0 ratings0% found this document useful (0 votes) 143 views54 pages7
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Integrals
POINTS TO
1. Antiderivative (or Primitive): A function (2) is said to be antiderivative or primitive of a function
fe)i€ve) =fadie, A191) = fe).
2
For example, 7 is primitive or antiderivative of x because
Similarly,
F a(x ) if .
Similarly, d(Frc syatoex
In this way, we see that a function has infinitely many antiderivatives or primitives.
ie, if $(x) be an antiderivative of fix), then 6(x) + C is also antiderivative of f(x), where C is any
constant.
Because, Live+ci=o@+0=9@ =f@)
Indefinite Integrals: If f(x) is a function, then the family of all its antiderivatives is called Indefinite
Integral of fix) It is represented by J f(x)dx (read as indefinite integral of f(x) with respect to 2),
4
For example, Pax = oe G fede Z+c
“\l
2
z=
|
n
ool
©)
A
ful
as
ial
<
16]
m
ve)
) Why is it called Indefinite Integral?
It is called indefinite because it is not unique. Actually there exist infinitely many integrals of each function,
which can be obtained by choosing C arbitrarily from the set of real murmbers,
2. Some Standard Integrals:
0 frtar= ZL ecoey @ fH =t0g |x [+C
sr = log
ii) fdx=xtC (iv) fcosxdx = sinx+C
(@) Jsinxdx =-cosx+C (wi) [sec?x dx = tanx+Cee
ir
[aa]
2
Ww
5
rT
(at
e)
=
va)
lal
=
©)
ja
(vif) Jcosec?x dx =-cotx+C (viii) [secxtanx de = secx+C
(ix) Scosecxcotx dx=-cosecx+C (x) fetdx =e" +C
i) fatde=— +0
Toga
aid J Epes sin tne
(i) @) J pes tanta
- zy
eu) |
3. Methods of Integration: It is not possible to integrate each integral with the help of following
methods but a large number of various problems can be solved by these methods. So, we have the
following methods of integration:
(i) Integration by Substitution.
(i) Integration by Parts.
(iii) Integration of Rational Algebraic Functions by Using Partial Fractions.
4. Integration by Substitution: The method of evaluating integrals of a function by suitable
substitution is called Integration by substitution.
We therefore give some of the fundamental integrals when x is replaced by ax + b.
ea
o Jes tae OO sn tt i) Seger = Fos | @ + [+c
Gi) fertae=hertac (io) Jade => re +Ca> anda #1
(@) Jsin(ax+ bydx =—Leos(ax+ b+ (oi) feos(ax+ dx = bsin(axt hy +c
(oid) fsecax+ Bde = Htan(ax+h)+C (will) fecosee*(ax+ Bide = ~f cot ax +8) +C
(a) Jscc(ax + bytan(ax+ bydx=1sec(ax +8) +¢
(2) foosec(ax+ #) cot(ar + 8)dx = cosec(ar+h) +C
Ge) ftan(ax+8)dv=—Hog | cos(ax+ iy |+C= 1 toglsec(ax +6) |+C
(ai) feot(ax + b)dx = log | sin(ax +b) |+C
5. More Standard Results:
Jtanx dx =-log | cosx |+ C= log | secx |+C, provided x is not an odd multiple of =
Jootx dx = log | sin |+C(GBke
+c
Jscex x= loglseex +tanxl+C= log
Jcosec x dx = log | cosec x - cotx |+C= logan
6. Integration by Parts: To integrate the product of two functions, we use integration by parts. The
method is as given below:
Let u and v be two functions of x then
Juvde=ufode— I{ Gt Joaspar
Note:
( To integrate the product of tvo functions we choose the 1st function according to word ILATE, where
I stands for inverse function, L stands for logarithmic function, A stands for the algebraic functions,
T stands for trigonometrical function arid E stands for exponential function.
(i sf the integrand has only one function ther unity, ie, 1 i taken tobe the second function.
(Gi) Integration by parts isnot applicable to product of functions in all cases. For example, the method does
not work for [.sinx dx. The reason is that there does not exist any function whose derieative is
Asin.
(G0) Observe tha while finding the integral ofthe second function, we do not add a constant of integration on
both the sides.
7. Results of Some Special Integrals:
u
=
rus
I
Va)
o
(e)
z2)
m
a
m
K<
w
m
ys)
© Io a = log|S24|+c
+#C or log | x+ Ve? +a? |+C
gf | Cortog | xt V2 =a? |+C
2
() [We Pde = Fa? x? +S sin
(i) [VP ede = 5
(in [Va ar =F Eft aH + Dig | x+ aoa Itc
Theorem 1. The indefinite integral ofan algebraic sum of two or more functions is equal to the algebraic sum
of their integrals,
ie, Jf) + Olde = J foeyde+ | geyde
Theorem 2. A constant term may be taken outside from the integral sign ie, if k isa constant then
Jk fe)dx = kf fx)dx
Jog | Poa [+ca
Ww
co
Py
ee
2
Wu
jad
(e)
ps
WY)
lal
=
(e)
oO
Theorem 3. if the numerator in an integral is the exact derivative of denominator, then its integral is
logarithamic of denominator,
. Fadi _
ie, J fay 2B 1Aa) IFC
Theorem 4, To integrate a function whose numerator is unity and denominator is a homogeneous function
of degree in cos x and sin x ie, the integrals of these forms:
fi dx f dx f dx dx dx
a+bsinx” acosx+bsinx” asinx + beosx
a+ beosx” asiny +b"
i.e, when integrand is a rational function of sin.x and cos x.
To find these, we can use following substitution.
(0 By putting a = r cos a, b = r sin a respectively according to question
OR
ond (ud) 5
(ii) By putting sinx = —— >, cosy= >and putting tan3;= and then
1+tan?> '1+tan? >)
simplify. 2 ( 2)
Theorem 5. To integrate a function whose numerator is 1 and denominator isa homogeneous function of the
sevond degree in cos x and sin x or both, ie.,
To evaluate such type of integrals we proceed as follows:
(@ Divide the numerator and denominator by cos” x and then
(ii) Putting tan x=z or cotx = zand then simplify.
Theorem 6. Integrals of the type |e“? ¢” (xydx,| f’ (x)cos[f(x)]dx,/ sin [f()]f" dx,
Slogtfaylf' (pax.
To evaluate these type of integrals, put flx) = t so that f'(x) dx = dt and then integral converts to the standard
forms for which the integrats are known.
Note:If the integrand is a rational function of ¢, then it always needs a replacement as the differentiation
and integration of e*is the same.
Thus, if on substituting denominator = ¢, the derivative of denominator is not present in the
problem, then we need to generate it by multiplying and dividing by a suitable term containing the
exponential function in numerator and denominator.
»b Integration by Partial Fractions
8. Rational Function: Rational function is defined as the ratio of two polynomials in the form of me
where P(x) and Q(x) are polynomials in x. If the degree of P(x) is less than degree of Q(x) then it is
said to be Proper, otherwise it is called an Improper Rational Function.
Thus if ae is improper, then by long division method it can be reduced to proper function ie,
Pe) ‘ 7 Ae)
Quy 77 ie 7 — Tea) is a function of xand-Ge
fractions can be evaluated by breaking in factors given as follows:
is a proper rational function. Such||S.No. | Form of the rational function __Form of the partial fraction.
px tg
G-ae-y tt?
1
petg
(=a?
mitqetr
petgrtr A,
(—a)°G—5) =a) @—a? 9)
px tga tr A i ye
(e-a°@-9) €-9 Ga Ga
& pesgrtr A_, Brtc
(me thet) &-
D)
where x? + bx +c cannot be factored further|
torte!
The constants A, B, C, etc. are obtained by equating coefficient of like terms from both sides or by
substituting any value for x on both sides.
To find the integral of the form { we write
te
ax?+bxte
u
=
rus
I
Va)
o
(e)
z2)
m
a
m
K<
w
m
ys)
Now putting x+:2-= so that di = dt, Therefore, writing {~-2=k, and find the integral of
dt
reduced form
. Tel’ Pew
pet
). Integrals of the form: Ime
Step I. The numerator px + q is written in the form
pet qe AL ax hxc) +B
> prtq= A(Qax+b)+B
Step Il. The value of A and B is obtained by equating the coefficients in the above equation.
Step ILL (px + q) is replaced by A@ax + 6) + B and we write the given integral as,
+ A(ax+b)+B
f ia 4) wef ests a
ax? bx te ax? thx +e
(ets
. Tntegenls nf the fons. | ASE dx.
eet
prt q= Abe shee +B
= px+q=AQax+b)+B
Step II. The values of A and B are obtained by equating the coeffcients in the above equation.
Step IIL (px +4) is replaced by A (2ax + b) + Bin given integration as
(px+9) AQax+b)+B
SaaS Se
Vax? bxte Vax?+bxee
‘dx and then solved.ee
ir
[aa]
2
Ww
5
rT
(at
e)
=
va)
lal
=
©)
ja
9
11. Integration of the form let where p(x) and q(x) are polynomials such that
degree of p(x) 2 degree q(x).
Step I. p(x) is divided by q(x) and it is written as
px) Ra)
Way 22) Gay Where QC) is quotiont polynomial and RG s remainder polynomial
R(x)
ax)
P(x) P(x)
Step II. 7@* replaced by (a+ 2) 2 as (AS
12. Integral of the form {sin™x.cos"x dx
() Ifthe exponent of sin x is an odd positive integer, then put cos x =f.
(i) If the exponent of cos xis an odd integer, then put sin x = f.
13, Integral of the form { e*(f(x) +f’ ())de = fia).e*+ C
) Definite Integrals
14. Definition: If F(x) is the integral of f(x) over the interval (a, b), ie, { f(x)dx = F(x) then the definite
integral of fx) over the intereal [a,b] is denoted by f fla) is defined as
dx = (ow Jae and then solved.
| eye Fe) -Fle
where ‘a’ is called the lower limit and 'b’ is called the upper limit of integration and the interval (a, b) is called
the interval of integrations.
15. Some Useful Results: The following results will be useful in evaluating the definite integrals as the
limit of sum.
n(n-1)
() Y@r-1) = 142434..4 01-1) =
(2!) cosa+ cos(a+h)+ cos(a+ 2h) +... + costa + (n—1)h} =
16. Fundamental Properties of Definite Integrals: There are certain properties of definite integrals
‘which can be used while solving the definite integral5 :
@ J fedare J fleyie (Change of variable)
(i J pxyaee— | playa (inter change the limits)
7 >
Gif fla)ae=f flxyde+ f fxyde, whereace dx, x#2is equal to [CBSE 2023 (65/5/1)]
@1 () -1 (2 @2
ax .
f Gin ca)sin@ =) i eaual to INCERT Exemplar]
ine alogl 22-9 a.c 5 b-aylog| 8 é
@ sinb-a)log| Ga | © cosecte—a)log| Gy |
% b-atog| Lec i sintb—aytogl = |.
© cose a)log| Gay sino a)tog| 5
Stan” Vxdx is equal to INCERT Exemplar]
(@) (e+ Itant vx -y/x+C (b) xtan* Vx-Vx+C
(©) ¥x—xtant ¥x+C d) vx-(e+ Iter Vr +C
ae
fet ( be = dx is equal to INCERT Exemplar]
e
Ware or ©. @ Gate
[2*"*ax is equal to [CBSE 2023 (65/3/2)]
oe ”
22, a o
@ 24C (b) 2*7log2+C (0 gate @ 2aeete
J sec*x dx is equal to [CBSE 2020 (65/1/1)]
a
(@ -1 mo ol @2
The integral dx is equal to [NCERT Exemplar]
ap
@ Herd)’ © Hard) 'ec ry arte @ L{Ses) +e
ri tan’ (2x) dy is equal to [CBSE 2020 (63/4/1)]
a
@ = @ © a =
JES foddx is equal to INCERT Exemplar]
@ Pfe-od — ® Pfarodx E fara @ IE fear
If fand g are continuous functions in [0, 1] satisfying f (x) = fla —x) and g(x) + g(a-x) = a, then
{ fe).g()dx is equal to INCERT Exemplar]
> ©) Sh fedax (© § fear @) aff fox)de
a x elxle1 2
G Fun is equal to INCERT Exemplar]
(@) log2 (b) 2log2 (©) Fiog2 @ 4log2ae
17. Gg Spat avthen Ede is equal to [NCERT Exemplar]
2 e e
(@ aie to ari-$ @at-$ @ att+$
18, |xcosxx|dx is equal to INCERT Exemplar]
2
8 4 2 1
@ & wt @2 @t
1. upad= x44, then fixlis ICBSE Sample Paper 20231
@ Petogltl+C — Frtogixl+c ©) F+toglel+C — @ F-loghxl+c
20, The value of eat [CBSE Sample Paper 2023]
3 1 9
@) log © log 5 (@ Flog? @ tog
2
a. | /4-x7dx equals (CBSE 2023 (65/3/2)]
3
(@) 2t0g2 () -2l0g2 oF @n
22. 1f Zea) =10g x, then fad equals: ICBSE 2023 (65/1/10)
w -hec @xoge-D+C — @allogren+e @ 4+¢
a. f “ee 2 jae is equal to: [CBSE 2023 (65/1/2)1
@ - O -z () v3 @ -v3
24. If at [flx)] = ax +b and (0) =0, then f(x) is equal to [CBSE 2023 (65/2/1)]
2
was ) ste © Esmee we
25, Antisderivative of @"=—~ with respect tox is {CBSE 2023 (65/2/1)1
@) sece(F-x}+c ( ~se2(F =x) +¢
(© togsee($-x)]+ (@) ~og|see(4-x}]+c
SCX dx equal: CBSE 2023 (65/51:
26, [ate dr equals l (65/5/01
@) seex-tanx+C (6) seex+tanx+C — (e) tanx-seex+C (@) (seex+tanxy+C
Answers
1@ 2 (@) a@ 40 5 @ 6.) 7.0
8. @) 9. @) 10. (c) 1. @ 2. (i) 13. (@) 14. @)
15. () 16. () 17. (b) 18. @) 19. () 20. (¢) 21. (i)
2.) 23. (@) 24. (6) 25. (0) 26. (b)Solutions of Selected Multiple Choice Questions
4. Wehave, I= xe" dx
st = 3xdx=dt aeaet
a
elas
ogee
feldt=teec
Option (a) is correct.
eats
08"(xe")
meet a (xe +e%)de = dt
= (eter = dt
2 Let l= a dx
eect
= [= Jsec%t dt=tant+C= tan (xe!) +C
Orton (@)is correct
2a + cos?
sin2x + costs) dx
a Rie eee
Sintxcostx / sin?xcos?x
= [sec?xdx + { cosec*xdx = tanx -cotx+C
©. Option (c) is correct.
#2
x-2 ifr-220
= (x=2) ifx-2<0
le, Ile 272 BOR
Bey (EON -e-2) ifr <2
1 ee 3
ope [Die fea
4 Ds
=-[1-Cn]=-2
* Option nace
H Teal sin(b—a)
dx
sing — Se 5 “Gabe a)’ sin(&— a)sin(x—6)
1 sin(x-a—x+b)
sin(b—a)’ sin —a)sin(x —b)
= __1_Sin(a =a) costa - 8) costa) sin (xB)
~ sin(b=a) sin (x —a) sin (x —b)
‘Slcot (x -b) —cot (x-a)]dx
= tt
* sin(b—a)7 licg| sine—b)] log sin(e= a) []+C
= cosec( —a) log]
ste“
Option (c) is correct.
10. f2t?dx=f2*.2dx=2?[2%dx
a Be 2?
Pxag triage te
Option (c) is correct.
1. Wehave | sec*x dr =[tan x],
i
=
tan} —tan(—T)=141-2
*. Option (a) is correct
xs xs
13. J tan®(2x)dx = J (sec?(2x)-1)dx
é é
fs
ef
-. Option (a) is correct.
a. 12 J fongcur = fpa-agie—node= | fora gtaper
sal porde-f forgery > raf foydx-1 > 1=-4f ponds
i ! 1
+. Option (6) is correct.
Palzle1
te p= fH,
ax? +2[x/+1
2 Isle ele
sanded "4 Baader 87s Gey
lodd function + even fisnction]
ep Ft 5 sh Be, 3 1
on] 2h ten a) te =2loghx + 1]|, =210g2.
©. Option (b) is correct.
a 2
18. Since T= [|xcosnx|dx = 2 {|xcosnxldx
se °
= 2} f bxcosmelar+ f ixcosnr|ax+ [|xcosmelax
2 2
*. Option (a) is correct.F@paxet, weget
Integrating both the sides wart. x, we get
Spee s(r+d a = Fl) +Hogizl +c
<. Option (6) is correct.
dx 13 2% 1 s 1 1, (10
FEEL wed fogs? +f -£ log10—10g5) Log 2)
1
log?
:. Option (c) is correct,
We have,
2 a
f ¥4-2dx= f QP =x
e
Ea
77%
=2sin'1=2x
On integrating both sides, we have
= fix) = flog xi
> fo=logx.fidr-j(H togs.fudr)tr
= Adtlogexe—fLaede
oe flx)= xlogx— fdx=xlogx—x+C
= ft)=x(logx-1)+C
-. Option (b) is correct.
GP see(x-F
oo(f-f)-ml
Given, A lp|=ar+band f0)=0
ola
On integrating both sides, we have
flxd= [laxtbde= "> +be+C
> f= + ec (i)
‘Also, f(0) = 0, we have from (i)
A= Os px04e >0=C
Putting in (i), we have
2
jaye tbe
++ Option (b) is correct.25, We have,
fanx-1
Jaane
= log, +c
x
see(—x)
* Option (¢) is correct.
sec sec x(soc y+ tan x)
ae
la sec? x—tan? x
J(sec?x+ sec x tan x)dx
sect de [sec xtan dx =tanx+secx+C
2 Option (@)iscorrect
Assertion-Reason Questions
The following questions consist of two statements—Assertion(A) and Reason(R). Answer these
questions selecting the appropriate option given below:
@ Both A and R are true and R is the correct explanation for A.
© Both A and R are true but R is not the correct explanation for A.
© Ais true but Ris false.
@) Ais false but R is true.
8 yi0-x
Assertion (A): J e+ fae"
* 5
Reason (R): | flvdde= J flatb—xdx [CBSE 2023 (65/5/01
2. Assertian(A) : I six = tantx+C, where C is an arbitrary constant.
¥
1
lex!
dx = tan*x+C
a
Reason (R) : Since 7tan’ Ta
3. Assertion(a) : Jdx= z+
vx
Reason (R): fcosxdx=sinx+C
+ tan.
4, Assertion(A) : If f'(x)=x+
yagi and f(O)=Othen fla) = a
wt
Reason): fades 2
+C
5 Assertion(a) +f cosedx=1
6
Reason (R) : lfflz)is continuous in [a,b] and { flx)dx= (2), then | fla)de= 6(0)- 4).6. Assertion(a):
1
Reason (R) :
Bhs Tree
}
@ v1-x
X46
rp
7. Assertion(A): J /1+cosx dx=2
Reason (R) :
8 Assertion(A) +
= loglr+ yx? +a? |+C
1
3 (log xtc
Reason (R) : flare logx+¢
Answers
1 @ 2 (@ 3. (b) 40) 5 (a) 6.0) 7.0)
8. (b)
Solutions of Assertion-Reason Questions
3
dx (i)
V10~(8+2—x)
2 Wer2-x+V10-@+2-2)™
2 VlO—x+ Vx a
Adding (i) and (i), we get
fyvx+vi0 abit
= eros [deol =8-2=6
= 1=3
So statement A is correct also statement X is true and gives correct explanation of the statement A.
. Option (a) is correct.
Clearly, both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of
Assertion (A)
++ Option (a) is correct.
=fa(x) =v¥x+C
Wehave, >
2x
Clearly, both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation
of Assertion (A).
++ Option (b) is correct.
Wehave, f'(x)=x+
1+x?
aw fo =F eoae=f{e+( 3 fetter txt
0+tan"0+C=04+C=C
2
= fay=Fttante+c - fO=0 > FO)2
3 02C 2 fatten ts
Clearly, both Assertion (A) and Reason (R) are true but Reason (R) is not correct explanation of
Assertion (A).
+. Option (6) is correct.
5. Wehave, | cosx dx =[sin xh’? = sin ~sin0=1-021
é
Clearly, both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of
Assertion (A).
++ Option (a) is correct.
a
6. Wehave, |
0 y1-2
‘ax =[sin“1x], = sin'™1 - sin 70
Clearly, both Assertion (A) and Reason (R) ate correct and Reason (R) does not gives correct
explanation of Assertion (A).
<. Option (b) is correct.
zp) re my
7 J] areosx dea] 2008 (F)ar cos} dr
4/2 [sin x54
al
=22| a 4| 2
So statement A is correct.
Also statement R is correct but R does not gives correct explanation of A.
* Option (6) is correct.
(log x)"
a reso = te
1
Putlog x=t stdr=dt
apeta ce (oe).
Pate 5 ecee
Sostatement A is correct.
Allso statement R is correct but R does not give explanation of statement A.
-. Option (b) is correct.
CONCEPTUAL QUESTIONS
1. Evatuate: ;— [CBSE 2020 (65/3/1))
9+ ax
de y
Sol. f sae als tan’ Wen
[CBSE Marking Scheme 2020 (65/3/1)]atttiget
2 Find: | de [CBSE 2020 (65/4/1)]
oe 1
[CBSE Marking Scheme 2020 (65/4/1)]
Sol. I= s(269- F@))ar=-
af se INCERT Exemplar]
42
Sol. Let ria
3
ai(e-1+ Sy )ae
+ 2
=Je-Dde+3 (de
=A xt Bogle 11+C
[CBSE 2020 (65/111)
wid __ [Toppers Answer (65/1/1) 2020)
(CBSE 2020 (65/1/1)]
[Topper’s Answer (65/111) 2020][CBSE 2020 (65/1/1)]
[Topper’s Answer (65/1/1) 2020]
[CBSE 2020 (65/4/1)]
%
%
[CBSE Marking Scheme 2020 (65/4/1)]
8 Find the value of {"|x-5 | dx [CBSE 2020 (65/5/0)1
+ 7 15
Sol. {lx—5ldx = { 6-x)dx => Mth
i 1
[CBSE Marking Scheme 2020 (65/5/1)]
9. Find [x*logx dx [CBSE 2020 (65/1/1)]
w
w
[CBSE Marking Scheme 2020 (65/1/1)]
Very Short Answer Questions
[CBSE 2021-22 (Term-2)]
= wherer-2=f >dr=dt
¥QP-(x-2F
wa (f)-cnn({CBSE 2021-22 (Term-2)]
+ [a ac _
. Cwnee Cte canton”
8]
er
[Topper's Answer 2022]
Evaluate: { x*e*dx (CBSE 2021-22 (Term-2)]
a
1 1
Sol. J re%de=[x7e%],- J 2xe"dx 1
° a
xe" dee" + 207] %
of %
[CBSE Marking Scheme 2021-22 (Term-2)]
[CBSE 2020 (65/2/01
Sol. Given Integral is %
Let cos x=
= sin dr == dt %
%
+c w
ICBSE Marking Scheme 2020 (65/2/1)]x
Find J ds
fPtaee2
ee Ln (ae
Sel. Terese Tenara® Ne x+2
=-log [x+1| +2log [x+2|+C
ax
[CBSE 2020 (65/5/1)1
1
1
ICBSE Marking Scheme 2020 (6515/1)]
Sol.
7. Find the value of [ x(1-x)"dx.
é
so. fxa-ntér=fa-na-1+ntdr= {etx Ndr
ao ng eo a Fl
n+l m2
ntl at2 (tiynt2)
[CBSE 2020 (65/5/1))
%
%
wim
ICBSE Marking Scheme 2020 (6515/1)]
[CBSE 2020 (65/5/1)1
wan
ICBSE Marking Scheme 2020 (6515/1)]
(CBSE 2019 (6515/1))
[CBSE 2019 (6515/1)1
& Find (oe
z=i eel
Bek Ee ea,
_ seat -1, 2
(x-2)(x-3) (x2) (3)
= yt al pity == log (e-2) + 210g -3)+C
ek tee top te -3)2+C=
& [a6 * Jog (x - 2) +]og(x -3)?+C
9%.
ox
so. fin ents)
7) x
= toge(+3)],° =e 2) -1ogse( 4-2
= log(s/2) log (s2e(0)) = log(v2)—logt
1
= logy log 2
x
)40. Find: /——“*_ [CBSE 2019 (65/4/1))
V5~4x-2
dx dx
sol [—— - |
y5-4x-2x? © /7-2-4r-207
dx
y7-2(14 2xtx)
Zeen)sc
v1+sin2x
Line feo ICBSE Sample Paper 2018]
Viens
Sol I=Je' oy &
lg? tco
jx Wisin? x + cos? x +2sin x. cose
“ie T+c08 2 ee
erg Vinx +c0sz)? | sinx+cosx
ae aoe lO ots @
Sot )ae
cos?
=} Jet (see see. tan x) de
=p eseerte belega+rend
12. Evaluate: Fae [CBSE Dethi 2012]
%
Sol. Let t=tan"x = dt=—1 Sax
tee
Also when, x=0,1=Oand when x=1, t=
atantx
f Tees tat
-Ef" Ue x
2h “ale °}" 32
13, Evaluate: (' ICBSE (F) 20091
V0xt3
x Vax 43) Vdx
2x3
a+ 3247 farsa? .
a RPS) a 5g 5/3
(-4+2)« zr1
14, The acceleration of an object is given by a(t) = cos(xt), and its velocity at time t= 0 is E-. Find
the net distance travelled in the first 1.5 seconds.
Sol. We know that, velocity is given by
0) = 900) fatudte
where xt) is velocity function, 2(0) is initial velocity and a(x) is acceleration.
v(t) = 37 f costa
1 fsinm} 1,1.
x BS [-aet rainy
*. Net distance travelled is
3 Pads
= 5(1.5)-8()=s(5)-s@=f (4+sinatat
(1.5)-8@=3(3)-se= f [3+sinm)
if 2
eee
15 ‘e*(cosx~ sina) cosec*x dx [CBSE 2019 (65/5/1)] [NCERT]
Sol. Let I= [e*(cosx—sinx) cosec*x dx = { e*(cotx. cosecx ~ cosec x) dx
= Se*coseex cotx dx — | ¢*cosecx dx
mi (er Rescrees meee" -c3. | emer
[Using integration by parts for 2nd integral]
Je cosecx.cotx dx — e"cosecx + C- Je" cosecx.cotx dr
~ecosec x +C.
inde (£082¥ = €0820
16. Find: |e ede (CBSE (AI) 2013]
Sol Let f= [£08282 20828 py _ j Qeos'x-1)-Qeostart) ,,_ 4p c0s"x-cos'a
cosx— cosa cosx—cosa cosx— cosa
= pp (eos —cosa)(cosx+eosa)
=2f Pa dx =2{(cosx + cosa)ax
= 2fcosxdx+2cosa J1dx =2sinx+ 2x cosa+C
Short Answer Questions
1. Find: [e*.sin2xdx {CBSE 2021-22 (Term-2)]
Sol. Let 1=Je*.sin2xdx
10
Using ILATE we have
Ta sin2x feta —j( TR. ferax)te
a I= sin 2x e* — [2cos2x e*dx = sin2xe* —2 fcos2x ede
deos2x
dx
= Tesin2xe"—2]cos2e fej Jef dx)ax] (Again using TLATE)* sin 2x - 2[cos2x.e* -[—2sin2x.e“dx]
T= e*sin2x - 2e*cos2x- 4/sin2x “dx
*(sin2x - 2cos2x)—41+C,
5I= e*(sin2x - 2cos2x)+C,
S.
5
5 (sin2x — 2eos2x)+
5 (sin2x ~ 2cos2x)+C
2 Find: J [CBSE 2021-22 (Term-2)]
2
Gn @ea)
Sol. Wehave,I={ aie dx
Letx?=t => Grits 2
1
“hea Swann
pop lt2)=04
aera #
“paral lala
= toilet bela
2
ett
=log| $3 |+C=10g ies
2x Paes
as zea |"C
@
3. Find: |g [CBSE 2023 (65/5/1)]
gf
Sok I= \ ogee
a oi P-PeeDyY eet
@-DGF+1) Pow 4x-1 Boe oe
1 1 Boe
= x4145 = rt eaeee
Pov ex1 GDF +1) x
Pa
ee
lax = fede +fae+ a
1
r+1+—__] ——
{aya een
®
seth
1
ey
4 A Brte
(e102 41) F-1 7 Pa
AG?+1)+(Br+C)x-1) _ Ax?+A+Bx?+Cx-Br-C
(Di? #1) @
Yx?+1)
Where h = J_ (A+B)x*+(C-B)x+(A-O)
7 = DG2+1)
= 1s (A+B)? + (C-Bx+(A-O)
Equating both sides like powers of x, we get
oy yef ara] + Lanct
= Floghe -1|- Floglx?+1|+ Ftan"tx +c
2
x 1 1 14
S4x+Htoghe- 11 Floghy? + 11+ F tant +C
2
. 1
4 Fin JaWe+DWz*D dx [CBSE 2023 (65/1/1))
4.
Sol. Wehave,| Te aayygeny
vet Vest actede=dt Lede = aut
Be ve
1
“VGnesn*
wo (tt2)—(ttY) fd 1
Gey tt Sa)
= aflog|#+1]-logle+2l]+C
t+1 yrt+1
nat {—___* __
& Find: J yaa) caste=b) dx [CBSE 2023 (65/1/1)]
1
Sol, Wenave, Jah cose —B)
sin[(x—a) -(-b)]
cos (x= a) cos(x—) “*
sin|(x~ a) cos (x= b)~cos(x= a) sin(x=D))
cos (=a). cos(e—B)5 U tan(x— adits ftan(x— bax]
a [log| sec(x — a) |- log | sec(x—a)|]+C
sin
4 sectx=a) ssee(x=b) |
= any "8 exo o* ante BTS Sectaay*S
ot cos(x~a)
© Sinta=B)'°8 cos =) *©
dx
6. Find {——__.. [CBSE 2023 (65/211
I Tazcosts =e) ‘ (sein)
de
Sol. Wehave, [7
oe Welare, [pe mal
: de
/sin?x{cosx.cosq + sinx.sina}
dx cosec?x
vsin‘x{sina+cosa.cotx} ” vsina + cosacotx
Let sina ¥ cosacotx = t 1x Coosa) cose Ey, = ap
2Vsina+ cosa cotx
2
> Se dt
Veina+cosacotx "cosa
=
=> g Vina + cosacot x +C
7. Evaluate: [*"log( + tanaydx ICBSE 2023 (65/2/1), (AD 2011) [NCERT]
Sol. Let T= (/*tog(1 +tanxydr well)
a T= §togl1 + tan(F - x)]ae (By using property {* f(x)dx = ff fla— x)dx)
x
i tan —tanx
= F/*tog)1 +4 —
1+ tan tan
a Tetanx |) 2 pvt, [14 tanx +1 tans
“A bist = B08 ane
aia n/a
I= aeeardr= GF fog? - log(t + tanx)] dx wll)
Adding (i) and (ii), we get
ars (toga dx =log2 ("dr = log 2px] e4
x x
= flog? = T= Glog?
& Find jor [CBSE 2023 (65/2/1)]
¥
aextx?
Sol. Wehave, [= fe *(———>— ]ax
+x)8 > x=cote
1
ex
:. 1=-fe8(1—cot8 + cot?)d8 = —fe* (cosec?@- cot ®)d8
Je®(cot® - cosec?®)d8 = [e* {cot + (—cosec’8)}d8
t ‘
dx=d0 => dx =—d8
f@) —f"@)
=e cot+C (fe yore fC dx=e8 f+)
se tC axe HC
9. Find: [<= ae [CBSE 2023 (65/3/21
sin 3
Sol. Wehave,!= {SS ax
sin 3x
cos x dv
a H
© 1'3sin x —4sin'x
= cosxde= dt
s# a
ata 43-427)
= 1= (#3) +0(++23]
For the value of A, putt = 0
1 te ax(-
For the value of C, put ¢
¥3)\.(-2v3)_ 6,3 Xi
. tecx(-S)s(=28)noxd ace
apse
;
+See
2
= J-<
Bs
}+ 5 log]
+tos|+-wo. Find: {x*log(x*+1)dx [CBSE 2023 (65/3/2)]
Sol. Wehave, I = {x"log(x? +1)dx
Letx=tand = dx=sec’9do
+ T= Jtan?@ log(1 + tan?6).sec?0d0 = {2 log sec. tan®6 sec@ 0
= 2flog sec. (tan?6 sec?@)d0
=i afiog se08tan?0 sec?9 40 | MPBREE® » 14n%0 08a]
9 9
2flog sec x “= u — [gx see tan x 22 *0|
tan’
tan?
= les m8 jog sec Li tant6 a] = tS tog seco Eta? tan?@
2 tan*Olog sec Filet ~1)tan*0 40
3
= 2 tan°Olog sec 2 /sec"Otan?6 40 +3 jtan?0 a0
cal 2 tan89 26>
= jtan’ log sec 8 tg! (sec?0-1)a0
= tan —2 tanto +2 tan 2
= jtan*@log sec8— 5 tan*® +5 tan8—58+C
= log fits — 229+ 2 tant
= px logy 143? — 538+ 5x 5 tan x tC
[NCERT Exemplar]
[sP-P =@+d)@-5)
Fa+x)
Se
ia
a- ae “le ware
[CBSE (F) 2010, Dettsi 2012, 2019 (65/5/3)]
Sol. Let I= fsinxsin2xsin3x dx
=F) 2sinzsin2esindede =
1
J sinx(2sin2x.sin3x)dx
J sinx(cosx ~ cos5x)dx [+ 2sin A sin B = cos (A ~ B)—cos (A + B)]
= Fez) 2sinxcosxde— Fey! 2oinx-cosSuidx [-- 2cos sinB = sin(A + B)-sin(A-B)]Sol.
1“
Sol.
16.
Sol.
= Jsindxdr 4 (sinéx —sindx)dx
4
cos2x , cos6r _cosdr
6 * um 16 to
eters
Evaluate: /n'z+ costs 4, [CBSE Dein 2014
sin?x.cos*x
sin®x+cos’x
sin?x.cos'x
jn?x)°+ (cos? x)?
= ejiePetetat
sin?x.cos?x
se coe ictaccostsEcndt
sin?x + cos?x)(sin*x - sin?x,cos?x+ costa)
5 pa jinteeetalents-sincoe teas
sin?x.cos*x
in'x ~sin?x. cos*x + cost 2.
Es Ad = ftan? adr — [idx + Jcot?rde
sin’x.cos’x
> (sec?x -1) dx -x+ | (cosec?x-1)de
=> 1=Jsec?xdx+ { cosec”xdx — x —x—x+C = tanx—cotx—3x+C
Evaluate: jane, [CBSE Delhi 2013; (F) 2015]
sin(x—a
vet 12 (EEO ay
sina)
Letxtast >
= cos2a{ dt — f sin2a.cott dt = cos 2a.t ~ sin 2a.log | sint |+C
cos 2a. (x +a) —sin 2a. log |sin ( +.a)| +C
=x c08 2a +a c0s 2a - (Sin 2a) log |sin (x +a)|+C
Evaluate: |! [CBSE Delhi 2009, 2019 (655/101
V5~4e*
|. Let I= /——2—
Put =f = ede=dt,weget
ae at
(Pr at-5) ° VP +202 427-9)
FE ca iart( 42)
Fcesin'()+c
,{sinax—4 ;
Evaluate: {e*(S2o= = [CBSE Dethi 2010]
fe ( Sine
tet T= fe (eae)
o (nee) + sin 2x =2sinx.cosx and cos 2x=1-2sin*]
sin
= Je*(cot2x - 2cosec”2x) dx
Let fix)=cot2x-. f’ (x) =-2cosec* 2xT= fee) +f’ (dr
= [ae* fix) +C=e% cot2x+C be fe) +f @)de = eX) +
WF Ereake: | 8 ge [CSE (F) 2010)
ae = 2)
t= fag
Poat2™
e-
Sol tet I= Feet
18. Find: {sin [oa INCERT Exemplar]
Sol.
Put x=atan'@ => dr=2atanOsec'Od@
Fata?
r= fsin"(y eae Seaton sec?) d0
= 2a sin” (EEF tan. sac" 848
= 2aJ sin” (sin @)tan 8. sec” 6d8 = 2a) 9. tan 8 sec*6d8
ms fem? 0d0 AS 6 ftané. sec? 88) 0}
8, tan*O— atan + a0 +C
dx
sing + sine
1
sing + sinde™
Vignes 2 IS
sinx+2sinxcosx
19. Find: [ [CBSE Delhi 2012]
Sol. Here, 1 = J.
aaa eo
3 inf ier J ee
f sin*x(1+2cosx) 5 (1-c0s?x) (1 +203)
Letcosx=2 > -sinxdx=dz
dz
ade
of @+20-y0 +22)
“=e +22)Sol.
Here, integrand is proper rational function. Therefore, by the form of partial fraction, we can write
1 Ag Big B
(@+2)(-21+2) ez 712 1+2 a
1 A(1~2)(1+2z) + B(1+2)(1+22)+ C1 +2)(1-2)
)( +22) (+2020 +23)
= 1=A(1=2)(1 +22) + BOL +2)(1 +22) +C(1+2)(1-2) elif)
Putting the value of z =—1 in (ti), we get
=> 1=-2A+0+0 = A=-t/2
Again, putting the value of z = 1 in (i), we get
> GF
=> 120+820+2+0 > 1268 > B
Similarly, putting the value of 2 = in i), we get
= 1=0+04¢ (5)(3) = ute = ond
Putting the value of A, B, Cin (i), we get
1
@+0-9d-2) ~ 20+9 “6d-|
|
1 1 4
> T= Flog | 142 [+ Glog | 1-2 | -geglog | 1422 [+
1 4
3(1 +22)
1
~ Sia
202
6(
Putting the value of z, we get
> I= Flog | 1+ cosx [+ Plog | 1 cosx | Fog | 1+2c08x |+C
Find: [) [NCERT Exemplar]
2
Ta 2 vont
a Ef Hell
let? =
Seana 'eaca” | }
t A B
=| 03) i438
> t= A(E+3)+B(t-4) =(A+ BE + GA-AB)
(On comparing the coefficient of t on both sides, we get
A+Bel
and 34-4B=0 = 3(1-B)-4B=0
= 3-3B-4B
=> 7B=3
3
then At =1
I ede
(x? = 4) (x? +3)21. Evaluate: [————dx
(P+ a07+9)
[CBSE Delhi 2013; (F) 2015]
Cal
Sol. Let Ila
Put x7 = t, we get
2 t
(+H +) CF NETD)
R t A,B _AG+9)+BE+4)
Wr FED) Pea (49)
= t= (A+B)t+ (A448)
Equating the coefficients, we get
A+B=1 and 94+4B=0
Solving above two equations, we get
a. 9
(+4249) BQ? +4)” 5G? +9)
f dx a
27+4)G2+9) 50x42? 5° x43?
2
AE Ft
plant + ptant 4c
;_@sin®-2)cosO
22. Find: [OSB o eos
J5 cos*6- asin€
Sol. Wehave
= j {sin =2)cos0
5 cos*8- 4sin@
Let sinO=2 = cos@d0=dz
(@z-2)dz
5-(1-z)-42
(Gz~2)dz
5-1+z2"-4z
3z-2
dz =f
(@-2? @-2)?
Let z-2=t => dz=dt
3+ 2)dt dt _ ptt eat
ee Sa 6h 2h
I ae
3z
dz—2f
dt
P
(CBSE Delhi 2016]
dt git
ial Blog | t [+4=Slog|#|-4.4+C
Putting value of tin terms of: then zin terms of 8, we get
4
= 3logl sin0-2| e+e
ae
23, Find: {3~—ydx [CBSE Delhi 20161
Va a3
Sol. Wehave
Let
24, Find: [~~ — de [CBSE (North) 2016]
Sol. We have,
oe
(2x-3)*
=(ee3| 1 _ 2
Jee ee ma
1 2
a
te lea mal
Let2e-32t > ale=dtode=
ei Z Pages §
siege fa pitt > Tecpel tC
Putting t = 2r-3
& 1 &
Take. +C = +C
2° @x-3)? = Qx—3)?
ax
eon [CBSE 2019 (65/4/2)1
dx 1 cos(a—b) dx
sin(x— a) cos(x—6) ~ cos(a—6)’ sin (x — a) cos (x — 6)
1 cos(a—x+x-8)
~cos(a=B) sin (x= a)eoste— 0)
1, cos((r=B)- («-a))
cos(a—b)! sin (x—a) cos (xb)
cos (x — b) cos (x — a) + sin (x — b) sin (x - a)
SBE NS EAD * Sn NE te
sin(— 2) cos(
sins-0) |,
cos (x= 8) |*. coste—) 5. sine
- wt Se a) oF cos (x — by |
= acy Ms! sina) [tog coste—2) Je
= 4
costa) 8
sin(x a)
cos (x - B)
ec
26. Find: [[log (log x) + [CBSE Bhubanestoar 2015, (South) 2016]
1
dx
Cogn
Sol. Let T= jllog(logx) + — yar
(logx)
Let logxst = xsd > draedt
2 Sfloges Zale
=fflogi+ t+ Sear= {(tost+t Je+(-36 zl
=élogt-Fd+C fb: inaeerarmaree
= &P8*log (log x) - 7 eee [Put t= log x]
=x log (og 2) ~apgete
27. Evaluate: f |[xt-x| dy {CBSE 2021-22 (Term-2)]
ow cnengee Wan ak 0, 4y2 . So, we bane to
boven i
W (4,8)
| wy tot)
w Ga)[Topper’s Answer 2022)
Sol.
Adding (i) and (i), we get
ari teane
x
= =f de=[x] =2n-0=
afr ax je [x] 9° = 2n-0=22
=> Tsk
*
29, Evaluate: { [log (sin x) -log(2cosx)] dx
Sol. Let = [log sinx —log(2cosx)]dx
=> = (og sinx—log2~log cosx)dx
= 1 fog tans de ~tog2( ax
2 initio tanx dx —log2lx}j/”
> Te? log tanxde— F10g2
voli)
[CBSE 2023 (65/5/1))
[CBSE 2023 (65/1/1)]
ld)Sol.
a.
Sol.
Let 1,= [7 log tanx Ait)
Using property fi foodr= i fla=xydx
(Flog tan(E— x) dr = (? tog cotx de (itty
Adding (i) and (i, we get
21, =f? (log tanx+ log cotx)dx = [7 tog (tanx.cotz)dx
F log dx=0 = h=0
Putting f= in (9, we get
[CBSE 2023 (65/1/1)1
Let I= [7 e"sinx dv
Using integration by parts, we have
Tesinfet de j(2S2% fetae)te
T=sinxe*~ fcosxetde
sinx.e*-[cosx &-J-sinx e dr]
=
>
= 1=sinxe*-cosxe*fe* sinx de
=> I=(sinx-cosx)e=1
>
21=(sinx -cosx)e* ==
[(sinx —cosx)e
1
2
I
i [[sn Fos Fe (sino ~c0s0)] =} [aoe (0-1) x spe" +1)
teg/3
Evaluate: | ——*
ing re
«st
Letl= =a oer
fee (eee
a (ees__tee™
es 2 (FH)
Let 32 dx = dt
When xelog/2 = tarot wdhal en
de [CBSE 2023 (65/2/1))
(ere
When x=logy/3 = t= tbe? = ebali9 =3
a1 a pest)
2 (IME=1)2*23 (DE-1
dt
[loglt—11-ogl¢-+1 If.Ly, tip Li, 3-1 ke 2-1
4 8 ai) a(les3 ~'o8 35)
1 1 1\_1 3
=7(l08 3-8 3)= F083
% eins
92. Evaluate: fp, im, {CBSE 2023 (65/3/2)1
sf Six + cos!x
% 109
sin! x
Sol tie fae met
Using property | flxidx =2 fixdae, when f(x) is even.
e °
Ye gig
2 inf ge (0)
2 sin™x+ cosx
Using properties f flx)dx= f fla-ardx
°
cos! x
i?) ——— (ii)
Foal rain a
Adding (i) and (ii), we have
ent. 100, %
sin'"x+ cos! y
See dee af areata
a
a
33. Evaluate: {? xlog(l + 2x)dv INCERT Exemplar]
Sol. Let
xlog(1+2x)dr
oo
2
= flog +29] Stas:
=2[1log3-0]-| |x
2 jo (>
tk afx?] 1}
= pleas 3] 5] +3!
1 a 1 1
= Fiogs—2+1 pa 2 oglia +20 118 = Hog3—
aks 1 Ss
= logs - Glogs = glog334. Evaluate: | *
Sol.
33,
Sol.
36.
Sol.
dente [CBSE (AD 20181
6 1+costx
Let adr G
0 1+ cos" ®
_ FA@—2).sin(n—2)
a 1+cos*(n-x)
F4(x—2).sine
pe [AS b
J trent 2)
Adding (i) and (ii), we get
+n- © sis
A@ta-asine, 5 2-4 f 280 yy
6 1 ¥ costs 6 Leos?
7 sinx
an f ae
"| Tscosts
Leteosx=z => -sinxde=dz => sinxdr
The limits are, x=052=1
yen > zs-1
122: 2nftantzy},
] cps ahs
= 2nftan“'1 - tan1(-1)] = 2r|
= Ise.
Evaluate: [ (cos ax —sin bx)*dx [CBSE Dethi 2015)
Here, 1 [5 (cos ax-sin bx)"dx
3 T= [5 (cos* ax + sin” bx ~ 2 cos ax sin bx) dx
= Le [5 cos? ax de [5 sin*bx dx — [5 2008 ax sinbx dx
> 1=2 [cos ax dx +2("sinbx dx -0 ipa ous are even function while third
= T= [f 2cos* ax dx + [2 sin” by dx
= 1= [1 + cos 2ax) dx + [ (1 -cos2bx)dx
& T= ffde+ Fcos2ax dx + [f dx — ff cos 2bx dx
cs 1=2[" dx + [' cos2.ax dx - [cos 2 bx dx
= roan fff
> npee nen, sine
Evaluate: [es ae ICBSE Delhi 2017; (AL) 2012, CBSE 2020 (65/4/1)]
tet re ft ae
° 1+ c0s*xx (f—2)sin (nx) de
ie
Orem)
x (n=x)sinx dx __ x sinxdr
= anes
So ecccte 8 Te costs
ore n(t SME pe yx sind
1+ c0s*x 20 1+ ¢os*x
Put cos x= t so that sin x dx = dt.
The limits are, when x = 0,
a_dt
+P
and x =z, =~ 1, we get
[ef fende =~ [6 fle) drand ( fydr = 26) fla)ds]
2 inf
= nftan“4]} = n[tan“1- tan] =x]
7" dx
37. Find: | ——&—_ [CBSE (Allahabad) 2015]
6 costx/2sin2e
Hs zt
Sol. Let 1= | ——%__ -f'__dx_
é costx/2sin2x 6 cos*x/22sinx.cosx
alps dy a1 p__dx
2 Jsin= 2 2° costxvtanx
cos*xy/ SR .cos*x
aL pr sectx dx _ 1 2/4 sect x. sec?x dx
2° “Yanx 2 Vianx
Lettanx=t = secxdr=dt, x20 = teOandxe> = te
a+ Pat
vt
a) Pyarspagy alee] een
- + q +4
ta pare, 2[372e1
fife 2ppey s &
2[vih+ px =1+2-$
72 cos x
38. Evaluate: | vax [CBSE (F) 2015]
oan 1¥e
2/2 cost
Sol. Let I= {% ate ae in ist integrand
2/2 C08 eee et
map perdtt he ede dx =-dt
cost 2/2 c03 xem/2 st=n/2
= fae i + Pe ede
C728 ay (7 OE ay = Pesos,
a+
COSE 4 (F/2 £08%
ate z
tee OE em
[fede]
(C7 yy (om am
=f ae tre [By property [' f(xyde =
2 pn ee Dcoss
Tee dy = ff? cosx dx = [sinz]j = sin /2-sin = 11+ ytanx {CBSE (AT) 2011)
dx .
M6 1+ Jtanx @O
ae a [By using property [° fayde= ff fla+¥—2)dx]
1+ /tan(
dx
vianx
EST vane
Adding (i) and (ii), we get
an(l+vtanx) | (4 pak RE
2 Le Te tanay tt Hie t= bef 3 6G
= usb iy
3
40, Evaluate: /{| x-1|+|x-2|+| x-3 [Ide [CBSE Delhi 2013]
i
sol vet r= Pty x—a +] x—2[+)x-3 [ltr= faa jde+ fea dee fjx—a) de
=f|x-1|de+||x-2|de+||x-2|de+j|x- 3] dr
, , ‘ [By property of definite integral]
[x-120, if 1 Tha-w-G-xMx [GF fla § fla-xyaz]
= (a-2eeatetde= ("20 4a" de
fet oP ef a 28
n+l “nt2° nt+3 ntl nt2° +3
= (02 (1+3)—2n4 1) +3) + 1+ 1)0042)
(a+ 1)(u+2)(0+3)
a1 + 5nt6-2n- 81-640? +3n +2 2
(r+ 1+ 2Y(n+3) (+) +2)0+3)
44, Evaluate: | e™.sin( $+ x)éx [CBSE Dethi 2016]
a
Sol. Wehave I= J e*.sin(+x)dx
6
Integrating by part, we get
t=fsin(S+2) 2] -
BAe) F4ICBSE (North) 2016]
-21t
ld)
2 &
distran® J foode =f fla+b—xdx
Oke fF
Jef a
2 5tx2
dies
Adding (i) and (ii), we get
= POF. J ‘T
a= {OP are face [| :
dx (di)
=e 8
3x23
> oe its -C8)] >
xtanx
46, Evaluate: fy tan
dx ICBSE Dethi 2008, 2010, (AD) 2008, 2017, (F) 2010, 2013, 2074)
xtanx
secx+ tanx@* @
=e [-f'fendr= ff fle-vdr]
Sol. tet =f
(i)
seex + tanx
By adding equations (i) and (ii), we get
tanx
Multiplying and dividing by (sec x - tan x), we get
x tanx (sec tanx)
org ft eee)
ne oc tantx
= nf seextanx dx —n{sec?x dx+ (Fdx
= n[secx]j —aftana]5 +1115
dx = x{" (secxtanx —tan?x)dx
= x(-1-1)-0+n(2-0) = x(n -2)
= UW=nn-2)
> I=Z@-2[CBSE 2018]
Aint tte de
fo 44 Sind,
sina = cot x =.
(cee 4 Snax ~ ae
iL Pak
Abo (vainn ~ cin)” =
saint. 4 onthe — aetna cern. = "
t= sfinax=t™
Binet = tot
sbivih | tuo | 4209 t= -1
Hm] 0
lle
le + 8084)
st
Pe a
1. Evaluate: {
Sol.
> srt
AQx+4)+B
\ t5q,{ 2000- leg, | BOU=.
| sy seal — ea Ses |
6 | alee} +|
| a uw j= ae
geet jal)
oe_ feng? ae
[Topper’s Answer 2018)
Long Answer Questions
[CBSE Delhi 2011; (AD) 2010]
We can express the N’ as Sr+3e AL (7 +4e+10) +B
=> Sr#3=2Ax+(44+8)Equating the coefficients, we get
2A=5 and 4A+B=3
5 5
A=Z 2 4XZ+B=3 + B=3-10=-7
set3=Serta+(-7)
5
Sarta-7
1-2
vx? +4x+10
Vx? +4x+10
Let 2 44x410=f=> (2x 44)dx=dt
1, =2yx?+4x+10+C,
dx
¥x+242+2—-4+10 © y(x+2)7+(/6)"
Again, 1,
= log| (x +2) + Vx? + 4x +10 |+C,
Putting the value of J, and J, in (i), we get
Soy r 5
T= 3 xayx? +4e+10 -7og | (¢+2)+ V2? +4x+10 |+(7¢,-76,)
= 5yix*+4x+10 —Zlog | (x+2)+ Vx? +4x +10 |+C, where C=! C-7C,)
2. Evaluate: {——7* dx [CBSE Delhi 2011]
(P+t+3)
Sol. Let =z > 2xdx=dz
9 _gewip _ te _.
G@eieea eer
Using partial fraction
Let i a _)
(@+1E+3) "241 243
1 Ae+3)+ BG +1)
G+DE+3) G+DE+S)
> 1=A(e+3)+Be+1)
> 1=(A+B)z+(3A+B)
Equating the coefficient of z and constant, we get
A+B=0 tii)
and 3A+Be1 lili)Subtracting (ii) from (ft), we get
zaz1 = a= and s=d
2
Putting the values of A and B in (i), we get
1 1 1
G+E+3)” 2E+1) 2e+3)
f 2x dx
G24 1)G? +3)
1 1 dz
“I (ery Term) gel 2/243
log |2#3 |+C= Slog | 22 +1 | Flog | x7+3 |+C
Note: logm + logn = logm.n
and logm—logn = logm /n
[CBSE (AD) 2014]
Sol. Let I=
‘ \Girsere
Now, we can express as
4 estos
x42
> kH2=AQr+5)+B > x42 =2Ar+(GA+B)
Equating coefficients both sides, we get
2421,5A+B=2 0 > OA
1
1
xt2=5Qr+5)-5
oo ®ae
(+3)
= log |(x+Z) +4546 tg
Putting the value of J and lyin (), we get
1
3 fleai(x+
Ves 1 5\.F 1
= Vx? + 5x46 ~ Flog | (x+5)+ V3? +5446 [+ 56,
1,
I= 50x +5x+6+C) Je vs? +5e+6 [+ C}
mee 5), ace
= VP FEREG — Hog |(x+3)+ VP Br+6 [HC (Here, C=
1
4, Evaluate: { ———, dr [CBSE (Al) 2014)
sin'x+ sin? xcos'x+ cos
1
sin*x + sin’x.cos?x + cos*x
Dividing N’ and D’ by cos* x, we get
Sol. Let I=
dx
4,
sectx
1" ene
tan'x+tan'xe+1
Put zstanx > dz=sec?xdx
G42 d |
ge2el
[NCERT Exemplar]
Sol.
Put x=acos20 = dx=—a.sin20.2.40
‘eect asin 2040
[Sesh sin 200 = 2a) / 25°57 sin 208
= si
4a cos” 0d0 =—2af (1+ cos 26)d0
i ttl [| a
“0s
atpy t-tePutting /x = cos, ie, x=cos?@ => 6 = cos x and dx =~ 2cos@sinOd®, we get
/1-cos8
T= IW Te eoe8 28in Geos6) a8
{ asin? ® ain
=-2f | 4 (sin 8 cos 8) d9 = — 2f—Basingcosheos 00
e055 cos 5
=2) sin? Leos
-2J (1- cos 8) cos .d® =-2f (cos @- cos”). d0
2) cos 040 + {2cos?6..d8 =-2sin 8 + (1 + c0s28).d8
sin 20
2
=—2sinO +/1.40 + J cos 20.40 =-2sin8 +0 + +
2y/1— cos? A.cos@
-2y/1— cos? + 9+ =
~2VT=x teos* Vxt vx VI-x+C
7
2
7. Find: |———*~—_dx
(sinx + cosx)
2 ds
sou rae] 2 pape _ Fg
(xsinx + cosx) (xsinx + cosx)? Cos,
Integrating by parts, taking <2 as the first function and Ge a ‘as the second function,
fsinx + cos2)
swe get
x xeosx dy x xcosx
1 dal ag
a
Now, let us first evaluate [SS
(sins + cosx)
Putting (x sin x + cos x) =, then (sin x +x cos x—sin x)dx =dt ie, x cos xdx = dt, we get
xcosx ao. 1
j_ bron aaa fa ——* _.
(xsinx + cosx) ? (xsinx+cosx)
4 + a
Fence; f=! cosa asins 1g
fences 1 Cosi (xsinx + 6083) costx (sine * c0s2)
x a bd. =
et fcc te § tant
tr Gamay cos x(@ sin x+ cos x) ©
a cet rsin?x + sinxeosx | _ =x(1-sin* x) +sinxeose
cos x(x sin x + cos x) cos x(x sin x + cos x)
_ £08 (sin xx 008 x)
+c
* cos x(x sin x* cos x)
Side _(sinx-xcosx) ,
c
(xsinz + cosx)
(xsinx + cosx)?sin?x
8. Evaluate: (°"—""* — ax [CBSE Panchkula 2015; (South) 2016]
sinx+ cos
2
_ pe__sintx .
Sol. Let I= =a i)
#12 ¢g32.
osx
1S Sa ®
9 cosx+sine
Adding (i) and (i), we get
“2 sin?x + cos" 4 dx
sinx-toosx “ g sinx+cosx
1 de
= aa!
v2a
Ty anvein™
cosx.cos ++ sinzsin=
4 4
ix [1s 208 (A-B) = cos A cos B + sin A sin B]
tog(/2++1)—tog( see —tan)]
i 3 -1yj=
= yy llog(/2 + 1)-log(v2 - D1 “2 toe[ 44]
“bol E22
i 2 ai
elo log(/2+ 1)? = F5logiv2 +1)
1
Hence, = —log(/2*1
nce, T= ry log(y2 +1)
72_xsinxcosx
9. Evaluate: [ee [CBSE Delhi 2011, 2014; Sample Paper 20171
0 sintx+cos*x
Sol. Let ade
sin'x + cos"
By P:
. ty Property
LO fladde = fF fla x)ax|
sp (5—2) cos. sin
> rs | -4§— ote
a cost + sin’x? cosx.sinx , 7? xsinz.cosx
& dx—f ent
sint+costx” @ sintx+costr
is 2 gi
cosx.siny n¥/2_sinx.cosx
> OSES te > 21a Ef SRO ty
sintx + costs 29. sintx+coste
sin x.€05 x 4
aP cost ‘s
=3) aa [Dividing numerator and denominator by cos* x]
@ tan’x+1
__t f? 2tanx.sec*x
“2x25 14 (tan2x?
Tet tan?x=2; 2tan x. sec? xdx =dz
= x
10. Evaluate: [*———* dx [CBSE (A1) 2009; (F) 2014]
a cos*x +B sin®y
: x
Sol. Let He) Peotz+ Pants ™ m0}
t= f= tz f rayde =f fear
6 a cos*(a—x) +b? sin (xa) be [fedex | fea]
1 Rox ay i)
0 @°cos*x + bsin?x
Adding (i) and (ii), we get
a= f=
3 eos +P sins
[Divide numerator and denominator by cos” x]
Pa 6
J f(x) = 2) fx) atx]
Put btanx
- ab
11, Evaluate the following: ("| xeosxx | dv [CBSE (F) 2010; Patna 2015; (Central) 2016]
Sol. "| xcosnx | dx
x
Asweknow, cosx=0 = x=Qr-Ipn|ezcos nx =0 =
1
For 0<1<5,1>0 then
- cosmr>0 => —-xcosnx>0
1 3
For 50then cosmx<0 = = xecosnr<0
AR? | xcosnx | dx = ff”? xeosmxde + [29 (— xcosmx)dx
sinnx}? a, si ? pr sinax
=lx fp" 1. +i
x hya x
ei
dx
soosmx
(ae*-zs)-(-ae ae)
(CBSE (F) 2016)
a
ST gnasina aay
7 x
nf —* _s
| Teeinasin
=f"
faeces
d
xi =
0 1+sina.sinx
ax
2tans
1+sina- z
1+ tan? >
5 1 + tan?) 5 set
f hem xf ———42__«x
© tetan?S+2sinatane © tan? +2sina.tand+
1+ tan? +2sina.tan tan? 5 +2sina.tan5+1
= sec? Fde= Ut; x= 0 = f= Oandrex = fc
edt
a distal ae
0 P42sinat+1
f—___# _.
¢ P+2sinat + sin?a—sin?a+1
_ a
‘a (f+sina)? +(1-sin?a)
Let tan
at
#. 2
0 (sina) + costa
am oa
tan5+sina
cosa
Phe testa x
= cosal'®" cose =
=—™ IE tant
= aglF-tartaney]
x(x-2a)
2cosa13. Evaluate: f sin 2x tan"(sin x)dr [CBSE 2023 (65/5/11
é
4 4
Sol. I= f sin(2x)tan7 (sin x)dx = f tan“ (sin x)sin (2x)dx
a é
[tan (sinx) sin(2x)de
= tan” (sinx) { sin(2x)dx — 5 {fe ltan (sina) {sin 2rd ax
-cos2x
2
tan (sina) x (=) 4
3) peambe eos ( Jax
sin?
ne
Fen (sinx) cos(2a) + $f =A cost [+08 2x=1-2sin?x]
Putsinx=u => — cosxdx=du
si 1 )1-207
pian (sina) eos(20)+ 5 /- rd
= 2u+3tanty
-2sinz +3 tan (in x)+C
Now, tan" (sinx) sin(2x)dx
1 1
= = plan sinx) cos(2x)+-5[-2sinx+3tan(sinx) +C]
%
2 Te | flan ins) cos(2e) sin + tan sina] *
°
1 e(sin™ 1) gin + Stan (sin®
=[[ Gee (sin) cos(2% %) -sin + $ tan" (sin )}
tan(sin0) cos(0)—sin(0)+ Stan sino]
= [lee 3 tant ee
= [Ram 1) eos(n) -14F tan «}-o] [eo tar
iste frtan*a)=Z and cose