0% found this document useful (0 votes)
31 views25 pages

Adobe Scan 19 Oct 2023

1. The problem is to find the dimensions of a rectangular bar to minimize surface area given a volume of 32 cubic feet. 2. Using Lagrange multipliers, the objective function is surface area and the constraint is that the volume equals 32. 3. Taking the partial derivatives and setting them equal to zero gives two equations that can be solved for the dimensions.

Uploaded by

Sai Meda
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
31 views25 pages

Adobe Scan 19 Oct 2023

1. The problem is to find the dimensions of a rectangular bar to minimize surface area given a volume of 32 cubic feet. 2. Using Lagrange multipliers, the objective function is surface area and the constraint is that the volume equals 32. 3. Taking the partial derivatives and setting them equal to zero gives two equations that can be solved for the dimensions.

Uploaded by

Sai Meda
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 25

Frction of several variables

Lt .
J= fl)
d dy 0
a fa,y)
3)
J'
2

* Find the and nd por kal dert botine fol-xay


3ay
-]tufo)s-(ha)o
&y zax

(sy2 Sar)
6y
(u3-*),4
)

1-4),g+
te
2izrhrr)

(2hr) -

-
Jy

Jy
Y0-y)t). t Mly )o) +y/2-j'

log (ytny? p' Buye)


Ju
Jyz.
Ju

Jyz-y?
3p'3y

)
:-3(34y+z) 3y) 3(349+2j

log (ton+ fony + ton ?)


Sin z 5in 2y
syin 22
Jy

tone fanytton 2
(sin 22) (2 Sin ost) ( B
fan tony sfon
2 tonx
tonl tony ton.

tary tany +be


1Sin 2x) du - (2siny (os) (3er y)
tony +tony 4 fon?
2 tany
tonz fany+ ton?
tony toy+ lan?
(2 snz cos 2) (sec 2)
fany tany tonz
+fslz) zlan
tan) lany hon 2
2

bp
Func tlon a foncton

Ju

2
wen Y'-a (y-6)
Shou that
(t Ju Ju

y-6)
= 2 (u - a)

Siniloy (y:
y-6

/vu'-ur

2(o-ay? -

4
he

2
6

np
+
71744p7
np be cp t he
. Jq dy

(y+e) et+ (*4 2) (-e) +


yx)e)
-t

(ete)
2 Sinht 2co sht.i.
ti t

43 7 (yZ, , X-y), shoç that à,u

lot uif lrs,t).

() + J4

Ju
+

+
4 +

) +
Sp

Sp

(7s4):h

() (H)
n te
4

((
(J)
de Ju
dy

lagt, y: , Find du
J4.
y t
Jy +

22y°+vyet
2 lgyt et ,3(lg t)etiet
lag t et.
e' lhyt (+ slgt)
2oloal23
.4)
y=rsino
Show that

du

du (sin
Cos 'o t
+

V
(ha)
ne
he
(re)
he O-(
ne

re

-6
+
2
rly
y-) 3l-a) +
2 Jye
3!
y Jx
2
(oty Casy log
Siny log tanx'+ y
siny
dy
Casy
dx
dy
0 logsihy asx-x 9 y
smy l-I
og (osJ
b6 oh
log
(siny
26/o9/23
lay lev's apansion

[a-a)? + 2Q-a) y-6) ly-6)


y

dy 2
3/x-a)ry-607
(y-6) .)
dy
at le) upto hiid degee erms
- Expand ß cody

CoSy
J :e CoS9
osy

ecosy
esiny)
2

=esiny
1

: [e' (siny) dydy (Oo) o


dyds

Jyda?
- :|-

+ +

Cr),6

2
he
Eyand tan ( in porS ad a) ond (y-)
upto Somd
Sraond
foy): tan'
/
Ju
2?/09/2....
minia. o the fnctlenS
Maxima.i and
inde pevdent vaioBle
fay) bove velotive
s Sald to have
A fonrion
a avttcular sel o vche3o o n d
haimu m o
-lo+k,
ho Smql -ve valves of
ve 'or -ye
also
Colked ids extrcme vale(marimum and mihiìmym)

# Sa lle point neither max

Necrs Sovy can di tion ker may

ddicient (adton or exttemevale od )


let

t J
) it s>0, eo (a,6) -) marlmuy

Sa dle peivl
i)t- s'-o father inneslgalbr requ
kle toto fnd
Wordmg Rule fnd ma,min
min o fla, y)
Step 1: Find a Save the eguaton:f.

ld la, 6), (a, 6)..


which ahe
slotlvavy. gid: doy)
’ Find the cstreme vales y3 3x- 7 y 20
let a,y) y 2y t20
3-3
3y'- 12

3y 3:6 2 12: 0

Stoliona iy points , ,,(-,d, y

S
-6
4y'r-
Yy
vakes etremy the find
39 2,
35
24 -)f-y
-2yt26 +y' Jo 20
1y'3-
+12y
mazimyn -l--)
pint
minimym (,2)-
pdint maximym ’
>0. 2) (-) rE-s
point Saddle ,)>
point Sadle f,-z)’
Co -z) 6) t-s
minimym fl,)’
9XX

(er) (er-
(2r2r-)
(o'e).
o4lrol23

Molti pliort
Lagrarg s Molhad of Uhdetemind! Mbi
nar/mym
f(a9, 2)
9 by ) Coñditon /ooshiaint
in the fom od belahon
)-’ is unhngwn.

F,y,2) - foy ) +g (y 2) -o
Do not inte chang nd

y
* Arectangulor bar oper ot he top is to have alume ot
32 (ubic f!. Fnd theimensins jn orler thot the
total suaco qea iS, minimum.
given,
32

Jy - 32 =0-0
f(u 9, z ) +22 +2y2
F(oye)
+(R2.t
)K2 (icX 0: 9-

(at+h)-

(krz)-

+7)2 (62

You might also like