0% found this document useful (0 votes)
31 views5 pages

Thermo Solu

This document contains 16 multiple choice or short answer questions related to thermal physics. Some key concepts addressed include: - Converting between temperature scales like Celsius, Fahrenheit, and Kelvin - Calculating temperature and slope from graphs - Determining expansion of materials due to temperature change using coefficients of linear expansion - Relating pressure, density, and height in fluid statics problems

Uploaded by

alfaphysics
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
31 views5 pages

Thermo Solu

This document contains 16 multiple choice or short answer questions related to thermal physics. Some key concepts addressed include: - Converting between temperature scales like Celsius, Fahrenheit, and Kelvin - Calculating temperature and slope from graphs - Determining expansion of materials due to temperature change using coefficients of linear expansion - Relating pressure, density, and height in fluid statics problems

Uploaded by

alfaphysics
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

UNIT # 05

THERMAL PHYSICS
EXERCISE –I 8. Let at temperature , volume increases by 2%
1. Let  = temperature on X–scale corresponding to then according to question (ekuk rki  ij vk;ru o`f¼
50°C on Y–scale 2%gSrksiz'ukuqlkj)
ekuk  = Y iSekus ij 50°C ds laxr X iSekus ij rki gS 100 = 98 [1+3.3 × 10 (–4)]
  = 60.4 + 4 = 64.4 °C
375°C -30°C
FL
9. L=Lthermal– Lcontact force= 0  1L= AY (rod – 1)
 1
X 50°C
Y
1 2

–125°C –70°C
FL
X  ( 125) 50  ( 70) 2 L = AY (rod – 2)  Y11 = Y22
   X = 1375 2
375  ( 125) 30  ( 70)
10. Pressure at the bottom in both arms will be equal
2. For centigrade and Fahrenheit scale (nksuksaHkqtkvksaesalrgijnkclekugksxk)
(lsUVhxzsMoQkjsugkbViSekusdsfy;s)
 0   0  l1  l 2
F  32 C0 100  1  t  .l1   1  t  l 2    l t  l t
 C  (140  32) = 60°C 1 2 2 1 1 2
212  32 100  0 180

11. Strain (foÏfr)


3. Slope of line AB (js[kk AB dk <ky)
l
C 100  0 100 5 t=   = –12 × 10–6 × (75 – 25) = – 6 × 10–4
=    l
F 212  32 180 9

12. Coefficient of linear expansion of brass is greater


4. If we take two fixed points as tripe point of water
than that of steel.
and 0 K. Then (;fn ge nks fLFkj fcUnq ty dk f=d fcUnq
(ihrydkjs[kh;izlkjxq.kkadLVhydhrqyukesavf/kdgksxk)
,oa 0 K ysosa rc)
TX  0 TY  0

13. l  l 0 1  T   l  l 0  l 0T
450 TX = 200 TY 9TX = 4TY
200 450
l 0 A T 104  100 4 A 2
X  LFP   l  T  106  100  6    3
5. = constant (for all temperature scales) 0 B B
UFP  LFP
(fu;r (lHkh rki iSekus ds fy;s)
14. Clearance = R'–R but 2R' = 2R (1+ sT)
where (tgka)
 R' – R = RsT
LFP  lower fixed point (fuEu fLFkj fcUnq) = (6400) (1.2 × 10–5) (30) = 2.3 km
UFP  Upper fixed point (mPp fLFkj fcUnq)
Node6\E : \Data\2014\Kota\JEE-Advanced\SMP\Phy\Solution\Unit 5 & 6\01.Thermal Physics.p65

15. x= lA  lB  l A 1   A T  l B 1   B T   l A  l B


X   5  C0 60  5 C
  =  C = 65°C
95   5  100  0 95  5 100  l A A  l B B

16. For rod A (NM+ A ds fy, ) l = l0 A(100)


6  10 5
6. L = 6 × 10–5 = L  = =5°C l
1  12  106 For rod B (NM+ B ds fy, ) = 2l0B(100)
2
7. Expansions of a metal is same as photographic For rod C (NM+ C ds fy, )
enlargement.  d1 will increase by 0.3% 2l = xA(100) + (3l0 – x)B(100)
,d/kkrqdkfoLrj.kQksVksdscM+sdjusdhrjggksrkgS 5 4
 d1, 0.3% ls c<+sxk  x  l & 3l0–x = l 0
3 0 3

1
17. l   Expansion in dx = 0 = surrounding's temperature (ifjos'k dk rki)

80  60  80  60 
    1 x  dx T  100 1.76  105  1.2  106 x  dx
2
  k  30  ...(i)
0
0 t  2 
2
 6  x 
2
 60  50  60  50 
= 100 1.76  10  x  1.2  10    
5
and  k  30  ...(ii)
 2 0 t  2 
=3.76 mm  t = 48 sec
T2

18. Q dl = l0dT  l   dl    aT  bT  l 24. Q t  (x22 – x12)


2
0 dT
T1 For x1 = 0, x2=1 cm
7  (12–02)
a 2 b 3 3   3 2 7b 3  For x1 =1cm, x2 = 2cm
= l 0   T2  T1    T2  T1   =  aT1 
2
T l
2 3  2 3 1  0 7 1
t  (22 – 12)    t = 21 hrs
t 3
19. For simple pendulum (ljy yksyd ds fy;s) T = 2

l  T 1 l 1 25. From Stefan's law (LVhQu fu;e ls):  Q = AT
T4
 T  l1/ 2    
g T 2 l 2 1cal 4.2J
   5.67  108  1  T 4  T= 100 K
Assuming clock gives correct time at temperature s  m2 cal
ekuk yhft;s fd ?kM+h fn;sx;s rki ij lgh le;n'kkZrh gS Power
26. = Intensity (rhozrk)
6 1 6 Area
0  =   0  20 &
24  3600 2 24  3600 Power absorbed by the foil = Intensity at foil × Area
offoiliUuh}kjkvo'kksf"kr'kfDriUuhijrhozrk×iUuhdk
1
=   40  0   0  30C {ks=Qy)
2
   1.4  10 5 C 1 P0  A 0 T 4 
 P  A   4d2  A
4d2

20. A 0 (2T)4  A
20°C Now P'=  4P
4 (2d)2

 Q  Q
27 Q    
40°C t  A  t  B

K A A 100  70 K A  70  35 
 = B
 1  20 C  30 70
l0 (1+20 C)= l1 (1+20S)  l 1   l0
 1  20 S  KB KA 1
 KA =  K =
2 B 2
 1   2  31
21.  r = 1 +3 1 = 2 +3 2   2 =
Node6\E : \Data\2014\Kota\JEE-Advanced\SMP\Phy\Solution\Unit 5 & 6\01.Thermal Physics.p65

3 x dx
dx dx
28. dRH = KA  KA (1  x)
22. Let  = junction temperature (ekuk  = laf/k dk rki) 0
0
Net heat current at junction is zero
(laf/kijdqyÅ"ek/kkjk'kwU;gksrhgS)
l
1  ln(1  x) 
l
dx
RH =  dR H     
200 0
KA 0 (1  x) KA 0  0
3k(100–)+k(0–)+2k(50–) =0    °C
3
1
= KA  ln(1  l 0 )
0
23. Newton's law of cooling (U;wVu ds 'khryu fu;e ls)
OR
 Check dimensionally (foeh; fo'ys"k.k ls tkaps)
= k[ – 0]
t
2
29. According to Wien's law ohu ds fu;ekuqlkj 36. Heat lost = Heat gained
m 1/T  mT. (Å"ekgkfu=Å"eko`f¼)
As the temperature of body increases, frequency msteam × 540=1100× 1 × (80–15)+20×1× (80 – 15)
corresponding to maximum energy in radiation (m)  mass of steam condensed = 0.13 kg
increases. Also area under the curve (la?kfurHkkidknzO;eku)
(pwafdoLrqdkrkic<+rkgS]fofdj.k(m)esavf/kdreÅtkZ
37. Water has high specific heat and due to this it
dslaxrvko`fÙkc<+rhgSAoØdsvUrxZr{ks=Qy) absorber more heat in rise of temperature.
(ikuhdhfof'k"VÅ"ekmPpgksrhgSrFkkblhdsdkj.krkiesa
 E  d  T 4
o`f¼gksusij;gvf/kdÅ"ekvo'kksf"krdjrhgS)
Q
30. = AT
T4 = same but Tred < Tgreen 38. When water is cooled to form ice, the energy is
t
released as heat so mass of water decreases.
as red Tred = greenTgreen (see VIBGYOR)
(tctyBaMkcQZcukrkgSrksÅtkZÅ"ekds:iesaeqDrgksrh
 Area of red star is greater
gS]vr%ikuhdknzO;eku?kVrkgS)
(yky rkjs dk {ks=Qy vf/kd gksxk)
39. If intermolecular forces vanish water behaves as gas.
31. Rate of cooling of water = Rate of cooling of alcohol
(;fn vUrjkf.od cy 'kwU; gS rks ikuh xSl dh rjg O;ogkj
(ikuh ds 'khryu dh nj = ,Ydksgy ds 'khryu dh nj)
djrk gS )
(250  10)  1  (5) (200s  10)  5
  4.5  103
130 67 Number of moles of water =  250
18
 Specific heat of alcohol (,YdksgkWy dh fof'k"V Å"ek) (ikuhdseksyksadhla[;k)
s = 0.62 Total volume of water at STP
(STP ij ikuh dk dqy vk;ru)
32. Amount of energy utilised in climbing = 22.4 × 250 × 10–3 m3 = 5.6 m3
(p<+usesami;ksxdhxbZÅtkZdhek=k)
mgh= 0.28 × 10 × 4.2 40. Heat removed in cooling water from 250C to 00C
(250C ls 00C rd B.Ms ikuh esa fu"dkflr Å"ek)
0.28  10  4.2
h= = 1.96 × 10–2 m = 1.96 cm = 100 × 1 × 25=2500 cal
60  10
Heat removed in converting water into ice at 00C
(0°C ij ikuh dks cQZ esa cnyus esa fu"dkflr Å"ek)
33. Entire KE gets converted into heat.
= 100 × 80 = 8000 cal
(lEiw.kZxfrtÅtkZ]Å"ekesaifjofrZrgkstkrhgS) Heat removed in cooling ice from
KE = ms  10 × 10 × 10 = 2 × 4200 ×  (B.MscQZesafu"dkflrÅ"ek)
 = 0.12°C 00 to –150C = 100 × 0.5 × 10 = 500 cal
Total heat removed in1hr 50min
34. M= mass of hallstone falling (1 hr 50 min esa fu"dkflr dqy Å"ek)
(M=fxjjgsvksysdknzO;eku) = 2500 + 8000 + 500=11000 cal
Node6\E : \Data\2014\Kota\JEE-Advanced\SMP\Phy\Solution\Unit 5 & 6\01.Thermal Physics.p65

m = mass of hallstone melting Heat removed per minute (izfr feuV fu"dkflr Å"ek)
(m=fi?kyjgsvksysdknzO;eku) 11000
As Mgh = mL. = =100 cal/min
110
m gh 10  103 1 P P P
So   3
 41.
M L 33  10 33

35. HC = ms = ms (1)°C T T T


HK = ms  = ms (1)K = ms(1)°C density density
increases decreases
HF = ms  = ms (1°F) = ms(5/9)°C
 HC = HK > H F  RT 
For equation : Q P= M 
 w 

3
At constant temperature   P n1C P1  n2 C P 2
For 1st graph  P At constant temperature. 48.   n Cv  n Cv
1 1 2 2

 RT  5R 7R
For 2nd graph : Q P=
 M w   = 1.5  CP1 =
2
; CP2 =
2

1 3R 5R
At constant P,   CV1 = ; CV2= ; then n1 = n2
T 2 2

dP
For 3rd graph L: = constant  P  T
dT 3KT mv 2rms
49. v rms  T Q T  mv 2rms
 density  = constant m 3K

42. If temperature is doubled, pressure will also be


50. Change in momentum (laosx esa ifjorZu)
RT = 2mv cos(45°)
doubled as P  M (;fn rki nqxquk gS rks) 45°
w
1 45°
=2 × 3.32 × 10 –27
× 10 ×
3
 100%increase  lsnkcHkhnqxqukgksxk 2
43. Volume can't be negative. = 4.7 × 10–24 kg ms –1.
(vk;ru ½.kkRed ughagksldrk)
At constant pressure (fu;r nkc ij) 51. Here V = aT + b where a,b > 0

V  T or V  (t + 273) nRT nR b b
So P =  but T  T so P2 > P1
aT  b a  b / T 2 1

3 th 
44. volume of air at 0°C occupies entire volume at  ,
4 52. PV= nRT  P = M RT
w
(0°Cij ok;q dk 3@4 vk;ru rki ij lEiw.kZ vk;ru ?ksjrk gS)
PM w (105 )(28  103 )
V1 V2 3 / 4V V   kg m–3= 1.25 g/litre
As T  T     = 171°C RT 8.3  273
1 2 273  60 273  
53. U1 = +ve;
45. Ideal gas equation (vkn'kZ xSl lehdj.k): PV = nRT U2 = 0
U3 = –ve
 P0   U1 > U2 > U3
So at V = V0; RT1 =   (V0) and at V = 2V0,
2 As volume increases, W = +ve.

 4P0  11P0 V0 54. Internal energy and volume depend upon states.
RT2 =  
 (2V0)  T2 – T1 =
5 10R (vkUrfjdÅtkZ ovk;ru voLFkkijfuHkZjdjrsgSa)

46. Number of moles remain constant 55. PT11 = constant & PV =nRT
Node6\E : \Data\2014\Kota\JEE-Advanced\SMP\Phy\Solution\Unit 5 & 6\01.Thermal Physics.p65

(eksyksadhla[;kfu;rgS)
V T V 12
 V  T12   12  v  
P1 V1 P2 V2 P1V1 P2V2 V T VT T
n1 + n2 = n1' + n2'  RT  RT  RT   RT 
1 2 1 2
56. U = 2P0V & W = P0V
PV PV (1.5P)V (1.5P)V So Q = W + U = 3P0V = 3P0V0
   
273 273 R  273 RT
 T = 273 × 3 K = ( 273 × 3 – 273) °C= 546°C 57. When water is heated from 0°C to 4°C, its volume
decreases. tc ikuh dks 0°C ls 4°C rd Å"ek nh tkrh gS
47. Total translational KE(dqy LFkkukUrfjr xfrt ÅtkZ) rksbldkvk;ru?kVrkgS
3 3  P V is negative (½.kkRed)
= nRT = PV Hence Cp – Cv < 0  Cp < Cv
2 2
4
58. V  T4  V (PV)4
 P4V3 = constant  PV3/4 = constant  Q1   U W1 

C1  T   T T 
R R    1 (QW2 > W1)
 C =Cv + = 3R + = 3R + 4R = 7R C2  Q2   U  W2 
1 x 1  3/4  T   T T 

f1n1  f2 n2  f3 n3 (5n)(3)  (n)(5)  (5n)(6) 50


59. feq =   9. Q = U + W
n1  n2  n3 5n  n  5n 11
Q = +ve, as heat is absorbed from the atmosphere
ok;qe.My ls vo'kksf"kr Å"ek
60. U = a + bPV = a+bnRT
 U = bnRT = nCvT W=–ve as the volume decrease
 Cv = bR  Cp = bR + R (tc vk;ru ?kVrk gS)
 U = Q – W = +ve – (–ve) =+ve
C p bR  R b  1
   C  bR  b  Internal energy increases.
v (vkUrfjdÅtkZc<+rh gS)
EXERCISE –II
10. HA = (6 cal/s) × (6 – 2) s
1. All dimensions increase on heating. HB = (6 cal/s) × (6.5 – 4) s
(xjedjusijlkjhfoek;sac<+rhgSa) HA 4 8
 H  2.5  5
L2
1
2L 1 L 1 B
2. DC2 = L22 –  0 = 2L2 L2 –
4 4
12. For insulated chambers (Å"ekjks/kh izdks"Bksadsfy;s)
2L 1 (  1 L 1  )
 0 = 2L2(2L2) –  1 =42 n1 + n2 = n'1 + n2'
4
(final pressures become equal)
3. A part of liquid will evaporate immediately sucking
latent heat from the bulk of liquid. Hence a part of (vfUrenkccjkcjgksxk)
liquid will freeze.(nzo dk ,d Hkkx nzo ds vk;ru (ifjek.k) PV 2P.2V P 5P
  [3V]  P ' 
lsxqIrÅ"eklks[kdjmls'kh?kzrklsok"iesacnynsrkgS]vr% RT RT RT 3
nzO; dk ,d Hkkx te tk;sxk) For left chamber (cka;s izdks"B ds fy;s)

5P 3V
4. Qvap = Qfreezing PV = P'V'  V'  V'
3 5
m.(L) = M(L)  M = m
For right chamber (nka;s izdks"B ds fy;s)
L = latent heat of freezing (teus dh xqIr Å"ek)
m = mass of vapour (ok"i dk nzO;eku) 5P 12V
4PV= P'V' = V ' V ' 
M = mass of freezed tek nzO;eku 3 5

 Fraction of water which freezed P2


(ikuh dk ogHkkx tkstetk;sxk) 13. = constant (fu;r)

M M  RT
   P=p (Ideal gas equation) (vkn'kZ xSl lehdj.k)
m  M m  m 1  
Node6\E : \Data\2014\Kota\JEE-Advanced\SMP\Phy\Solution\Unit 5 & 6\01.Thermal Physics.p65

6. Mixture may attain intermediate temperature or P 2 P  RT   R


     PT   = constant
terminal temperatures of fusion or vapourisation.  
 M   M
(feJ.k dk rki e/;orhZ rki ds cjkcj ;k xyu ;k ok"iu ds  The graph of the above process on the P–T
vfUre rki ds cjkcj gks ldrk gS) diagram is hyperbola.
7. Water at 4°C has highest density (P-T vkjs[k ij mijksDr izØe dk oØ vfrijoyf;d gksxk)
(4°Cijikuhdk?kuRovR;f/kdgksrkgS) For the above process (mijksDr izØe ds fy;s)

 P2   P2  P2 P22 P
8. Q1 = U+ W1; Q2 = U + W2           P2  ...(i)
Ratio of specific heats 1 2  /2 2
(fof'k"VÅ"ekvksadkvuqikr) and

You might also like