Probability
Probability
Educational
                             I~courses
                             GLOBAL
                       -I    Educational
                             ~courses
                                                                                               GLOBAL
                                                                                                Educational
                                                                                               I==========:;;Courses
                                    PERMUTATIONS
Exa1nples
  All pernurtations (or arrange1nents) that can be fonned '\\<ith the letters a~ b, c by taking
  three at a time are (abc~ acb, hac, bca cab~ cba)
  All pennutations (or arrangen1ents) that can he forn1ed with the letters a, b, c by taking
  two at a thne are (ab~ ac, ba, be~ ca, cb)
                                                                                               GLOBAL
                                                                                               Educational
                                                                                               I===========:;;Courses
                                     Combinations
Exa.1nples
Suppose we 'vant to select t\VO out of three girls P, Q, R. Thent possible eornbinations are
PQ, QR and RP. (Note that PQ and QP represent the sarne selection.)
Suppose '\v"e vvant to select three out of three girls P, Q, R. Then, only possible co1nbination
isPQR
       The nutnber of difier·ent cornbinations of n distinct
       objects taken rat a tirne is
             C ( n~r)           =    P(n, r) =       . n!       .
                  · ,                  r!        [r! (n - r ) ! ]
       (A) 4                                                              1                         6!
                                                C,(6,4)   = t\'·(.' n-
                                                                    .1.t • ·r. )·,·~. -    t•t(6)
                                                                                          1t.       -4 !
                                                                                                         )9
       (B) 6                                                   6x5x4x3x2xl
                                                          -· 4x3x2xlx2x1
       (C) 15                                             = 15
                                                                                                           GLOBAL
                                                                                          -I               Educational
                                                                                                           ==============Courses
                                                • h' t
A
4~11   1·d·e11tllcatao11
              "'fi ·..., . •cocte
                               l     .    ·•
                                          1ns \V!t :. . : ·ee                   !:etters.
                                                                                'l .      Tl
                                                                                           , 1e
possible letters are A, B, C1 D, and E. If no-n.t~ ,of tlJ,e
letter{i are ttsed mor·e than once, h:cJw ma.n)~ different
ways can tlu;l letters lJe ar:range,d. to Inatke .a code?
    (A) 10
    (B) 20
                              P( 5.3) =  n.!     =     5! _ 5 x 4 x 3 x 2 x l
    (C) L!Q                       ·   (n- r)!        (5-3)!       2x1
    (D) 60                          =·60
                                                                                                        GLOBAL
                                                                                                        Educational
                                                                                                        I=======~Courses
                                    GLOBAL
                                    Educational
                                    I============:!Courses
                Basic definition
• Sample space
• Random experiment
• Random Variable
• Random Variables
• Event and type of event
• probability
                                           GLOBAL
                                            Educational
                                           I~courses
             Sample space
                                   taWI/iiliGLOBAL
                            •      ~Educa~~~~~
         Random expenment
                                           GLOBAL
                                           Educational
                                           I~===Courses
                   Event
                                                                               QR~~GLOBAL
                                                                               ~Educational
                LAWS OF PRQBABILIT J                                       1
                                                                                              Courses
where n(A) is the number of ways in which Event A can occur and n(S) is the total number of
possible outcomes
                   Example
Tw,o fair coins are tossed. What is the probability
of gettin,g one heads and one tails?
GLOBAL
                                                             -I      Educational
                                                                     ==========Courses
ri'l1e t\'~lO events a.l~e llll ttllally exclttsive, S<.l the Jil"Obabil-
it_y of botl1 11ai)P€lli:tlg , P(A B) t is zero .. 'l"'tl1e total prol)-
al)ility of clra\ving eitl1er ct cat card or a clog card is
                                                                    GLOBAL
                                                                     Educational
                                                                    I=============Courses
                   joi nt probability
                                                                   -I          Educational
                                                                               ============Courses
A   })l:tg COilt,a iilS se\retl or~'ll1ge r.>-alls, eigllt ,g reerl 1Jalls, ailCl
t~\VO \Vl1ite balls., 'I·",~.ro balls are clravvn fro111 ·tl1e l:>ttg
'~itl1out   re}Jla,c lllg eitl1er of tl1err1. 1\!los·t 11earljl ~ ''"ll~tt is
th.e probability ttla't tl1e first l:)all clra\\7n is \Vllite a11d. tl1e
secoru:l l:>all clraw·11 is orange?
     (A) 0J)36
     (B) 0 .052
     (C) 0'.10
     (D) 0.53
                                                                       ~~GLOBAL
                           . . . .. .   .              .     . . .~ Educational
  "'r here is a t;ot,a l of 17 balls. ~I'b.e:r.~e are 2 '\Vl1ite, ball         Courses
  probability of pi<~king a white 1Jall as the first ball is
                                    .
                               f>(rl).·   = -1'27·.
P(BIA)= Z 6
                               =     2)('
                                   (.17        7)
                                        '. .: ·161'
         A.    0.12
         B.    0.21
         C.    0.25
         D.    0.32
                                                                                            GLOBAL
                                                                                            Educational
                                                                                           I~====Courses
Afinn rents cars fro1n three rental agencies: 60% fron1 agency D, 20% iron1 agency E, and the
rest frmn agency F. If 12% of the cars fl-on1 Dhave bad tires~ 4°/o frotn Ehave bad tires~ and 10°/o
fro1n Fhave bad tires, vvhat is the probability that acar that is rented \¥ill have bad tires?
   A.   0.02
   B.   0.10
   C.   0.20
   D.   0.24
                                                                             GLOBAL
                                                                        -I   Educational
                                                                             ~co urses
                                                                        ~~GLOBAL
                                                                        ~Educational
GLOBAL
                            Bayes theorem
                                                                  -I          Educational
                                                                              ~====Courses
Ba~?·es• Tl1.eore1:t1.
 wl1ere P ( /:L .t) is the tJra·b abiiity of eve11tt .r1J "\¥itl1i11. tl'le
            J:>OJJUiation of A
            P(B.t)is tl1e probability of ev·e 11t B 1 "\>Vithir1 the
            populatio:n of B
                                                                    GLOBAL
                                                                    Educational
                                                                   I~====Courses
GLOBAL
                                                               -I   Educational
                                                                    ~===Courses
    .                       P(E)P(B :E)
P(E : B)   = P(E)P(B : E) + P(F)P(B : F) + P(D)P(B : D)   = O.OB
                                                                    GLOBAL
                                                              - IEducational
                                                                    ========Courses
                                                              ~~GLOBAL
    Measures of central                     tendenciE~Educa~~Jr!~J
   . h    .     dispersions
A r1t met1c mean
-      Xl+X2 +... +Xn
X =Jl =__;:.______;; __ _____;,;_
                     n
Mode
  The mode is the observed value that occurs most frequently.
 Median
The median is the point in the distribution that partitions
the tota l set of observations into two parts conta ining
equa l numbers of observations
Root-Mean-Square
                                                                       GLOBAL
                                                                       Educational
                                                                      I=============Courses
                                             r
                                            X
                                            . rnts =
                                                                                                                                                                              ~:5~6(:~21~:3.3 m)
                                                                                                                                                              25
                                                                                                         (i) ( (                                               .                                                          2)
(b) ~l.hr~ tnode is tho value; 'that. occlrrs 1nost freqtten·t ly.
~T'he value of 0.904 o·c curred four C;itlles, an.cl 110 ot;her
tlleastu·E~11:1Cllts         rcp<mt·ed l:ttore tbatl                        ft"Jttr t~in'tes ..        O.f)04 is
t~ he tn<>de ..
                                                                                                                      GLOBAL
                                                                                                                      Educational
                                                                                                                      I======~ Courses
  Weighted Arithmetic Mean
'Vl1~tt         is n1c)st; lleltrly tl1e stttdent 's fi11al gracie   i11    tlte
c0 tl·t··s·e
         .· -?
            ~
            4
     (A) 82%
     (B) 85%
     (C) 8.7%
     (D) 89%t
                                                                           GLOBAL
                                                                    -I     Educat.ional
                                                                           ============Courses
 Geometric Mean
                                                                                 -I       Educational
                                                                                          ~==== Co urses
     (A) 0 ~ 79
                                     san1ple geon1etric n1ean =\IX1X2/'(a .. ·. )tn
     (B) 0.81
     (C) 0.'98                                                       ~   (0.820)(1. )(2.22)
     (D)       0 ~ 96                                                         X (0.190}(LOO)
= 0.925 (0!93)
GLOBAL
           s    = ~     I[ll (n. -        .
                                       1)], ~
                                              n
                                                  1
                                                      (       - )2
                                                          X;- X
                                                                                           GLOBAL
                                                                                          IEducational
                                                                                           ~====Courses
                                       7 yr                l
                                       8 yr                1
                                       10 yr               2
                                       12 yr               1
                                       1a yr               2
\t\l l1at is IIlost Jle<:\rlj tJ1e stail<t;;1.r<l              <:levi~"ttdorl    of tl1c:~ a. ge of
tl1e ·Ca,t I)OJJt11£ttioil~?
    (A) 1.7 yr
    (B) 2~() )'~r
    (C) 2~2 j'r
    (D)    2~~4 y"r
                                                                                           GLOBAL
                                                                                           Educational
                              u                                                           I============Courses
        /J~ = (l/71e)       2: x i
                            :i = 1
                                  (7                     ?
                                       y:~~· -- lO~LJ J'r)~    + (8 :;rr - 10.4 yr)2
                                                                                · ?
                                          -J- (2){1() yr ·- -      l()~tl   yr)-
                 (~)                      + {12 )rr -· ·      10 . 4:. )tr) 2
                                                        yr- lO.~t yr)
                                                                                 2
                                          + (2)(1.3
                                  (2.2 yr)
                                       stiffness              freql21ency;o-
                                            2ot.180                2:3·
                                            2>..~l40                35
                                            '2 :4 .00              ·4 0
                                            23.·60                  33.
                                            23·20                   21
GLOBAL
                                                variance
                                                         •                           -I   Educational
                                                                                          ======~Courses
s= /{1/(n -l)]~(Xi- X) 2
                                    (2.3)(2480 -- 24()2f2
                                       _._, (35)(24.t:t Q - · 2402) 2
                                       _;1- (~10)(2400 -    2 -4 02) 2
                                       +   (!33) (2360 -    2 4l02) 2 '
                                        -!- (21)(2320 -     24,02) 2
          =:·   50 .. 82   (50.8)
                                                                             GLOBAL
                                                                    -I       Educational
                                                                             ======~ Courses
                                                                                       GLOBAL
                                                                                       Educational
                                                                                       I============Courses
                           PROBABILITY FUNCTIONS
                                                                                       GLOBAL
                                                                                       Educational
Probability Mass Function                                                              I===========Courses
l~ f(:x) ~ 0
2~ ~f(x)             - l
       :X
                   r, no. of heads   Probability~ p{r
                          0                ..l.
                                                               0.3     -
                                           32
                                           ..?;.        p(r)
                                           32
                         2                 .!!!                0 ..2   -
                                           32
                         3                 to
                                           32
                         4                  s                          ...
                                                                                                             ,
                                                               0.1
                                           32
                         5                  1
                                           32
                      Total
                                                                  0          l
                                                                             t                                I
                                                                             0        2     3        4       s
                                                                                 Number of heads, r
                                                                                                                       GLOBAL
                                                                                                                       Educational
                                                                                                                       I~~courses
                     Probability Density Function
GLOBAL
                                                                                       -I          Educational
                                                                                                   ~====Courses
l~or tl1<!
        proba,b iHty density function slto\1vn~ ''tht:l.t is
the probability of tbe randon1 variable x· beb1g le.';)s
than 1/3?
f(xl :
1 X
    (A) 0.11
    (13)   0~22
    (<;) 0.25
    (D)    0.3~)
                                                                  GLOBAL
                                                             -I   Educational
                                                                  ~~courses
                             1
~['he ])robabHity that;       /~l is eqllal to t~lle area under
                                   ::ro:   <
                            1
th.e, Cllrve bet\veen 0 and /3 . Frorn J~,q .. 5 .30,
l/ 3 1/ 3
                        = (2)(i)2- 0
                        ::;:::;   0~222        (0.22)
The answer Is { B) ..
1 5 Xt
0 I 3
                              = 0+ (-1.25)[ x- 1 + 0   f
                              =(    ~1.25)(.!5 -1 )·
                              =1
Then to sun1n1arize, the cumulative distribution function of Xis:.
        0                  for x1 < 1
                                                                     GLOBAL
                                                                     Educational
                                                                 I~====Co urses
                                                                                       GLOBAL
                                                                                  -I   Educational
                                                                                       =============Courses
~ == E[X] == f ~t:f(x)ctr
-oo
                  6 ==        jv[x]
  Tl1e coefficient of\rariatio11 is defi11ed as crl f.-L.
                                                                                       GLOBAL
                                                                                       Educational
                                                                                       I=======~ Courses
~P.l1e rJr(ll:lal:>ilit~, ciisl~. x~ibuti<..)t:l of tl1<~ l1t.:tt'l:tber of calls,_    ..X,
tJ:1 at a . Ct.lstcllT.leT' st:~rvice a .g E'n t~ rect;~ivc~s each. llOl:tr              is
sl"H)Wl~l ..
                                     :c          J(a:)
                                     0           0.00
                                     2           0.04-
                                     ·4          0.05
                                     6           0~10
                                     8           0.85
                                     10          (L46
GLOBAL
                                                                           -I          Educational
                                                                                       ==========Courses
                              n
          IL = E[X] = "',xkf(xk)
                             A~= I
The·answer Is (C),.
         Combinations of Random Variables
                  y   =       a I XI + a2X2 + . ·- + Cin.A:;-~
GLOBAL
                                                                             -     I
A. gas station sells three grades of gasoline; regular, extra and super. These are priced at $21.20
                                                                                                      Educationa
                                                                                                      ==========Course
£21.35 and $21.50 per gallon, respectively. Let X1, X2, and XJ denote the an1ounts of thest
grades purchased (gallons) on a particular day. The Xi are independent \¥ith p-1 == 1000, p2 == 50(
1nd ~t3 == 300~ 01 ==100, cr2 = 80 and 03 =50. The standard deviation is nearly:
       A.   222
       B.   322
       C.   422
       D.   505
                                                                       GLOBAL
                                                               -I      Educationa
                                                                       ~====Course
GLOBAL
                                                               -I      Educationa
                                                                       ==========Course
                                                                                                                            GLOBAL
                           inomial Distribution
                                                - I                                                                         Educationa
                                                                                                                            ~====Course
o 1 2 3 4 s & 7 a a 10 11 12
Mean=np
GLOBAL
                                                  '
                                                                                                           -I               Educationa
                                                                                                                            ~~course
                   P n(a;)
                             ·
                                 =       n~'
                                     x!(n.-x)l
                                              . p·T: qn..-x
                                          41    ) · ( . )3 (0 5)4.-3
                                 =   ( 3!(4- 3)[ 0 •5 . .      $
= 0.25 (1/4)
                                                                            GLOBAL
                                                                       -I   Educationa
                                                                            ~~· Course
                                 P n(x) = .              I(    n! ) p"'qn- :.
                                 ·                 X.         n - X!
                                                              1 ) ·(364)
                                                                                     2                    5
                                             -      ( 2 l) ( 365    .365 .
                                                   1.555 x lo-.(1
The a n s w e r i s (D).
                  X.
                                                   0 ;1
    Mean=Variance= ).._. =np
Poisson Distribution
~ Discrete
~ Number        of evertts. dier,< time
    ~   Errors per I,000 transaction
    ~   ·Calls per hour
    ~   Breakdowns per week
~   Lambda      (/~)       is the mean a-n d the
    variance
(Gaussian Distribution)
      Normal Distribution
                          - I                                      Educationa
                                                                   ==========Course
                                                                   GLOBAL
                 Unit Normal Distribution
                                                         -I        Educationa
                                                                   ==========Course
   (A) 27%
   (B) 31%
   (C) 69%
   (D) 73%
               ~ ~       .\ '      X
                                            A A
                                             .\ '     __,.     X
                                                                                                    -I       Educationa
                                                                                                             ~=-Course
                                                                                                             GLOBAL
                                                                                                    -I       Educationa
                                                                                                             ========~Course
(2480)(2,3) + (2440)(35) )•
             (·.~.
                152. ) (
                      1
        =                 . ·.·          +:. (. ..2·...   ~:1·0· :·.0.·:· ).··(·
                                                        . 4··· 0·.· )···: -f- (2360)(33) :.i
                                         -..- (2320){21)                                 .·
           =2402
 The san1ple stan(lard deviation t,., an unbiased esthnator
 of the sta11dard deviation.
             r;:;;
           . .· [1/(n-
     s ""' VLJ./\'                    IJlL
                                        .i =l
                                           " .( x, -X)
                                                       2
                                               (23)(2480 - 2402) 2
                                                                    + (35)(24L!Q -                 2402) 2
                      1
               (:' 152 - l )::                                      +         :( 40)·(.· 2400- 2402) 2
                                                                     4- (33)(2360- 2402) 2
                                                                     + (21)(2320 - 2.402) 2
       =    50.82
                                      A     X
                                                                            ~       .\'
                                                                                                   A          .\"
P(,X< 2350)
Z = - 1 .. 0 0 X
                                                                             =        R"(l.O)
                                                                             =       0.1587               (0.16)
      The answer i s ( B )'.
GLOBAL
                                                                                                                             -I   Educationa
                                                                                                                                  ~===Co u rse
     (A) 0. :0:91
     (B) 0.12
     (C) O.ltl
     ( ) 0.16
              11\_ ~ ."\'
                                                ·'~
                                                           A A A     X              -X      ,"\:'   - :,.\'       X
                                                                                                                          GLOBAL
                                                                                                    -I                    Educationa
                                                                                                                          ===========Course
                             P (Z      < 1) = 0.8413
                             l~ (z     < 2) = o.9772
rrhe probability that the outcorne will be bet'\veen 15
and 18 is
           P(15 <   :t      < 18) = P(x < 18) - P(x < 15)
                                  = P(Z < 2) - P(Z < l)
                                       = 0~9772- 0.8413
                                       = 0.1359           (0.14)
                                  T-distribution
                                                                                -I               Educationa
                                                                                                 =====~Course
                         .
                            r(. v +2 1 ) (. '2)'- 2        v+ 1
                      j( t) = ( v·)·. 1 + v .·
                                 ~VTtr 2                              Student's !-Distribution
vvl1ere
    == x-·· ..~.
t
             Ls~/   rn
-co< t <              OCJ
                                                                                -I                GLOBAL
                                                                                                  Educationa
                                                                                                 I~=====Course
                                                 Ct.
    v                                                                                              l'
             0.25        0.20    0.15    0.10     0.05        0.025    0.01         0.005
             1.000       1.376   1.963   3.078    6.314      12.7C6   31.821      63.657
    2        0.816       1.061   1.386   1.886    2.920       4.303    6.965       9.925           2
    3        0.765       0.978   1.350   1.638    2.353       3.182    4.541       5.841           3
    4        0.741       0.941   1.190   1.533    2.132       2.776    3.747       4.604           4
    5        0.727       0.920   1.156   1.476    2.015       2.571    3.365       4.032           5
    6        0.718       0.906   1.134   1.440    1.943       2.447    3.143       3.707           6
 7           0.711       0.896   1.119   1.415    1.895       2.365    2.998       3.499           7
 8           0.706       0.889   1.108   1.397    1.860       2.306    2.896       3.355           8
 9           0.703       0.883   1.100   1.383    1.833       2.262    2.821       3.250           9
10           0.700       0.879   1.093   1.372    1.812       2.228    2.764       3.169          10
11           0.697       0.876   1.088   1.363    1.796       2.201    2.718       3.106          11
12           0.695       0.873   1.083   1.356    1.782       2.179    2.681       3.055          12
13           0.694       0.870   1.079   1.350    1.771       2.160    2.650       3.012          13
14           0.692       0.868   1.076   1.345    1.761       2.145    2.624       2.977          14
15           0.691       0.866   1.074   1.341    1.753       2.131    2.602       2.947          15
16           0.690       0.865   1.071   1.337     1.746      2.120    2.583       2.921          16
17           0.689       0.863   1.069   1.333     1.740      2.110    2.567       2.898          17
       CONFIDENCE INTE RVALS
                                                                                      Values: of Ze12
                                                                               Confid·ence
                                                                                   lnffiTal
                                                                                    go~~                 1.2816
                                                                                    90%                  1.6449
                                                                                    95%                  1. %00
                                                                                    96C}~                2.0537
                                                                                    98%                  2.3263
                                                                                    99%                  25758
                                                                                                                  GLOBAL
                                                                                                  -I              Educationa
                                                                                                                  ===========Course
Assurne that the heliutn porosity (in percentage) of coal satnples taken a\vay frotn any particular
sean1 is notn1ally distributed vvith tn1e standard deviation 0.75. The 95o/o CI for the tn1e average
porosity of a cet1ain semn if the average porosity for 20 specilnens frorn the seatn vvas 4.85 is:
       A.     (4.52, 5.18)
       B.     (4.66; 5.22)
       C.     (4.87; 5.22)
       D.     (5.22, 6.18)
                                                               (1.96)(0, 75)
                                                    4.85   ±       {20         =    4.85    ± 0.33 =   ( 4.52, 5.18)
                                                                     20
The mean length for the population of all screws be in g prod uced
by a certain factory is targeted to be 5
Assume that you don' t know what the population standard
deviation is. You draw a sample of 30 screws and ca lcu late t heir
mean length. The mean for your sample is 4.8, and the standard
deviation of your sample (s) is 0.4 centimeters .
                                             a
       v                                                                              1<"
           0 •.2.5   0..20   0.1:5   0~1 0       0 .0 5   0.(}25   0 .0 1    0.005
=4.8-+-2. 05              ~
=4.8+ 0al497
=4 . 6503 to 4.9497
Rounded to tvvo decimal p laces, the ansv11er is 4 .65
to 4.95 ..
                                                                      ~~GLOBAL
Confidence Interval for the                                        Diff~Educa~~~~
                            Between Two Means
                                                                                                                          GLOBAL
                                                                                                                 - I      Educationa
                                                                                                                          ============Course
= '2 ,¥ - 3\¥
                                                        + L9oooJ.(o.2~o~V2? + (o.s~5:2)2
                                          = -0.9314 W                             (-0*93 W)
GLOBAL
                                                x 2 -distrbution
                                                                                                                                 -I                 Educationa
                                                                                                                                                    ==========:Course
/f/(l
  ~
 {)
Degrut "'ffreedom
                        r2
                        • a.n
                     0.0000393    0.000157!     0.0009821      0.003.9321     0.0157908     2.70554       3.84146       5.02389          6 .6~490           7.87944
                     0.0100251    0.020100      0.0506356      OJ02587        0210720       4.60517       5.99147       7.37776          9.21.0)4          10.596!)
                     0.0717212    0.1148'n      0.215795       0.351846       0.584375      6.25139       7.S1473       934840          11.3449            12..S3SI
                     0.2{16990    0.297110      0.484419       0.710721       1.{163623     7.77944       9.48773      11.1433          13.1767            14.8602
                     0.41174{)    0554300       0.831211       !.145476       1.61031      9.23635       1U>7fr5       12.8325          15.0863            16.74%
                     (}_675727    0.872085      1.237347       1.63539        2.104B      10.6446        12..5916      14.4494          16.8119            1S.547ti
                     ().989265    1.239043      L68S'S7        2.16735        2..Sl3ll    12.0170        14J)671       16.0128          18.4753            20.2777
         s           1.34#19      1.646482      2.17973        2.73264        3.48954     13.3616        15.507'3      17.5346          20.090:2           2L!f550
         9           1.734926     2. 08791.2    2.70039        3.325ll        4.16816     14.6837        16.9190       19.0228          21.6660            235893
        iO           2.15585      2.55821       3.24697        3.94030        4.86518     15.9871        18.3070       2.0.4831         23.209.3           251882
        ll           2.60311      3.05347       3.8 1575       4.574Sl        557779      17.2750        19.67:51      21.9200          24.7250            26.7559
        12           3.07382      3..5705~      4.40379        5.22603        630380      1&5494         21.0261       23.3367          26.2170            28.2995
        l3           3565{)3      4.10691       5.00874        S.S9lS6        7.04150     19.Sll9        22..36.21     24.7356          27..6883           29.8194
        14          4.07~&       466043         5.62872        6.57063        7..78951    21.1)642       21.6S4S       26.1190          29.1413            31.3193
        1.5         4.60094-      5.12935       626214         7.26094        8..5~75     21.3072        24.9958       27.48&4          30.5779            32.3013
        i6          5.14224       s.n:m         6.90766        7.96154         9.31223    2.3.5418       26.2.962      28.8454          31.9999            34.2672
        17          5.69724       6..40776      7564!8         8.67176       10.0852      24.7 690       27.5871       30J.9l0          33.4087            35.7185
        IS          626481        i .01491      8.23075        $1.39046      10..8649     2:5.9894       28.8693       31.5264          34.8053            37.1564
        19          6.34398       7.63273       8.90655       10.1170        1L6509       27.2036        30.1435       32.8.523         36.1908            38.5822
        20          H33S6         8.26040       9.59CiS3      10.S50S        12.4426      1SA120         31.4104       34.!6.96         31..5562           39.9968
        21          8.03366       S.S9720      10.28193       11.5913        132396       29-.6151       32.67{)5      35.4789          38.9.m             41.4010
        22          8.64272       9.54149      10.9823        12.3380        !4.0415      30.8.133       33.9244       36.7$07          40.2894            42.795~
        2.3         9.26042      10.19567      11.6SS5        13.0005        14.8479      32.G{l69       35.1725       38.0757          41.63&4            44JSB
        24           9.88623     10.S564       12.4011        13.8484        !.5.6587     33.1963        36.4151       59.364'1         42 .9798           45.5585
        25          10.5197      11.5240       13.1]97        14.6114        16..4734     34.3816        37.6525       40:.64ti         4-ql~4!            46.9278
                                                                                                                                                    :i ~                 ',.,-_.' I· (
        26          11.1603      12.1981       l3.S4J9        15.3791        17.2919      35.5631        38.8S52       41.9232          45:&U1 '           4s'. 2s~
     In a study on cholesterol levels a sample of 12 men
     and women was chosen. The plasma cholesterol
     levels (mmoi/L) of the subjects were as follows: 680,
     6.4, 7.0, 5.8, 6.0, 5.8, 5.9, 6.7, 6.1, 6.5, 6.3, and
     5.80 We assume that these 12 subjects constitute a
     simple random sample of a population of similar
     subjects. We wish to estimate the variance of the
     plasma cholesterol levels with a 95 percent
     confidence interval.
                                       ~r .sro
                                         2
                                                                X .~.:o
                                                                  2                                                      2
Degrees of freedom    X
                          2
                              .99'5                .JC.sr1s                 x2.!l00       x 2.1oo      X
                                                                                                           2
                                                                                                               G50     X .0ls
        1            0.0000393        0.0001571   0.0009821   0.0039321    0.0157908    2.70554      3.84146          5.02389
        2            0.0100251        0.0201007   0.0506356   0.102587     0.210720     4.60517      5.99147          7.37776
        3            0.0717212        0.114832    0.215795    0.35 1846    0.584375     6.25139      7.81473          9.3 4840
        4            0.206990         0.297110    0.484419    0.710721     1.063623     7.77944      9.48773         11.1433
       5             0.411740         0.554300    0.831211    1.145476     1.61031      9.23635     11.0705          12.8325
       6             0.675727         0.872085    1.237347    L63539       2.20413     10..6446     12.5916          14.4494
       7             0.989265         1.239043    1.68987     2.16735      2.83311     12.0170      14.0671          16.0128
       8             1.344419         1.646482    2.17973     2.73264      3.48954     13.3616      15.5073          17.5346
       9             1.734926         2.087912    2.70039     3.32511      4.16816     14.6837      16.9190          19.0228
      10             2.15585          2.55821     3.24697     3.94030      4.86518     15.9871      18.3070          20.4831
       11            2.60321          3.05347     3.81575     4.57481      5.57779     17.2750      19.6751          21.9200
       12            3.07382          3.57056     4.40379     5.22603      6.30380     18.5494      21.0261          23.3 367
       13            3.56503          4.10691     5. 00874    5.891 86     7.04150     19.8119      22.3621          24.7356
      14             4.07468          4.66043     5. 62872     657063      7.78953     21.0642      23.6848          26.1 190
      15             4J50094          5.22935     6.26214      7.26094     8.54675     22.3072      24.9958          27.4884
      16             5..14224         5.81221     6.90766      7.96164     9.31223     23.5418      26.2962          28.8454
      17             5.69724          6.40776     7.56418      8.67176    10.0852      24.7690      27.5871          30.1910
      18             6.26481          7.01491     8.23075      9.39046    10.8649      25.9894      28.8693          31.5264
      19             6.84398          7.63273     8.90655     10.1170     11.6509      27.2036      30.1435          32.8523
• \ lalue of s2
    s = _3918680978
     ,2
    X.ros
             = 3.816
                                                           GLOBAL
                                                      -I   Educationa
                                                           ====:=====Course
                                                                               GLOBAL
                    Least Squares
                                                                          -I   Educationa
                                                                               ~cou rse
1 2 3 4 s 6
GLOBAL
                    least Squares
                                                                          - I  Educationa
                                                                               ~course
             "'
 _j)== a+ bx,   vVll.ei·e
 "'
 b == SXJI~\-.X
 a == V - !Jx -
S.x._v == .L.
           n
        z==l
                          ( n
              XtYi - (1/n) _L
                                      z == l
                                               Xt
                                                    )( n
                                                    .
                                                        _L
                                                      z==l
                                                             Yi   )
         n
S-"Kx == .L  xf -                (
                       (lin) · L _xi
                                       n        )2
        ;==1                         i == l
y = (1/n)C±l           Yi)
x = (1/n) ( iLn x 1)·.
                   1
                                                                                                               GLOBAL
                                                                                                      - I      Educationa
                                                                                                               ~·Course
                                                                                                      - ~GLOBAL
                                                                                                         Educationa
                                                                                                           .        Course
    .~
     .L-J··'"'t     · · l·
          .t't,. • --   ..·. . --r"' .~
                                 1 · "'   - 1r ··   3···. -L
                                                    ....  ~~· ..ur; -..........· '}1
                                                                                 ·. •.. •·..
                                  l
                                                              . n Yi). . .        . 1,=1       t= l
= 8.75
                             ~     .   ·. · .·          16.25
                             b = Sxy/S!Iix = 8..7r:.0
                                 = 1.857         (1 ~9 )
                                                                             GLOBAL
                                                                  -I         Educationa
                                                                             =======~Course
                                             1     Xi       Yi
                                            1     2.0      5.1
                                            2     1.5      4.2
                                            3     3.6      7.5
                                            4     5.7      10.4
Using linear least-square regression~ the equation that best fits this data is:
       A. y=2.3 +1.5x
       B. y = 2.3 +2.1x
       C. y=l.5 +2.1x
       D. y= 1.5 + 1.5x
                                                                                                            GLOBAL
                                                                                            -I              Educationa
                                                                                                            ==============Course
                  n       2          ..         ('     n)·2
    S:ry = .I: Yi - (1/n) . .I:Yi
             1= 1                                ,t =l
1. = -1 r = O r= +1
•• • •
y
       r=0.998
                                •• ••
                                        •••
                                              •••
                                                                   y
                                                                       •
                                                                            ..
                                                                           • •
                                                                                •
                                                                       . •........
                                                                              • ••      '         ••
                           ••
                 ••   •• •
       •   •••                                                                                r=0.278
X X
                                                                    , .....
    •                                                             •
            •
             •• • •
                   •                                           ....•••••
                                                                      • •
                                                                                        • •
                • • ••
                        .                         y
                                                                           •
    r=..;0.817     • •                                     •               •        •
                   • i• •• I
                            X                                          X
    2. Large Negative Correlation                     5. Mi.nimaLNegadve Correlation
                    •
                            •        •   . .. .
                                          ••••
                                                                 •
                                                                                        r=-0.374
y
        •
                •       •
                                .,   . •• •
                                      ••                                       ••
                                                                                    .....
                                                                                             •
                                                                               • • •
                                                                                     . •. •
                                                  y
                            •                              •
                        •            r=0.487
                                                                               ••       at
                            X
                                                                                        • •
                                                                       X
    3. Modest Positive Correlation                    6. Mo4est Negative Correlation
                                                                            GLOBAL
                                                                            Educationa
                                                                            I~=====Co urse
                                                                             GLOBAL
                                                                    - I      Educationa
                                                                             ~===Course
                                                                          -I   Educationa
                                                                               ~===Course
       J(
   -· ~========~===========
             39- (!) (9)   87- (!) (3)
                                    2
                                        ) (
                                                         2
                                                             )
Residual
   Residual
   ei =Yi - .Y =Yi -   (a + i)xi)
60 70 65 .411 4.589
70 65 71.849 -6.849
80 70 78.288 -8.288
85 95 81.507 13.493
          95               85                  87.945            -2.945
    +    •           •       •                             +                                             •                        •
                                                                                                                               • •••
                                                               •    ,.   '      "           ·~
                                                                                                 +
             5           I   ill
                                                    ,,,                  ~      l       •        u
                 •                                           * ..... ·+
                                   •                ·5....__ _ _ _ ___,                                           ·5   +                            •
    Random pattern                                  Non -randorn: U-shaped                                        Non-random: Inverted U
GLOBAL
                                                                                                                              -               I
                                                                                                                                              Educationa
                                                                                                                                              ..........- course
>2
                 Syy          = .~
                                 = l
                                     Yil
                                                          -        (1/n) ( .. ~Yi)·.
                                                                                        I=           l
                 d +
                   - t.xJ2~n- 2
                     A                                    ( n1...· + s)'.'" 2.·- ') ·..J.Vl.~...JD
                                                                                        A '/./'.· .0...'1:;'
                                                                                .X.,"\: ,
A B
In aregression line, the _ _ the standard 'errorof the estimate is, the more accurate thepredictionsare
fJ larger
0 smaller
0 The standard .error ofthe estimateisnot related to the accuracy of the predictions.
The graph below represents a regression Hne predicting Yfrom X. This graph shows the error of prediction for each of
the actual Y values. Use this information to compute the standard error of the estimate in this sample.
y ..
In the context of regressio n ana lysis, \Vhtch of the follmving statements are true?
       I. Vt/hen the sum of the residua ls. is g reater than zero, the data set is nonlinear.
       II. A random pattern of residua :ls supports a linear model.
       III. A random pattern of residuals supports a non -linear model.
       (A) i only
       (B) U only
       (C} m only
       (D} I and II
       (E) I and III
           The correct answer is (B). A random pattern of residuats supports a linear model; a non-random pattern
           supports a non-linear model. The sum of the residuals is afways zero. whether the data set is linear or
           nonlinear.