A Report on “Study of Heat Transfer Coefficient in a Double Pipe What
Exchanger”
                             Samiha Raisa Alam
                                  1802028
                               Level-3 Term-2
                        Dept. of Chemical Engineering
             Bangladesh University of Engineering and Technology
                       Date of Performance: 19.12.2022
                       Date of Submission: 09.01.2023
          Group: 06 (1802026, 1802027, 1802028, 1802029, 1802030)
                                Submitted to:
                                Athkia Fariha
                                  Lecturer
                        Dept of Chemical Engineering
             Bangladesh University of Engineering and Technology
Summary:
Experimental Setup
   Apparatus
        1. Double Pipe Heat Exchanger
        2. Boiler (for supply of saturated steam)
        3. Steam trap
        4. Flow meter (for flow rate measurement of inlet water)
        5. Pressure gauge
        6. Thermometer
        7. Bucket and stopwatch (for flow rate measurement of condensate)
   Experimental Procedure
     The double pipe heat exchanger and all other equipment are arranged according to the
     schematic diagram. The experiment is begun by passing water through the inlet pipe and
     the flowrate is observed and noted from the flow meter. the saturated steam is also
     allowed to pass through the annulus and the pressure is adjusted at 5 psig, 10 psig and 15
     psig respectively. The pressure valve is used to minimize deviation of the pressure from
     the desired one. The necessary data (inlet and outlet temperatures, pressure, condensate
     flowrate etc.) are observed and noted. The temperatures are obtained from the
     thermometers placed within the tube, and pressure is read from the pressure gauge. Flow
     rate of condensate is determined by collecting a portion of it in a bucket and recording the
     time with a stopwatch. At a specific pressure, the flow rate of water is changed to obtain
     different sets of readings.
    Schematic Diagram of Experimental Setup
Figure 1: Schematic Diagram for the Experimental Setup for the Study of Double Pipe Heat Exchanger.
Results and Discussion
      Observed Data
Pipe length= 7 ft 4 inch
Nominal diameter =1inch
Schedule no = 40
Table 1: Observed Data for the steam pressure, water temperature, water flowrate and the condensate
flowrate
                                     Water Temperature (℃)                           Steam Flow Rate
     Steam
                      No. of                                     Water Flow
    Pressure
                    Observation       Inlet        Outlet        Rate (L/s)       Condensate          Time
     (psig)
                                      Temp         Temp                           Weight (kg)          (s)
                           1           24.5         45.0            0.19              0.910           120
                           2           24.5         40.0            0.50              1.420           120
       5
                           3           24.5         34.0            0.63              1.319           120
                           4           24.5         33.0            0.64              1.443           120
                           1           24.5         38.0            0.38              1.167           120
                           2           24.5         37.0            0.48              1.279           120
       10
                           3           24.5         35.0            0.57              1.361           120
                           4           24.5         34.5            0.61              1.291           120
                           1           24.5         39.0            0.39              1.351           120
                           2           24.5         37.0            0.51              1.364           120
       15
                           3           24.5         35.5            0.60              1.389           120
                           4           24.5         35.0            0.61              1.480           120
          Calculated Data
Table 2: Physical Properties of Water at Average Temperature.
 Steam          Obs.   Temperature    Average         Specific   Density     Viscosity   Thermal
 Pressure,      No.    difference     Water           Heat       , ρ (kgm-   , µ(Pa.s)   conductivity,
 P                     between        temperature,    Capacity, 3)           ×10-4       km(Wm-1K-1)
 (psig)                outlet and     Tm(℃)           Cpm
                       inlet, ∆T                      (Jkg-1K-1)
                       (℃)
                  1          20.5         34.75         4179       993.9       7.25          0.625
                  2          15.5         32.25         4179       994.8       7.65          0.622
       5
                  3          9.5          29.25         4179       995.5       8.11          0.618
                  4          8.5          28.75         4179       995.8       8.21          0.615
                  5          13.5         31.25         4179       995.1       7.79          0.62
                  6          12.5         30.75         4179       995.3       7.87          0.619
       10
                  7          10.5         29.75         4179       995.5       8.02          0.618
                  8          10.0         29.50         4179       995.5       8.08          0.62
                  9          14.5         31.75         4179       995.0       7.73          0.619
                 10          12.5         30.75         4179       995.3       7.87          0.618
       15
                 11          11.0         30.00         4179       995.4       7.98          0.618
                 12          10.5         29.75         4179       995.5       8.02          0.618
Table 3: Calculated Data for The Saturation Temperature Of Steam, Heat Of Condensation, Mass
Flowrate Of Water, Mass Flowrate Of Condensate, Heat Given Up By Steam, Heat Taken Up By Water.
 Steam       Obs   Steam          Heat of          Mass        Mass          Rate of     Rate of
 Pressure,   No.   Saturation     Condensation,    flowrate    flowrate of   Heat        Heat taken
 P                 temperature,   λ (kJ/kg)        of water,   condensate,   given up    up by
 (psig)            Ts (℃)                          Mw(kg/s)    Mc(kg/s)      by          water,
                                                                             steam ,Qc   Qw (W)
                                                                             (W)
     5        1       108.37          2234.3       0.18884      0.00758      16943.44     16177.91
              2       108.37          2234.3       0.49695      0.01183      26439.22     32189.69
              3       108.37          2234.3       0.62616      0.01099      24558.68     24858.75
              4       108.37          2234.3       0.63610      0.01203      26867.46     22595.08
    10        1       115.25          2215.5       0.37768      0.00973      21545.74     21307.50
              2       115.25          2215.5       0.47707      0.01066      23613.54     24921.05
              3       115.25          2215.5       0.56652      0.01134      25127.46     24858.75
              4       115.25          2215.5       0.60628      0.01076      23835.09     25336.40
    15        1       120.93          2199.5       0.38762      0.01126      24762.70     23488.09
              2       120.93          2199.5       0.50689      0.01137      25000.98     26478.61
              3       120.93          2199.5       0.59634      0.01158      25459.21     27413.15
              4       120.93          2199.5       0.60628      0.01233      27127.17     26603.22
Table 4: Calculated Data for Mean Heat Rate, LMTD, Experimental Overall Heat Transfer Co-Efficient,
Velocity Of Water And The Reynolds Number.
 Steam      Obs Mean              LMTD,         Experimental Wall           Velocity       Reynolds
 Pressure,P . No. heat            ∆Tlm(℃)       Overall heat   temperature, of water,      Number,
 (psig)           rate ,Qm                      transfer co-   Tw (℃)       v (ms-1)       Re
                  (W)                           efficient, UOE
                                                (W/m2.K)
     5         1     16560.68        73.14         961.85          71.56       0.339286      12558.39
               2     29314.45        75.86        1641.66          70.31       0.892049      31320.38
               3     24708.71        79.02        1328.25          68.81       1.123192      37225.29
               4     24731.27        79.54        1320.78          68.56       1.140677      37355.56
     10        1     21426.62        83.82        1085.94          73.25       0.677753      23375.70
               2     24267.29        84.35        1222.23          73.00       0.855937      29227.05
               3     24993.10        85.39        1243.35          72.50       1.016221      34057.98
               4     24585.74        85.65        1219.37          72.38       1.087535      36177.36
     15        1     24125.40        88.98        1151.75          76.34       0.695659      24177.06
               2     25739.80        90.04        1214.47          75.84       0.909433      31053.74
               3     26436.18        90.82        1236.56          75.47       1.069814      36030.21
               4     26865.19        91.08        1253.04          75.34       1.087535      36448.02
Table 5: Calculated Data For Prandtl Number, Water Side Heat Transfer Co-Efficient, Nusselt Number,
Film Temperature, Density At Film Temperature, Viscosity At Film Temperature, Thermal Conductivity
At Film Temperature.
 Steam      Obs.     Prandtl    Water         Nusselt   Film           Density of   Viscosit   Thermal
 pressure   No.      Number     side heat     Number    temperature    water at,    y of       Conductivity
 ,P                  ,          transfer      ,         ,              Tf, ρ f ¿    Water      of water at, kf
 (psig)              Pr         co-           (Nu)      Tf (℃)         kg/m3)       at, µf     (W/m.K)
                                efficient ,                                         ×10-4
                                hi                                                  (Pa.s)
                                (W/m2.K
                                )
     5         1       4.85     1713.57        74.03       80.76         971.2        3.49            0.670
               2       5.14     3612.41       156.81       79.83         971.6        3.54            0.670
               3       5.48     4211.06       183.98       78.70         971.9        3.59            0.670
               4       5.58     4226.40       185.55       78.51         972.0        3.60            0.670
    10         1       5.25     2869.72       124.97       83.75         968.8        3.36            0.672
               2       5.31     3439.28       150.02       83.56         968.9        3.36            0.672
               3       5.42     3907.33       170.71       83.19         969.0        3.37            0.672
               4       5.45     4119.74       179.41       83.09         969.0        3.37            0.672
    15         1       5.22     2937.41       128.13       87.49         966.7        3.23            0.674
               2       5.32     3606.31       157.56       87.11         966.8        3.24            0.674
               3       5.40     4080.51       178.27       86.83         967.1        3.25            0.674
               4       5.42     4125.19       180.23       86.74         967.1        3.25            0.674
Table 6 :Calculated data for the steam side heat transfer co-efficient, Theoretical overall heat transfer
co-efficient, reciprocal of the experimental overall heat transfer co-efficient, reciprocal of the theoretical
heat transfer co-efficient.
 Steam           Obs             Steam          Theoretical     Experimental       Theoretical           (1/v)0.8
 pressure        No.             side heat      overall heat    1/UOE              1/UOT (m2.K/W)        (s/m)
 (psig)                          transfer       transfer co-    (m2.K/W)
                                 co-            efficient UOT
                                 efficient      (W/m2.K)
                                 ho
                                 (W/m2.K)
                       1           7978.56        1080.41          0.001040             0.000926                 2.3744
                       2           7885.77        1811.18          0.000609             0.000552                 1.0957
       5
                       3           7783.79        1977.50          0.000753             0.000506                 0.9112
                       4           7766.54        1980.50          0.000757             0.000505                 0.9001
                       1           7784.69        1559.24          0.000921             0.000641                 1.3650
                       2           7773.55        1751.35          0.000818             0.000571                 1.1325
      10
                       3           7745.37        1890.76          0.000804             0.000529                 0.9872
                       4           7739.72        1949.87          0.000820             0.000513                 0.9351
                       1           7739.96        1581.62          0.000868             0.000632                 1.3369
                       2           7712.85        1800.04          0.000823             0.000556                 1.0789
      15
                       3           7692.16        1936.09          0.000809             0.000517                 0.9474
                       4           7686.88        1947.99          0.000798             0.000513                 0.9351
     Graphical Representation
The Nusselt number versus Reynolds number for each pressure was plotted on a log-log plot.
This revealed a linear relationship in logarithmic scale such that Nusselt number increased with
increasing Reynolds number.
                                          Nu vs Re (5 psig)
                                    f(x) = 0.00447257968363738 x + 17.6355725825026
                                    R² = 0.999805590794122
                Nu
                     60.00
                        10000
                                                        Re
Figure 2: Log-Log Plot of Nusselt Number vs Reynolds Number for a Steam Pressure of 5 psig.
                                         Nu vs Re (10 psig)
                                           f(x) = 0.0042605494955705 x + 25.4369791745126
                                           R² = 0.999965205636032
                Nu
                     100.00
                       20000.00
                                                        Re
Figure 3: Log-Log Plot Of Nusselt Number Vs Reynolds Number For A Steam Pressure Of 10 psig.
                                         Nu vs Re (15 psig)
                                          f(x) = 0.0042363344503343 x + 25.7917778371159
                                          R² = 0.999956459999853
                Nu
                     100.00
                          20000
                                                       Re
Figure 4: Log-Log Plot of Nusselt Number vs Reynolds Number for a Steam Pressure of 15 psig.
The Dittus-Boelter equation was applied to determine the Nusselt number from the
corresponding Reynolds numbers and Prandtl numbers [Nu=0.023× (Re) 0.8×(Pr)1/3]. Both
dimensionless numbers used in the equation had varied for each observation. As a result, the
Nusselt numbers varied accordingly. The plots of the Nusselt number versus Reynolds number
show that for each pressure, the Dittus-Boelter equation provided a similar estimation. The
                                         hi vs v (5 psig)
                    10000.00
                                         f(x) = 3166.26537352762 x + 674.173132700953
                                         R² = 0.995720340730566
               hi
                     1000.00
                           0.2                                                             2
                                                 Velocity, v
Figure 3: Waterside Heat Transfer Co-Efficient Hi Vs Velocity Of Water In Tube (V) For A Steam
Pressure Of 5 Psig.
                                        hi vs v (10 psig)
                                            f(x) = 3041.98762273191 x + 817.752459545715
                                            R² = 0.999508238433272
               hi
                    2000.00
                          0.5
                                                 Velocity, v
Figure 6: Waterside Heat Transfer Co-Efficient H i Vs Velocity Of Water In Tube (V) For A Steam
Pressure Of 10 Psig.
                                             hi vs v (15 psig)
                                              f(x) = 3036.19611457191 x + 831.480432906935
                                              R² = 0.999679890071346
                  hi
                                                                2000.00
                        0.5
                                                      Velocity, v
Figure 7: Waterside Heat Transfer Co-Efficient H i Vs Velocity Of Water In Tube (V) For A Steam
Pressure Of 15 Psig.
                                     Experimental       Linear (Experimental)
                                     Theoretical        Linear (Theoretical)
             0.001100
             0.001000
             0.000900
             0.000800
       1/U
             0.000700
             0.000600
             0.000500
             0.000400
                  0.5000 0.7000 0.9000 1.1000 1.3000 1.5000 1.7000 1.9000 2.1000 2.3000 2.5000
                                                    (1/v)^0.8
Figure 4: 1/U Vs (1/v)0.8 For A Steam Pressure Of 5 Psig.
                                      Experimental       Linear (Experimental)
                                      Theoretical        Linear (Theoretical)
             0.001000
             0.000900
             0.000800
             0.000700
       1/U
             0.000600
             0.000500
             0.000400
                  0.8000     0.9000       1.0000        1.1000        1.2000     1.3000   1.4000
                                                     (1/v)^0.8
Figure 9: 1/U Vs (1/v)0.8 For A Steam Pressure Of 10 Psig.
                                      Experimental       Linear (Experimental)
                                      Theoretical        Linear (Theoretical)
             0.000900
             0.000850
             0.000800
             0.000750
             0.000700
             0.000650
       1/U
             0.000600
             0.000550
             0.000500
             0.000450
             0.000400
                  0.8000     0.9000       1.0000        1.1000        1.2000     1.3000   1.4000
                                                     (1/v)^0.8
Figure 10: 1/U Vs (1/v)0.8 For A Steam Pressure Of 15 Psig.
 Discussion
Safety Precautions:
Industrial Relevance
Appendix
    Sample Calculation:
For observation No. 03 (5 psig steam pressure),
Water inlet temperature, T1 = 24.5 oC
Water outlet temperature, T2 = 34 oC
                                  (T 1+T 2) (24.5+34 ) o
Mean temperature of water, Tm =            =             C = 29.25 oC
                                      2         2
Properties at mean temperature, Tm= 29.25oC :
Density of water, ρm = 995.50 kg/m3 [3]
Viscosity of water, μm = 8.11 x 10-4 Pa.s [3]
Thermal conductivity of water, km = 0.618 W/m.oC [3]
Specific heat of water, Cp= 4179 J/kg.K [3]
Volumetric flow rate of water, Ww =0.63 L/s
                                             0.63 ×995.50
Mass flow rate of water, Mw = W w × ρm = (                ) kg/s = 0.62616 kg/s
                                                 1000
Mass of condensate collected Wc = 1.319 kg
Condensate collection time, tc = 120 s
                                       Wc    1.319
Mass flow rate of condensate, MC =        =(       ) kg/s = 0.01099 kg/s
                                       tc     120
Rate of heat taken by water, Qw = Mw × Cp× (T2-T1)
                                  = 0.62616 × 4179.00 × (34-24.5) J/s
                                  = 24858.75 W
Heat of condensation of steam at 5 psig (1.3578 bar), λs = 2234.3 kJ/kg [5]
Rate of heat given by steam, Qc = Mc × λs
                                  = (0.01099 × 2234.3) kJ/s
                                  = 24558.68 J/s
Mean rate of heat flow,
       QW +QC 24558.68+24858.75
Qm =         =                  J /s = 24708.71 J/s
          2           2
Saturation temperature of steam at 5psig (1.3578 bar), Ts = 108.37 oC [5]
Temperature difference at inlet,
        ΔT1 = Ts - T1 = (108.37 – 24.5) oC = 83.87 oC
Temperature difference at outlet,
        ΔT2 = Ts - T2 = (108.37 – 34) oC = 74.37 oC
Log mean temperature difference,
                 ΔT 1 −ΔT 2
                      ΔT 1        83.87−74.37
                 ln                    83.87
                      ΔT 2          ln
                                       74.37
                                                o
        ΔTlm =                =                  C = 79.02 oC
For 1 in. nominal diameter & schedule 40 steel tube,
The outside surface per linear feet, Ao = 0.344 ft2/ft. [1]
Inside diameter (ID) of the pipe, Di = 1.049 in. = 0.027 m. [1]
Outside diameter (OD) of the pipe, Do = 1.32 in. = 0.033 m. [1]
Tube length = 7 ft. 4 in. = 88 in. = 7.33 ft. [1]
Outside area available for heat transfer, Ao = 0.344×7.33 ft2 = 23.54 x 10-2 m2.
                                                        Qm
Experimental overall heat transfer coefficient, UOE = ΔT lm . A0
                                                                24708.71          2 o
                                                       =                    −2 W/m . C
                                                           79.02× 23.54 ×10
                                                       = 1328.25 W/m2.oC
Now,
                                      0.62616
                            Ww          1000
Velocity of water flow, v =    =                   2 m/s = 1.123 m/s
                            Ai             0.02665
                                 3.1416 ×(          )
                                               4
                                   Di × ρ× v 0.027 ×995.50×1.123
Reynolds number of water, Re =              =             (− 4)  = 37225.29
                                       μm         8.11×10
                             C P × μm 4179 ×8.11× 1 0−04
Prandtl no. of water, Pr =           =                   = 5.48
                                km          0.618
                                                  1
Nusselt number of water, Nu=0.023 × ℜ0.8 × Pr 3 = 183.98
Water side heat transfer coefficient for turbulent flow using Dittus-Boelter equation,
                       km
          hi = 0.023 × D i ×(Re)0.8 ×(Pr)1/3
                       0.618
            = 0.023×         × (37225.29)0.8× (5.48)1/3
                       0.027
            = 4211.06 W/m2.oC
                        T s+T m 108.37+29.25
Wall temperature, Tw=          =             ℃=68.81 ℃
                           2          2
Film temperature, Tf = Ts - 0.75 × (Ts-Tw)
                     = 108.37 - 0.75× (108.37–68.81) oC
                     = 78.70 oC
Properties of condensate at film temperature, Tf = 78.70oC:
Density, ρf = 971.9 kg/m3 [3]
Viscosity of condensate, μf = 3.59 ×10−4 kg/m.s [3]
Thermal conductivity of condensate, kf = 0.67 W/m.oC [3]
Steam side heat transfer coefficient using Nusselt equation for film type condensation,
                    k 3 . ρ 2 . g . λS
                      f    f                 0. 25
       0 . 725×[                         ]
ho =               D 0 (T S −T W )μ f
  =0.725 ׿ W/m2.oC
  = 7783.79 W/m2.oC
Carbon-steel metal’s thermal conductivity, kM = 43 W/m.oC [3]
Theoretical overall heat transfer coefficient,
          UOT = ¿
              = ¿ W/m2.oC
              = 1080.41 W/m2.oC
         1      1
Now,        =        =¿ 0.000753 m2.oC/W
        U OE 1328.25
 1       1
    =          = 0.000506 m2.oC/W
U OT 1 977 .50
 1       1
      =           0.8
v
  0.8   ¿ ¿ (s/m)
References
[1]   Kern, D. Q. (1050). Process Heat Transfer, International Edition, Mcgraw-hill Book
      Company.
[2]   Franzini, J. B., Finnemore, E. J., & Daugherty, R. L. (1997). Fluid mechanics with
      engineering applications. New York: McGraw-Hill.
[3]   Holman, J. P., and Bhattacharyya, Souvik. Heat Transfer-In Si Units. Tata McGraw-Hill
      Education, 2002.
[4]   Foust, A. S., L. A. Wenzel, C. W. Clump, L. Maus, and Andersen, L. B. (1980).
      Principles of Unit Operations, 2nd Edition., New York: John Wiley & Sons.
[5]   Felder, R. M., & Rousseau, R. W. (1986). Elementary principles of chemical processes.
      New York: Wiley.