95.44 636.3 ULPI_DATA3 A23 81.50 543.4
GPIO_PU1 E23 85.46 569.7 ULPI_DATA4 K18 85.59 570.6
GPIO_PU2 J23 67.74 451.6 ULPI_DATA5 E21 103.27 688.4
GPIO_PU3 K24 108.71 724.8 ULPI_DATA6 G17 72.38 482.5
GPIO_PU4 B28 70.48 469.9 ULPI_DATA7 H18 87.82 585.4
GPIO_PU5 E25 80.75 538.4 ULPI_DIR E19 63.45 423.0
GPIO_PU6 E27 59.04 393.6 ULPI_NXT F18 86.80 578.7
GPIO_PU7 V26 110.91 739.4 ULPI_STP D18 85.81 572.1
GPIO_PV0 C17 102.69 684.6 USB_REXT Y4 41.94 279.6
GPIO_PV1 F16 105.67 704.4 USB1_DN N3 63.38 422.5
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 78
Tegra 2 Interface Design Guide
Ball Name Ball # Delay (ps) Length (mils) Ball Name Ball # Delay (ps) Length (mils)
GPIO_PV2 H16 74.02 493.5 USB1_DP P4 58.33 388.9
GPIO_PV3 E17 92.87 619.1 USB3_DN P8 83.82 558.8
GPIO_PV6 H12 89.59 597.3 USB3_DP P6 76.62 510.8
HDMI_INT_N AD16 90.75 605.0 VDAC_B W11 40.66 271.1
HDMI_RSET AA3 24.75 165.0 VDAC_G U7 42.39 282.6
HDMI_TXCN T6 73.44 489.6 VDAC_R V6 46.67 311.2
HDMI_TXCP U5 70.82 472.2 VDAC_RSET U9 8.99 59.9
HDMI_TXD0N V4 60.64 404.3 VDAC_VREF T8 14.44 96.3
HDMI_TXD0P W3 57.49 383.3 VI_D0 AE29 66.96 446.4
HDMI_TXD1N V8 55.98 373.2 VI_D1 AC31 78.61 524.0
HDMI_TXD1P V10 51.42 342.8 VI_D10 AA27 62.33 415.5
HDMI_TXD2N R7 62.85 419.0 VI_D11 AC29 75.21 501.4
HDMI_TXD2P R9 69.76 465.1 VI_D2 AB24 89.67 597.8
HSIC_DATA R3 126.15 841.0 VI_D3 AC27 92.37 615.8
HSIC_REXT U3 37.05 247.0 VI_D4 Y22 60.44 402.9
HSIC_STROBE R5 116.90 779.3 VI_D5 Y24 63.68 424.6
IC_DN M6 80.66 537.7 VI_D6 Y26 90.75 605.0
IC_DP M4 69.60 464.0 VI_D7 AF28 116.04 773.6
IC_REXT N5 10.83 72.2 VI_D8 AK28 88.28 588.6
JTAG_TCK U29 30.93 206.2 VI_D9 AD28 121.53 810.2
JTAG_TDI V28 65.14 434.2 VI_GP0 AG31 73.10 487.4
JTAG_TDO W29 70.40 469.3 VI_GP3 AC25 92.77 618.4
JTAG_TMS Y28 54.93 366.2 VI_GP4 AA29 110.96 739.7
JTAG_TRST_N W23 82.02 546.8 VI_GP5 AH30 96.64 644.3
KB_COL0 M28 103.87 692.5 VI_GP6 AA25 58.70 391.3
KB_COL1 J29 66.44 443.0 VI_HSYNC AH26 85.67 571.1
KB_COL2 V22 52.29 348.6 VI_MCLK AE27 83.84 559.0
KB_COL3 M24 76.06 507.0 VI_PCLK AG29 74.13 494.2
KB_COL4 V24 48.48 323.2 VI_VSYNC AJ27 87.09 580.6
KB_COL5 U23 58.56 390.4 VREF_CA AG1 23.34 155.6
KB_ROW0 R23 69.18 461.2 VREF_DQ R31 7.74 51.6
KB_ROW1 R25 58.38 389.2 XTAL_IN E29 78.69 524.6
KB_ROW2 T24 101.02 673.5 XTAL_OUT D30 71.87 479.1
KB_ROW3 T26 75.63 504.2 ZQ AC1 14.96 99.7
KB_ROW4 P28 79.74 531.6
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 79
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 80
Tegra 2 Interface Design Guide
Note: USB1 related pins are not shown as this interface is required for Recovery Mode in all standard designs
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 81
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 82
Tegra 2 Interface Design Guide
TEGRA 2 | DESIGN GUIDE | DG-05379-001_v01 | ADVANCE INFORMATION – SUBJECT TO CHANGE | NVIDIA CONFIDENTIAL 83
Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.
Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the
consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems without express
written approval of NVIDIA Corporation.
Trademarks
NVIDIA, the NVIDIA logo and Tegra are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.
Copyright
© 2009–2010 NVIDIA Corporation. All rights reserved.