Thermo Solu
Thermo Solu
THERMAL PHYSICS
EXERCISE –I 8. Let at temperature , volume increases by 2%
1. Let = temperature on X–scale corresponding to then according to question (ekuk rki ij vk;ru o`f¼
50°C on Y–scale 2%gSrksiz'ukuqlkj)
ekuk = Y iSekus ij 50°C ds laxr X iSekus ij rki gS 100 = 98 [1+3.3 × 10 (–4)]
= 60.4 + 4 = 64.4 °C
375°C -30°C
FL
9. L=Lthermal– Lcontact force= 0 1L= AY (rod – 1)
1
X 50°C
Y
1 2
–125°C –70°C
FL
X ( 125) 50 ( 70) 2 L = AY (rod – 2) Y11 = Y22
X = 1375 2
375 ( 125) 30 ( 70)
10. Pressure at the bottom in both arms will be equal
2. For centigrade and Fahrenheit scale (nksuksaHkqtkvksaesalrgijnkclekugksxk)
(lsUVhxzsMoQkjsugkbViSekusdsfy;s)
0 0 l1 l 2
F 32 C0 100 1 t .l1 1 t l 2 l t l t
C (140 32) = 60°C 1 2 2 1 1 2
212 32 100 0 180
1
17. l Expansion in dx = 0 = surrounding's temperature (ifjos'k dk rki)
80 60 80 60
1 x dx T 100 1.76 105 1.2 106 x dx
2
k 30 ...(i)
0
0 t 2
2
6 x
2
60 50 60 50
= 100 1.76 10 x 1.2 10
5
and k 30 ...(ii)
2 0 t 2
=3.76 mm t = 48 sec
T2
20. A 0 (2T)4 A
20°C Now P'= 4P
4 (2d)2
Q Q
27 Q
40°C t A t B
K A A 100 70 K A 70 35
= B
1 20 C 30 70
l0 (1+20 C)= l1 (1+20S) l 1 l0
1 20 S KB KA 1
KA = K =
2 B 2
1 2 31
21. r = 1 +3 1 = 2 +3 2 2 =
Node6\E : \Data\2014\Kota\JEE-Advanced\SMP\Phy\Solution\Unit 5 & 6\01.Thermal Physics.p65
3 x dx
dx dx
28. dRH = KA KA (1 x)
22. Let = junction temperature (ekuk = laf/k dk rki) 0
0
Net heat current at junction is zero
(laf/kijdqyÅ"ek/kkjk'kwU;gksrhgS)
l
1 ln(1 x)
l
dx
RH = dR H
200 0
KA 0 (1 x) KA 0 0
3k(100–)+k(0–)+2k(50–) =0 °C
3
1
= KA ln(1 l 0 )
0
23. Newton's law of cooling (U;wVu ds 'khryu fu;e ls)
OR
Check dimensionally (foeh; fo'ys"k.k ls tkaps)
= k[ – 0]
t
2
29. According to Wien's law ohu ds fu;ekuqlkj 36. Heat lost = Heat gained
m 1/T mT. (Å"ekgkfu=Å"eko`f¼)
As the temperature of body increases, frequency msteam × 540=1100× 1 × (80–15)+20×1× (80 – 15)
corresponding to maximum energy in radiation (m) mass of steam condensed = 0.13 kg
increases. Also area under the curve (la?kfurHkkidknzO;eku)
(pwafdoLrqdkrkic<+rkgS]fofdj.k(m)esavf/kdreÅtkZ
37. Water has high specific heat and due to this it
dslaxrvko`fÙkc<+rhgSAoØdsvUrxZr{ks=Qy) absorber more heat in rise of temperature.
(ikuhdhfof'k"VÅ"ekmPpgksrhgSrFkkblhdsdkj.krkiesa
E d T 4
o`f¼gksusij;gvf/kdÅ"ekvo'kksf"krdjrhgS)
Q
30. = AT
T4 = same but Tred < Tgreen 38. When water is cooled to form ice, the energy is
t
released as heat so mass of water decreases.
as red Tred = greenTgreen (see VIBGYOR)
(tctyBaMkcQZcukrkgSrksÅtkZÅ"ekds:iesaeqDrgksrh
Area of red star is greater
gS]vr%ikuhdknzO;eku?kVrkgS)
(yky rkjs dk {ks=Qy vf/kd gksxk)
39. If intermolecular forces vanish water behaves as gas.
31. Rate of cooling of water = Rate of cooling of alcohol
(;fn vUrjkf.od cy 'kwU; gS rks ikuh xSl dh rjg O;ogkj
(ikuh ds 'khryu dh nj = ,Ydksgy ds 'khryu dh nj)
djrk gS )
(250 10) 1 (5) (200s 10) 5
4.5 103
130 67 Number of moles of water = 250
18
Specific heat of alcohol (,YdksgkWy dh fof'k"V Å"ek) (ikuhdseksyksadhla[;k)
s = 0.62 Total volume of water at STP
(STP ij ikuh dk dqy vk;ru)
32. Amount of energy utilised in climbing = 22.4 × 250 × 10–3 m3 = 5.6 m3
(p<+usesami;ksxdhxbZÅtkZdhek=k)
mgh= 0.28 × 10 × 4.2 40. Heat removed in cooling water from 250C to 00C
(250C ls 00C rd B.Ms ikuh esa fu"dkflr Å"ek)
0.28 10 4.2
h= = 1.96 × 10–2 m = 1.96 cm = 100 × 1 × 25=2500 cal
60 10
Heat removed in converting water into ice at 00C
(0°C ij ikuh dks cQZ esa cnyus esa fu"dkflr Å"ek)
33. Entire KE gets converted into heat.
= 100 × 80 = 8000 cal
(lEiw.kZxfrtÅtkZ]Å"ekesaifjofrZrgkstkrhgS) Heat removed in cooling ice from
KE = ms 10 × 10 × 10 = 2 × 4200 × (B.MscQZesafu"dkflrÅ"ek)
= 0.12°C 00 to –150C = 100 × 0.5 × 10 = 500 cal
Total heat removed in1hr 50min
34. M= mass of hallstone falling (1 hr 50 min esa fu"dkflr dqy Å"ek)
(M=fxjjgsvksysdknzO;eku) = 2500 + 8000 + 500=11000 cal
Node6\E : \Data\2014\Kota\JEE-Advanced\SMP\Phy\Solution\Unit 5 & 6\01.Thermal Physics.p65
m = mass of hallstone melting Heat removed per minute (izfr feuV fu"dkflr Å"ek)
(m=fi?kyjgsvksysdknzO;eku) 11000
As Mgh = mL. = =100 cal/min
110
m gh 10 103 1 P P P
So 3
41.
M L 33 10 33
3
At constant temperature P n1C P1 n2 C P 2
For 1st graph P At constant temperature. 48. n Cv n Cv
1 1 2 2
RT 5R 7R
For 2nd graph : Q P=
M w = 1.5 CP1 =
2
; CP2 =
2
1 3R 5R
At constant P, CV1 = ; CV2= ; then n1 = n2
T 2 2
dP
For 3rd graph L: = constant P T
dT 3KT mv 2rms
49. v rms T Q T mv 2rms
density = constant m 3K
V T or V (t + 273) nRT nR b b
So P = but T T so P2 > P1
aT b a b / T 2 1
3 th
44. volume of air at 0°C occupies entire volume at ,
4 52. PV= nRT P = M RT
w
(0°Cij ok;q dk 3@4 vk;ru rki ij lEiw.kZ vk;ru ?ksjrk gS)
PM w (105 )(28 103 )
V1 V2 3 / 4V V kg m–3= 1.25 g/litre
As T T = 171°C RT 8.3 273
1 2 273 60 273
53. U1 = +ve;
45. Ideal gas equation (vkn'kZ xSl lehdj.k): PV = nRT U2 = 0
U3 = –ve
P0 U1 > U2 > U3
So at V = V0; RT1 = (V0) and at V = 2V0,
2 As volume increases, W = +ve.
4P0 11P0 V0 54. Internal energy and volume depend upon states.
RT2 =
(2V0) T2 – T1 =
5 10R (vkUrfjdÅtkZ ovk;ru voLFkkijfuHkZjdjrsgSa)
46. Number of moles remain constant 55. PT11 = constant & PV =nRT
Node6\E : \Data\2014\Kota\JEE-Advanced\SMP\Phy\Solution\Unit 5 & 6\01.Thermal Physics.p65
(eksyksadhla[;kfu;rgS)
V T V 12
V T12 12 v
P1 V1 P2 V2 P1V1 P2V2 V T VT T
n1 + n2 = n1' + n2' RT RT RT RT
1 2 1 2
56. U = 2P0V & W = P0V
PV PV (1.5P)V (1.5P)V So Q = W + U = 3P0V = 3P0V0
273 273 R 273 RT
T = 273 × 3 K = ( 273 × 3 – 273) °C= 546°C 57. When water is heated from 0°C to 4°C, its volume
decreases. tc ikuh dks 0°C ls 4°C rd Å"ek nh tkrh gS
47. Total translational KE(dqy LFkkukUrfjr xfrt ÅtkZ) rksbldkvk;ru?kVrkgS
3 3 P V is negative (½.kkRed)
= nRT = PV Hence Cp – Cv < 0 Cp < Cv
2 2
4
58. V T4 V (PV)4
P4V3 = constant PV3/4 = constant Q1 U W1
C1 T T T
R R 1 (QW2 > W1)
C =Cv + = 3R + = 3R + 4R = 7R C2 Q2 U W2
1 x 1 3/4 T T T
5P 3V
4. Qvap = Qfreezing PV = P'V' V' V'
3 5
m.(L) = M(L) M = m
For right chamber (nka;s izdks"B ds fy;s)
L = latent heat of freezing (teus dh xqIr Å"ek)
m = mass of vapour (ok"i dk nzO;eku) 5P 12V
4PV= P'V' = V ' V '
M = mass of freezed tek nzO;eku 3 5
P2 P2 P2 P22 P
8. Q1 = U+ W1; Q2 = U + W2 P2 ...(i)
Ratio of specific heats 1 2 /2 2
(fof'k"VÅ"ekvksadkvuqikr) and