Ref 2
Ref 2
201200073
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim &1&
These are not the final page numbers! ÞÞ
Several of the multiple applications of titanium dioxide nano- carrier transfer to solution determines the sign and value of
materials are directly related to the introduction or generation the photocurrent. Furthermore, methods for extracting kinetic
of charge carriers in the oxide. Thus, electrochemistry plays information from open-circuit potential and photocurrent
a central role in the understanding of the factors that must be measurements are briefly presented. Some aspects of the com-
controlled for the optimization of the material for each applica- bination of electrochemical and spectroscopic measurements
tion. Herein, the main conceptual tools needed to address the are also dealt with. Finally, some of the applications of TiO2
study of the electrochemical properties of TiO2 nanostructured nanostructured samples derived from their electrochemical
electrodes are reviewed, as well as the electrochemical meth- properties are concisely reviewed. Particular attention is paid
ods to prepare and modify them. Particular attention is paid to to photocatalytic processes and, to a lesser extent, to photo-
the dark electrochemical response of these nanomaterials and synthetic reactions as well as to applications related to energy
its direct connection with the TiO2 electronic structure, interfa- from the aspects of both saving (electrochromic layers) and ac-
cial area and grain boundary density. The physical bases for cumulation (batteries). The use of TiO2 nanomaterials in solar
the generation of currents under illumination are also present- cells is not covered, as a number of reviews have been pub-
ed. Emphasis is placed on the fact that the kinetics of charge- lished addressing this issue.
&2& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
but not exclusively, on aqueous media, employed in some of nium electrodes in contact with alkaline aqueous solutions in
the applications mentioned above. 1955, the results being interpreted in the framework of the
Let us put the subject into historical perspective.[17] The elec- solid-state physics theories of the p–n junction.[20] In the late
trochemistry of semiconductors, particularly under illumination, 1960s, the first articles on the electrochemistry of oxides,
has rather ancient precedents. In the first half of the 19th cen- namely ZnO, NiO, SnO2 and KTaO3, appeared.[17] It is worth
tury, Becquerel discovered that illuminating silver halides de-
posited on Pt or Au electrodes caused the appearance of tran-
Milena Jankulovska obtained her Dipl.-
sient currents attributed to the decomposition of the halide,
Ing. degree in chemistry at “St Kiril and
which in the case of AgCl lasted for more than 2 h.[18] In close
Metodius” University in Skopje, Mace-
connection with the development of photography, the first
donia. She received her diploma of ad-
photoelectrochemical experiments on sensitization to the visi-
vanced studies from the University of
ble of AgCl crystals were reported in 1931. In these experi-
Alicante (Spain) in 2010. She is current-
ments a dye adsorbed on the chloride particles was able to
ly completing her Ph.D. at the Univer-
inject electrons upon photoexcitation with visible light.[19]
sity of Alicante, under the direction of
Apart from these precedents, modern photoelectrochemical in-
Dr. Roberto Gmez Torregrosa and Dr.
vestigations only began in the 1950s, fueled by the fast devel-
Teresa Lana-Villarreal. Her thesis re-
opment that the semiconductor industry was experiencing at
search involves development of thin
that time. In fact, the first experiments were done with germa-
films consisting of TiO2 nanostructures
with different morphologies (nanoparticles, nanowires, nanocol-
Thomas Berger received his Ph.D. in umns and nanotubes) and crystalline structures (anatase and rutile)
physical chemistry (2005) from the and investigation of their (photo)electrochemical properties.
Vienna University of Technology (Aus-
tria) where he worked under the direc- Teresa Lana-Villarreal obtained her di-
tion of Prof. E. Knçzinger and Dr. O. ploma in chemistry in 1999 from the
Diwald focusing on the synthesis of in- University of Navarra (Spain). During
sulating and semiconducting nanocrys- her Ph.D., she worked on the photoox-
tals via chemical vapor reaction and idation mechanism of organics on TiO2
on the study of their photoelectronic electrodes at the University of Poitiers
properties. During his Ph.D. studies he (France) and at the University of Ali-
performed research work at the Sur- cante (Spain). After her postdoctoral
face Science Center in Pittsburgh (PA) research work with Prof. A. Hagfeldt at
with Prof. J. T. Yates, Jr. After a postdoctoral stay with Dr. R. Gmez KTH (Sweden) on DSCs, she moved
at the University of Alicante (Spain) he spent a period in the solar back to the University of Alicante
industry. In 2009 he moved to the University Pablo de Olavide in where she became associate professor
Sevilla (Spain) where he presently holds a tenure track position. His of physical chemistry in 2011. Her research activities include funda-
main scientific interests are concerned with the preparation of mental aspects of metal oxide semiconductors and their use in
nanoscopic metal oxides and the application of spectroscopic and/ technological applications.
or electrochemical techniques to the study of the semiconductor/
gas and the semiconductor/solution interface. Roberto Gmez obtained his diploma
in chemistry in 1990 and received his
Damin Monllor-Satoca obtained his doctoral degree from the University of
B.Sc. in Chemistry in 2003 (University Alicante (Spain) in 1994 where he
of Alicante, Spain) and received his worked on the electrochemistry of
Ph.D. in Materials Science in 2010 from single crystals of platinum group
the same university under the guid- metals. After postdoctoral research
ance of Dr. Roberto Gmez. He worked work with Prof. M. J. Weaver at Purdue
on the characterization, modeling and University (USA), he moved back to
(photo)activity optimization of nano- the University of Alicante where he
crystalline semiconductor thin films by has been associate professor of physi-
means of electrochemical and spectro- cal chemistry since 1999 and leads the
scopic methods. He is presently work- research group of Photochemistry and Electrochemistry of Semi-
ing at the Pohang University of Sci- conductors. In 1999 he spent a period at Bath University (UK) with
ence and Technology (POSTECH), South Korea, as a postdoctoral Prof. L. M. Peter and a year later at the National Renewable Energy
researcher with Prof. Wonyong Choi. His research work focuses on Laboratory (USA) with Dr. A. J. Nozik. His research interests include
photoinduced water splitting and pollutant remediation with the electrochemistry of semiconductors and its applications in
modified semiconductor thin films and suspensions. solar fuel generation and photoelectrochemical solar cells.
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &3&
These are not the final page numbers! ÞÞ
R. Gmez et al.
noting that at that time, the electrodes employed were always first photoelectrochemical study with electrodes composed of
monocrystalline in nature. The oxide single crystals were inten- NPs doped with different transition-metal ions.[41] The Uppsala
tionally doped to confer them the conductivity needed in the group made at that time some seminal contributions on the
electrochemical experiments. However, in 1960, an article ap- theoretical treatment of both I–V curves and photocurrent
peared in Russian on the electrochemical behavior (mainly transients with nanoporous TiO2 electrodes.[42, 43] In this context
open-circuit potential measurements) of oxide thin films the enormous impact of Gerischer’s work in this field should
grown on the corresponding metal. Titanium dioxide was be mentioned. Undoubtedly the way we understand semicon-
among the oxides studied in that early work.[21] ductor electrochemistry is impregnated with his ideas.[44]
Apart from the precedent cited above, the electrochemistry It is worth noting that, in addition to the typical nanoparti-
of TiO2 was born in 1969. After devising a way of preparing n- culate electrodes constituted by immobilized NPs, Bard and
type rutile single crystals, Fujishima et al. performed the first co-workers presented at the beginning of the 1980s a novel
electrochemical experiments with TiO2 electrodes in aqueous electrode configuration adequate for NPs dispersed in a con-
solution (pH 4.7). In the dark, hydrogen was evolved under ductive liquid medium, called “slurry electrode”.[45] In this
negative polarization, whereas no currents were observed system, an inert, large-area collector electrode is introduced
under positive polarization. Under illumination, anodic photo- into a suspension of oxide NPs, which in their collision with
currents associated with the oxidation of water were observed the electrode are able to exchange photogenerated carriers
at potentials lower than that of the O2/H2O couple.[22] Fujishima with it.
et al. also determined for the first time the flatband potential This review is focused on fundamental aspects of the elec-
of a TiO2 electrode.[23] The first article in English appeared in trochemistry of nanostructured TiO2, both in the dark and
1971,[24] shortly before the seminal paper in Nature in 1972.[25] under illumination. Some applications are also included in
The latter work had a high impact at that time as the photo- a summarized way. Morphologically, we can distinguish two
electrolysis of water was demonstrated for the first time. Inter- types of nanocrystalline electrodes: 1) random nanoparticulate
estingly, the first paper on dye photosensitization of TiO2 elec- electrodes, where crystallites are deposited without any partic-
trodes was published by this Japanese group in 1971.[26] An- ular control; and 2) ordered nanostructured electrodes, where
other breakthrough in the electrochemistry of TiO2 occurred in crystallites are deposited or grown to form organized assem-
1975, when an oxide thin film, produced by flame-annealing blies[46] (i.e. nanorods, nanowires, nanotubes, etc.). Both of
a Ti foil, was demonstrated to be almost equally photoactive them are covered in this review. Regarding the TiO2 crystalline
as a single-crystal electrode.[27] structure, most of the results shown here correspond to ana-
More than 20 years elapsed between the appearance of the tase and rutile. In any case, many of the ideas presented in this
first reports on the electrochemistry of monocrystalline TiO2 review are general, and equally applicable to nanostructured
electrodes and those on nanocrystalline TiO2 electrodes. This electrodes made of other oxides and semiconductors.
type of electrode is formed by porous tridimensional networks This article intends to provide the reader with the theoretical
of NPs with an average grain size in the tens-of-nanometer tools needed to fully exploit electrochemical measurements
range, deposited on a conducting substrate (metal or conduct- and technologies. It is addressed not only to electrochemists
ing glass). In 1990, O’Regan et al. published an article on the but also to scientists in other related fields (materials science,
sensitization of a semiconductor transparent membrane, re- photocatalysis,…) who could benefit from an electrochemical
porting the first photoelectrochemical experiments with these background in their research. The structure of the review is as
electrodes.[28] The following year witnessed the publication of follows. First, a brief account of the main methods for prepar-
the seminal paper by O’Regan and Grtzel introducing the ing nanostructured TiO2 electrodes is presented. Next, the fun-
concept of a dye-sensitized solar cell based on a nanocrystalline damental basis for the interpretation of their dark electrochem-
photoanode.[29] In the following years, the first UV/Vis spectroe- istry and photoelectrochemistry is developed. Finally, some of
lectrochemical experiments with these samples were pub- the applications of TiO2 nanostructured samples directly relat-
lished.[30–32] In 1993–1994, nanoporous electrodes were em- ed to their electrochemistry are briefly reviewed.
ployed in the context of electrochemically assisted photocatal-
ysis by the groups of Kamat and Anderson.[33–35] Also, Augus-
tynski and co-workers studied several photooxidation reactions
2. Methods for the Preparation of Nanostruc-
in aqueous media and compared the behavior of compact and
tured TiO2 Electrodes
nanoporous anatase electrodes.[36] At that time, studies fo-
cused on the potential distribution in these electrodes, em- The deposition of TiO2 as thin films has been a subject of in-
ploying different electrochemical techniques, also appeared. tense research over the past few decades. Besides the synthe-
The first articles analyzing the dark voltammetric and impe- sis of NPs, different preparation techniques of nanostructured
dance spectroscopy behavior of TiO2 nanoparticulate electro- TiO2 electrodes have been developed.[1, 47, 48] The nature of the
des date from 1995,[37, 38] while electrolyte electroreflection was synthesized particles (morphology, size, crystalline structure,
used soon after.[39] In 1998, a systematic study was published etc.) and, consequently, their photoelectrochemical properties,
on the effects of different electron and hole acceptors in solu- show a strong dependence on the synthesis route adopted.[49]
tion on the photoelectrochemical properties of nanoparticulate Nowadays, it is still a challenge to prepare electrodes with an
TiO2 electrodes.[40] On the other hand, Wang et al. authored the optimized structure for each particular application.
&4& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
The methods used for electrode preparation can be classi- the suspension,[56, 57] and also there is the possibility of prepar-
fied initially into two groups: those based on presynthesized ing multilayered TiO2 samples when thicker films are required.
TiO2 NPs and those where the TiO2 nanoporous layer is grown A deposition method similar to doctorblading is screen
directly on a conducting substrate (Figure 2). The latter can be printing. This technique allows one to prepare porous films
from TiO2 pastes, with the advantage that it can easily be
scaled up.[58] The composition of the precursor paste is crucial
for the homogeneity, adherence and roughness of the final
TiO2 film.[59, 60] It can be prepared from commercially available
TiO2 nanopowders or by hydrolysis of Ti alkoxides in water. The
technique is depicted in Figure 3. The TiO2 paste is placed on
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &5&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&6& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
2.3. Electrochemical Methods O2 ions from H2O. The system is under constant applied po-
tential, and thus the field within the oxide is progressively re-
2.3.1. Electrodeposition
duced as the oxide layer thickness increases, that is, the pro-
Electrodeposition is a useful tool for the preparation of TiO2 cess is self-limiting. The formation of NTs is governed by the
thin films on different conducting substrates. The electrodepo- balance between the anodic growth of a compact oxide layer
sition process is cost effective, environmentally friendly and on the surface of Ti [Eq. (1)] and its chemical dissolution as
allows facile control of the film thickness.[56, 96–98] a consequence of the generation of soluble species, most
Zhitomirsky[99] first reported the cathodic electrodeposition often fluoride complexes [Eq. (2)]:[111]
of TiO2 using a titanium peroxocomplex. Nevertheless, nowa-
days the deposition of TiO2 films has been achieved by both Ti þ 2 H2 O Ð TiO2 þ 4 Hþ þ 4 e ð1Þ
anodic[100] and cathodic[101] electrolysis from solutions contain-
TiO2 þ 6 F þ 4 Hþ Ð ½TiF6 2 þ 2 H2 O ð2Þ
ing precursors such as TiCl3, TiCl4 or TiOSO4.[102]
The as-prepared electrodeposited films are insulating amor-
phous TiIV hydroxides which can be converted into crystalline Figure 7 shows a sketch of the NT growth during anodiza-
TiO2 by heat treatment.[103] Due to the electrically insulating tion under potentiostatic conditions. The NT arrays prepared
nature of the as-deposited layers, only films of limited thick- by anodization are amorphous, and there is a need of thermal
ness and porous structures can be obtained by this method. annealing for triggering crystallization.[112]
However, in applications that require very thin films with high
uniformity, electrodeposition has some clear advantages com-
pared to other deposition techniques.[104] It should be men-
tioned that the addition of surfactants to the working solution
results in the direct deposition of crystalline porous films with-
out further heat treatment.[105]
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &7&
These are not the final page numbers! ÞÞ
R. Gmez et al.
formed TiO2 NPs uniformly on a conducting substrate that preformed Li-ion batteries [123]
[15]
serves as working electrode in a two- or three-electrode cell nanoparticles Electrochromic
whose working solution contains the TiO2 NPs in suspended devices
[124, 125]
Screen printing According to Photocatalysis
form. The method is based on the motion of charged particles preformed Solar cells [59]
under an applied electric field. The deposition rate depends on nanoparticles Gas sensing [126]
[127, 128]
the applied voltage and the properties of the gel or suspen- Dip coating According to Electrochromic
sion.[120–122] The main advantages of the electrophoretic deposi- preformed devices
nanoparticles
tion method are its low cost and the fact that it is relatively Spin coating According to Photocatalysis [61]
fast and reproducible. The film thickness can be readily con- preformed Electrochromic [129]
[140]
Nanotubes Water splitting
In this section, the fundamental aspects of the dark electro- Electrochromic [141]
highlighted and a quantitative description of the chemical film Chemical vapor Nanoparticles Photocatalysis [90, 95, 144]
[145]
capacitance will be given. Experimental results associated with deposition Electrochromic
devices
charge accumulation in these films will be discussed. Then, the [101, 103–105]
Electrodeposition Nanoparticles Photocatalysis
possibility of addressing the density of states (DOS) by electro- Solar cells [56,96–98, 146]
devices
Electrochemical interfaces usually consist of a solid electron Electrophoretic According to Solar cells [121, 122]
[120]
conductor (electrode) in contact with an ionic solution (electro- deposition preformed Photocatalysis
lyte). When an electron conductor is used as working electrode nanoparticles
&8& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
For Csolid @ CH a change of electrode potential leads mainly to semiconductor. Under depletion, CSC can be obtained by solv-
a change of the electrostatic potential drop across the Helm- ing the Poisson–Boltzmann equation (additional details can be
holtz layer. As dDsolid /dEffiCH/Csolid ! 1, the Fermi level in the found in ref. [159]). Under such conditions, the potential de-
solid remains unchanged with respect to the energy levels of pendence of CSC (per electrode unit area) is given by the Mott–
the solid. This situation is typical of metal electrodes or highly Schottky equation, which for an n-type semiconductor such as
doped semiconductors, where the DOS at the Fermi level is TiO2 becomes [Eq. (6)]:
very high (Figure 8 a). In this case, there is no significant
change of the charge-carrier concentration in the solid upon 1 2kT eDSC
2 ¼ 22 N e2 kT
1 ð6Þ
a potential change, as the Fermi level is pinned at a fixed CSC 0 D
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &9&
These are not the final page numbers! ÞÞ
R. Gmez et al.
placement of the semiconductor Fermi level with respect to ceptual. In any case, for ideally polarizable nanostructured
the CB (where dDEsolid/dEffi1, DEsolid = EFEC ; Figure 8 c) as long films in quasi-equilibrium both and m can be considered ap-
as the band edges are pinned. This range is delimited by the proximately constant throughout the whole film. When the
onset potential for efficient electronic communication between inner potential is not modified upon variation of the electron
the conducting substrate and the semiconductor network, and density, a displacement of the Fermi level induces a variation
by the CB edge, which defines the onset potential of quasi- of the chemical potential of electrons deF = dm. The chemical
metallization (where dDEsolid/dEffiCH/Csolid ! 1). Electron trans- capacitance per unit volume is defined as [Eq. (9)]:
port within the nanostructured film is mainly diffusive and
occurs as a consequence of temporary thermal excitation of dn
Cm;v ¼ e2 ð9Þ
electrons from band-gap states to the CB and/or direct hop- dm
ping between electronic states. Thus, a homogeneous equilib-
rium occupancy of band-gap states corresponding to the ex- Assuming a DOS function D(e) and neglecting many-particle
ternally controlled substrate potential can be established. Elec- effects, that is, electrons are treated as noninteracting entities
tron accumulation in the electrode is compensated by electro- and the energy of a state, therefore, does not depend on the
sorption of ions at the huge internal surface of the film or by electrochemical potential of electrons (one-particle DOS), the
ion absorption/intercalation (mainly for cations such as Li + and carrier density can be calculated according to [Eq. (10)]:
H + ). Charge injection and compensation is thus truly three-di-
mensional in nanostructured electrodes. Zþ1
As mentioned above, Fermi-level control in nanostructured n¼ DðeÞf ðe eF Þde ð10Þ
electrodes is connected to specific electrode characteristics 1
&10& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
with Nc being the effective DOS in the CB [Eq. (16)]: The capacitance is directly proportional to the derivative of
the electron concentration with respect to the Fermi level posi-
2pmc kT 3=2 tion. For a degenerate semiconductor [fðe eF Þ @ 0] [Eq. (23)]:
Nc ¼ 2 ð16Þ
hÞ 2
ð2p
CB e2 Nc d eF ec 1=2
Cm;s ¼ 2p pffiffiffi ð23Þ
kT p kT
The dimensionless function [Eq. (17)]:
Z while for the nondegenerate limit [fðe eF Þ ! 1] [Eq. (24)]:
2 1
z1=2
F1=2 ðzÞ ¼ pffiffiffi dz ð17Þ
p 0 1 þ expðz zÞ
e2 Nc d e e
CB
Cm;s ¼p exp F c
ð24Þ
kT kT
is the Fermi–Dirac integral with index 1/2, which has been de-
fined using the dimensionless variables z ðe ec Þ=kT and
z ðeF ec Þ=kT. The evaluation of the Fermi–Dirac integral Equations (23) and (24) can be expressed as a function of
yields for the nondegenerate (z < 0 and j z j @ 1) and the de- electrode potential by substitution of
generate (z @ 1) limits [Eq. (18)]: ðeF ec Þ=kT ¼ eðEc E Þ=kT. Recently, Fabregat-Santiago
et al.[164] deduced an equivalent expression for
the CB capaci-
( CB
expðzÞ; z < 0 and jzj 1 tance. From Equation (24) it follows that dE=d log Cm;s =
F1=2 ðzÞ ¼ 4 ð18Þ 59 mV decade1 (at 25 8C). The logarithmic form [Eq. (25)]:
pffiffi z ;
3 p
3=2
z1
2
e Nc d eE e
CB
ln Cm;s ¼ ln p þ c E ð25Þ
The number of electrons in the CB may therefore be de- kT kT kT
scribed by two limiting functions. If ðeC eF Þ @ kT, then
fðe eF Þ ! 1 and the Fermi–Dirac function can be approximat- furthermore allows for the determination of the position of the
CB
ed in the nondegenerate case by the Boltzmann function and CB edge (Ec). By representing ln Cm;s versus E, a straight line
e2 N d eE
the electron concentration is given by [Eq. (19)]: with a slope of e/kT and a y-axis intercept of ln p kTc þ kTc
e e is obtained. From the intercept, Ec can be extracted. Equa-
F c
n ¼ Nc exp ð19Þ tion (25) shows that, in the case of a nondegenerate semicon-
kT
ductor, the onset potential for charge accumulation does not
coincide with the lower edge of the CB. Ec is localized at lower
However, if ðeF ec Þ @ kT, then fðe eF Þ @ 0 and the semi- potentials (within the accumulation region). Figure 9 shows
conductor is degenerate. In this case the Fermi level, as for the CB capacitance for the two limiting cases as calculated
metals, lies in the CB and the electron concentration is given from Equations (23) and (24) for the degenerate and the non-
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &11&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&12& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
3.3. Charge Accumulation in Nanostructured TiO2 Electrodes charge extracted during the reverse scan. In the presence of
a significant ohmic drop, a model fitting must be performed to
The capacitance of nanostructured electrodes has been deter- account for the distortion induced by a series resistance.[164] In
mined experimentally by means of current integration at differ- the case of partial band unpinning the capacitance is given by
ential potential steps,[172] cyclic voltammetry (CV),[164, 173] charge Equation (7). When Cm becomes larger than CH the cyclic vol-
extraction,[174–176] impedance spectroscopy,[177, 178] chronoamper- tammogram flattens due to the fact that the bands shift simul-
ometry,[179, 180] intensity modulated photovoltage spectrosco- taneously with a displacement of the Fermi level. In this case
py,[181] electro-optical techniques,[182] spectroelectrochemis- dDEsolid =dE decreases, thus indicating a retardation of electron
try[38, 183–185] and open-circuit photovoltage decay measure- accumulation in favor of charging the Helmholtz layer. This sit-
ments.[186] uation is illustrated in Figure 11, which depicts simulated vol-
tammograms for different ratios of Cm/CH.
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &13&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&14& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &15&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&16& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &17&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&18& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
crease at wavelengths > 400 nm, an absorption decrease The d–d transition is symmetry forbidden; however, symmetry
below the fundamental absorption threshold of the semicon- breaking by asymmetric ligand field splitting or vibronic cou-
ductor was observed and was associated with the so-called pling makes weak absorption possible. In addition to a broad
Burstein–Moss shift, that is, a shift of the absorption onset to absorption in the Vis/NIR range, Cao et al.[38] evidenced by elec-
higher photon energies as a consequence of the filling of elec- tron paramagnetic resonance spectroscopy the presence of
tronic states near the CB edge. Adsorption of catechol or iso- Ti3 + species in TiO2 particles after negative polarization in
phthalic acid on a TiO2 film induced only a small absorbance acidic aqueous solution. The observation of a monotonic ab-
decrease in the visible of less than 10 %. On the other hand, sorbance increase toward longer wavelengths, on the other
a more recent study by de la Garza et al.[207] reports on signifi- hand, has been rationalized by the Drude absorption of free
cant changes of the visible absorption of accumulated elec- CB electrons.[184] In addition, Boschloo and Fitzmaurice[173] asso-
trons upon adsorption of enediol ligands. These changes were ciated the absorbance at 400 nm with the capacitive peak
attributed to the modification of the energetics and the distri- near the onset of the exponential capacitance and attributed it
bution of surface trapping sites. In this study, however, enediol to electrons trapped at surface states (see above). Upon small
ligands were adsorbed on TiO2 NPs prior to thin-film deposi- cation (Li + , Na + ) intercalation into TiO2 electrodes in contact
tion. with acetonitrile or strongly basic aqueous electrolytes
Introducing a band filling model and assuming band edge [Eq. (37)], a pronounced absorption at 750 nm was also ob-
pinning, spectroelectrochemical data were used to determine served.[184]
what the authors considered to be the flatband potential (ac- Recently, the spectral fingerprint of electrons accumulated in
tually the potential onset of the accumulation region) of nano- anatase TiO2 electrodes in the energy range between the fun-
crystalline anatase TiO2 films.[31] In such a case, intraband tran- damental absorption threshold and the onset of lattice absorp-
sitions were assumed to be the main contribution to the ab- tion (0.1–3.3 eV) has been reported.[185] In addition to the well-
sorption in the visible. The pH dependence of this parameter known absorption in the Vis/NIR region, a broad mid-infrared
was determined as [Eq. (38)]: (MIR) absorption, monotonically increasing toward lower wave-
numbers, has been observed (Figure 24). Importantly, signal in-
E FB =V vs: SCE ¼ 0:40 0:06 pH ð38Þ tensities in the Vis/NIR and MIR were found to be linearly cor-
related. By charge extraction experiments it was shown that
These values are in perfect agreement with those obtained the signals are associated with an exponential distribution of
for structurally well-defined anatase single crystals by Mott– band-gap states. A similar monotonic increasing MIR signal has
Schottky analysis.[187] On the other hand, significantly more been observed upon n-type doping of TiO2[211, 212] as well as
negative values for the CB edge have been estimated from the upon band-gap excitation both under high vacuum condi-
measurement of the photocurrent onset, which was found to tions[212, 213] and in the presence of hole acceptors in the aque-
occur at potentials about 0.3 to 0.4 V more negative than the ous phase.[214–216] From a technological point of view, the opti-
onset potential of charge accumulation and visible absorp- cal properties of nanostructured electrodes can be exploited in
tion.[83, 185] The difficulties associated with the definition and the electrochromic devices (see Section 5.2).[217]
determination of the CB edge in nanostructured semiconduc-
tor films have recently been highlighted by Ardo and
3.4. Electron Transfer at Nanostructured TiO2 Electrodes in
Meyer.[193] The method of choice for determining the CB edge
the Dark
position in compact TiO2 films is based on the analysis of the
potential dependence of the space charge capacitance (CSC), In this section we will briefly discuss some relevant electron-
which is associated with a depletion layer at the SEI (Mott– transfer reactions at TiO2 electrodes in the dark. Charge-trans-
Schottky analysis). However, as mentioned in Section 3.1, typi- fer reactions under above-band-gap excitation will be dis-
cal crystallite dimensions in nanocrystalline electrodes are com- cussed in detail in Section 4.
monly too small to sustain significant band bending. Therefore, In the absence of above-band-gap excitation, the semicon-
information on the band position cannot be extracted from ducting properties of TiO2 are disadvantageous for interfacial
a Mott–Schottky analysis in the case of mesoporous nanocrys- electron transfer between the electrode and a given electrolyte
talline electrodes. In this case, however, Mott–Schottky analysis species, as the electron-transfer rate is proportional to the den-
may yield some information on the triple contact of conduct- sity of electronic states near the Fermi level, which is typically
ing substrate, mesoporous film and electrolyte, such as the low for semiconductors.[44, 159] One of the most studied cathodic
TiO2 NP coverage degree on the conducting substrate.[209] reactions on TiO2 electrodes is the oxygen reduction reaction
There has been some controversy in the literature concern- (ORR). An understanding of oxygen reduction is important as it
ing the broad Vis/NIR absorption of TiO2 nanostructured elec- comprises in many processes the counter-electrode reaction
trodes, which has been attributed alternatively to electrons lo- that may even control the desired overall reaction process. In
calized in band-gap states (Ti3 + centers), to electrons in the CB, photocatalysis, for example, electron transfer to oxygen is con-
or to a superposition of both. The leveling off of the absorb- sidered the rate-limiting step.[218, 219] However, the fact that in
ance at longer wavelengths in the Vis/NIR range, which in photocatalysis oxidation and reduction reactions have to occur
some cases reaches a pronounced maximum, has been inter- in parallel at semiconductor particles complicates a separate
preted in terms of d–d transitions of localized Ti3 + states.[38, 210] analysis of cathodic and anodic processes. In this context, one
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &19&
These are not the final page numbers! ÞÞ
R. Gmez et al.
4. Photoelectrochemis-
try of Nanostructured
TiO2 Electrodes
In this section, the bases of the
photoelectrochemistry of TiO2
nanostructured electrodes are
presented and compared with
those of bulk electrodes. The
equations governing the fate of
charge carriers in nanoporous
semiconductor electrodes are
discussed, first from a purely
physical point of view, and then
by introducing the kinetic infor-
mation of the elementary reac-
tions taking place at the semi-
conductor/solution interface.
Next, the interpretation of typi-
cal electrochemical measure-
ments (photocurrent and photo-
Figure 24. a) UV/Vis/NIR and d) ATR-MIR difference spectra of anatase TiO2 nanocrystalline electrodes at different potential) on a quantitative level
electrode potentials. The reference spectra were taken at EAg/AgCl = 0.4 V. b,e) Semi-logarithmic plot of absorbance
is presented, with a focus on the
and extracted charge versus electrode potential. c,f) Correlation plots of absorbance versus extracted charge. Elec-
trolyte: N2-saturated 0.1 m HClO4 aqueous solution. Reprinted with permission from [185]. Copyright 2012 Ameri- information that can be gath-
can Chemical Society. ered from them. Then, reference
is briefly made to the combined
of the main advantages of electrochemical studies is the possi- use of photoelectrochemistry and spectroscopic measurements
bility of addressing anodic and cathodic processes separately for studying the reactive SEI. Finally, the photoelectrochemistry
(Section 5.3). As a consequence, the ORR was extensively stud- of hybrid or mixed systems (inorganic–inorganic and organic–
ied in the past few decades and results have been reviewed re- inorganic) and surface- or bulk-modified electrodes is intro-
cently.[16] Nowadays, the ORR is especially interesting as being duced. Note that, at this point in the development of photo-
the main cathodic reaction in fuel cells, where platinum was electrochemistry, researchers also try to understand the
found to be one of the most active electrocatalysts. The ORR charge-transfer mechanism in the photoexcited semiconduc-
takes place at much higher overvoltage on TiO2 than on plati- tor/solution interface on a microscopic level. Although beyond
num; however, nanostructured TiO2 electrodes have recently the scope of this review, the Gerischer model keeps on consti-
received attention as an alternative catalyst support in fuel tuting nowadays an adequate framework for the rationalization
cells providing efficient dispersion of the active catalyst.[220–225] of the behavior of different systems, such as NP suspensions,
Electrocatalytic activity of nanostructured TiO2 electrodes quantum dots, nanocrystalline electrodes, and so forth.[228]
[226] [227]
has been reported for some oximino and carbonyl com-
pounds as well as for some olefins with carboxylate groups.[199]
Marken et al.[199] reported on the electrocatalytic reduction of 4.1. Photoinduced Carrier Generation, Transport and Re-
maleic acid on monolayers of TiO2 NPs deposited on boron- combination in Nanostructured Titanium Dioxide Electrodes
doped diamond surfaces. A faradaic cathodic current was at-
4.1.1. Bulk and Nanostructured Electrodes
tributed to the two-proton reduction of maleic acid to succinic
acid. These authors highlighted, furthermore, the potential Although photocurrents and photopotentials can originate
benefits of NP monolayers for controlling the reactivity and se- from sub-band-gap illumination when band-gap states partici-
lectivity in electrocatalytic applications. pate in the photoexcitation process, in the following we will
&20& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &21&
These are not the final page numbers! ÞÞ
R. Gmez et al.
pffiffiffiffiffiffiffiffi
(e*F;p ).[159, 236, 237] The electrochemical potential can be calculated Li ¼ Di ti ð46Þ
according to Equation (41):
On the other hand, the electric potential gradient term
i ¼ m0i þ kT lnðci =c0 Þ þ zi e
m ð41Þ could be obtained by solving the Poisson equation with the
particular boundary conditions for the semiconductor phase.
where m0i is the standard chemical potential (eV), c0 is the stan- This equation is given by [Eq. (47)]:
dard concentration (cm3), zi is the charge number of species i,
and f is the electrostatic (inner) potential. Hence, the flux will @ 2 e1
¼ ð47Þ
be given by Equation (42): @x 2 220
&22& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &23&
These are not the final page numbers! ÞÞ
R. Gmez et al.
ef þ ¼Os þ C ðhs þ Þ ! ¼Os ð52Þ [Eq. (58)] and recombination [Eq. (59)] terms of the continuity
equation yields the equation governing the fate of electrons in
ðRH2 Þaq þ hs þ ! RHaq C þ Haq þ ð53Þ the nanostructured electrode. It can be solved with the boun-
þ
ðRH2 Þs þ hf ! RHs C þ Haq þ
ð54Þ dary conditions corresponding to a particular photoelectro-
chemical experiment (see below). This model has been used
RHC ! R þ Hþ þ ef ð55Þ for titanium dioxide polycrystalline electrodes,[252, 256] NP sus-
RHC þ Hþ þ ef ! RH2 ð56Þ pensions[251, 257] and nanostructured electrodes (NPs,[255, 258]
nanocolumns[201] and NWs[259]).
Ox þ ef ! OxC ð57Þ
&24& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &25&
These are not the final page numbers! ÞÞ
R. Gmez et al.
nðx ¼ 0Þ ¼ n0 ð64Þ
dn
¼0 ð65Þ
dx x¼d
&26& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
presented in Section 4.2.1. can be used to deduce the photo- shown to reproduce the electron transport, transfer and re-
current under steady-state conditions. Neglecting the contribu- combination processes in polycrystalline[287] and nanoporous
tion of holes to the photocurrent, Equation (49) has been electrodes,[178, 288, 289] in the dark and under illumination. In an
solved. In addition, an experimental procedure has been devel- applied vein, IMPS has been used to elucidate the effect of
oped to distinguish between the two limiting cases (indirect ethanol on the reduction of surface recombination for an illu-
and direct hole transfer). The dependence on the photon flux minated anatase electrode; on the other hand, EIS has been
of the slope of the photocurrent versus pollutant concentra- used for studying the degradation of salicylic acid[290] and sul-
tion curves in the limit of very low pollutant concentrations fosalicylic acid on anatase electrodes,[291, 292] methyl orange on
has been shown to follow Equation (68): titania NTs[293] and methylene blue on Ag fiber/TiO2 nanocom-
posites.[294]
@jph
/ ðF0 Þn ð68Þ
@ ½RH2 ½RH2 !0
4.3. Photoelectrochemical Measurements: Photopotential
where n 1/2 for indirect hole transfer (IT) and n 1 for direct
4.3.1. Photopotential Definition and Measurement
hole transfer (DT). Equalities will hold for the particular case of
negligible recombination, that is, for mono- or polycrystalline The photopotential (Vph) can operatively be defined as the ab-
electrodes at high band bending. The model has been success- solute magnitude of the difference between the stationary
fully applied to the photooxidation of model organic com- open-circuit potential (OCP) under illumination (Eph) and that
pounds, such as methanol,[252, 255, 259] formic acid,[201, 252, 255, 258, 259] in the dark (E0) [Eq. (69)]:
and oxalate.[256] Furthermore, it has been validated not only for
TiO2[251, 252, 255, 257, 259] but also for WO3.[258] Vph ¼ Eph E0 ð69Þ
Similarly, Bilmes et al. have used photocurrent measure-
ments to study the degradation on TiO2 of organic compounds In the literature, often the terms photopotential and photo-
such as methanol and other alcohols,[270–272] salicylate,[271, 272] ox- voltage are equivalently used, although they refer to different
alate[272, 273] and their respective mixtures. To model the meas- concepts. The former is frequently used in photoelectrochemis-
urements a simple kinetic scheme based on the reactivity of try (photoelectrocatalysis), and refers to the measured OCP of
OH radicals was proposed, without considering the continuity an illuminated semiconductor electrode that sustains a photo-
equation. More recently, Amal et al. studied the degradation of induced reaction, normally in a conventional three-electrode
oxalic acid,[274] glucose[275, 276] and succinic acid,[277] both with electrochemical cell, while the latter is employed by the solar
nanoparticulate[274, 275, 277] and nanotube–nanorod electrodes.[276] cell community and refers to the maximum bias (Voc) attained
In some cases, they analyzed on a semiquantitative level the by a two-electrode solar cell configuration working under illu-
saturation photocurrent obtained from photocurrent transi- mination.
ents[274] as a function of the concentration and the incident Photopotential measurements reflect the open-circuit be-
photon flux.[275] havior of an electrode, reproducing the conditions typical of
In contrast, Zhao’s group proposed an alternative modeling photocatalysis with either suspended or supported (immobi-
scheme for photocurrent measurements that does not require lized) particles under illumination. In this case, there is no ap-
solving the continuity equation. Their model is based on the plied bias and the conducting substrate cannot play the role
rising linear part of the voltammetric curve, which is arbitrarily of an electron sink (or source) as in photocurrent measure-
considered to follow Ohm’s law. They obtained equivalent re- ments. The measured potential reflects the overall kinetic be-
sistances for the transfer of photogenerated charges and sub- havior (anodic or cathodic) at the deposited particles. Com-
sequently analyzed how this resistance changes with organic monly, the OCP is a mixed potential (as in corrosion theory)
concentration, photon flux and other experimental parameters. both in the dark and under illumination. Similarly to photocur-
They tested their model with voltammetric measurements for rent measurements, when the OCP under illumination is more
the photooxidation of diverse organic compounds, such as negative than the OCP in the dark (Eph < E0), holes are preferen-
methanol,[278] glucose[279] and various dicarboxylic acids,[280] tially transferred to solution, the electrode behaving as a photo-
both with TiO2 nanoparticulate[278–281] and nanostructured anode; conversely, when Eph > E0 electrons are preferentially
(NTs[282]) electrodes. Additionally, they used photocurrent meas- transferred to solution (photocathode). The OCP is normally
urements for modeling the adsorption of organic compounds, measured versus time (transient) by open-circuit chronopoten-
such as phthalic acid.[281] tiometry, both in the dark and under illumination. In any case,
Regarding small perturbation measurements, laser-pulsed il- the measured potential corresponds to that of the conducting
lumination has been used to address the time-dependent substrate (normally, FTO), equilibrated with the deposited TiO2
charge diffusion in nanostructured electrodes and to deter- layer.
mine the diffusion coefficient of photogenerated elec- Analogously to the photocurrent, the photopotential (or
trons.[43, 283] Similarly, IMPS has been used for studying the elec- photovoltage) can also be measured in the frequency domain,
tronic transport properties of these electrodes proving that by means of intensity modulated photovoltage spectroscopy
charge trapping–detrapping in band-gap states plays an im- (IMVS).[181, 295] IMVS measures the photopotential response to
portant role in the transport mechanism.[284–286] EIS has been a modulated incident light intensity superimposed on a con-
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &27&
These are not the final page numbers! ÞÞ
R. Gmez et al.
(and temperature) of the electrolyte. If there is no reversible There are a number of reports on this issue,[297] but most of
redox couple in solution, the potential is kinetically determined them deal with the behavior of photoanodes in DSCs (photo-
by all the half-reactions that can take place at the electrode voltage).[175, 298, 299] Nonetheless, some researchers have related
(mixed potential). the photopotential measurements with photocatalysis. The
In region B, the electrode is illuminated. As it behaves as early works by Neumann-Spallart et al. successfully correlated
a photoanode, an electron excess is generated in the nanocrys- the photostationary OCP of TiO2[300] and WO3[301] polycrystalline
talline film, revealed by a decrease in OCP. After some time, electrodes in contact with methyl viologen and FeIII solutions,
a photostationary steady state is reached (region C) and the respectively, with their reduction rates in the corresponding
potential attains a constant value (Eph). Upon turning the illu- suspensions. Likewise, Vinodgopal et al.[33] used OCP measure-
mination off (region D), the photostationary potential relaxes ments to show the effect of oxygen as electron scavenger at
(decays), eventually reaching its initial value in the dark (re- TiO2 nanocrystalline thin films. Byrne et al.[302] studied the pho-
gion E). The time required to reach a stationary state (with and tooxidation of oxalate with TiO2 electrodes, proving a linear re-
without illumination) depends on the kinetics of the redox pro- lationship between the photostationary OCP and the oxalate
cesses at the SEI (regions B and D). concentration. Later, they showed the oxygen effect in the
When a nanostructured semiconductor thin film is photoex- presence of formic acid with similar electrodes.[303]
cited, there is a change in both electron and hole concentra- In spite of all the previous studies, no analytical model has
tions, which affects the value of the substrate Fermi level (eF, been developed directly linking the photopotential measure-
Figure 32 b). In the case of photoanodes, holes are either trans- ments with the corresponding photoinduced processes and
ferred to solution or trapped at interfaces at a faster rate than their kinetics. Gmez and Salvador[304] were the first to use
electrons, thereby generating an excess negative charge in the a model similar to that of Sçdergren et al.[42] for solving the dif-
film that induces a rise in the Fermi level of the conducting fusion equation for electrons under steady state, with the ap-
substrate, until it equilibrates with the quasi-Fermi level of the propriate boundary conditions [Eq. (70)]:
photogenerated electrons in the semiconductor film (e*F;n , Fig-
ure 32 c). The maximum photopotential value will be the differ- dn dn
¼ ¼0 ð70Þ
ence between the initial substrate Fermi level (in the dark) and dx x¼d dx x¼0
&28& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
Solving the electron continuity equation [Eq. (49)], the fol- d2 nðxÞ ð78Þ
0 ) GðxÞ RðxÞ ¼ 0; GðxÞ ¼ RðxÞ
lowing expressions for the excess concentrations of photogen- dx 2
erated electrons were obtained [Eqs. (76) and (77)]:[304]
Consequently, by simply equating the generation and
EE Fat expðad Þ expðd=LÞ recombination terms, an explicit expression for the pho-
n ph ¼ aL þ aL expðd=LÞ þ expðad Þ
1 L2 a 2 tanhðd=LÞ togenerated electron concentration, and therefore the
ð76Þ photopotential according to Equation (72), can be ob-
tained as a function of kinetic parameters (rate constants, oxi-
Fat expðad Þ expðd=LÞ
nSE
ph ¼ aL þ aL þ 1 ð77Þ dant and reductant concentrations, incident photon flux, etc.).
1 L2 a 2 sinhðd=LÞ
where t is the average electron lifetime. By introducing these 4.3.4. Modeling the Open-Circuit Potential Decay after Light
equations into Equation (73), we finally get the photopotential is Turned Off
EE SE
for each illumination side (Vph and Vph ). One of the most important parameters related to the overall
From previous equations, the photopotential will be inde- efficiency of charge collection at a nanostructured TiO2 elec-
pendent of the illumination side when L > d and (1/a) > d, that trode is the electron lifetime (tn). Its measurement has attract-
is, for very thin and weakly absorbing electrodes. In Figure 33 ed much attention, mainly in the dye- and quantum-dot-sensi-
we depict the simulated difference between the photopoten- tized solar cell field.[245] IMVS has been the preferred technique
tial for SE and EE illumination as a function of the electrode for determining electron lifetimes;[295] however, due to its small
thickness. For typical nanoparticulate films (d 10 mm) and perturbation nature IMVS does not allow the analysis of life-
considering a rather large value for the diffusion length (L = times associated with larger OCP variations.[298] To avoid such
d = 10 mm), the photopotential difference will be small a limitation, two main experimental techniques have been de-
SE EE
( Vph Vph = 32 mV). veloped: open-circuit photovoltage decay measurements
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &29&
These are not the final page numbers! ÞÞ
R. Gmez et al.
k nph ¼ 1 dnph ð81Þ
nph dt where I(E) is the voltammetric current for each potential value
E. This procedure was used for studying the effect of fluorina-
In the absence of an effective oxidant (electron acceptor), tion on the rate constants of charge recombination and elec-
this constant refers to the recombination process of accumu- tron transfer to oxygen.[305] Recently, Guijarro et al. used the
lated electrons with surface-trapped holes or photooxidation same method with CdSe quantum-dot-sensitized TiO2 electro-
&30& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
des to unveil the different recombination pathways in the ies).[312, 313] The temporal evolution of the photocurrent and of
composite system.[306] vibrational bands associated with adsorbate species and reac-
tion products were tracked simultaneously in the course of
oxalic acid photooxidation (see Section 5.3. for further details).
4.4. Photoelectrochemistry and Spectroscopy: A Combined
As already mentioned, it was shown that electrons accumulat-
Approach
ed in anatase TiO2 electrodes upon band-gap excitation or ex-
Whereas electrochemical approaches successfully address the ternal polarization may readily be detected by IR spectrosco-
macroscopic electrode properties, they lack molecular specifici- py.[185, 314] An exponential distribution of band-gap states, which
ty. Vibrational spectroscopy, on the other hand, has been gives rise to broad absorptions in the Vis/NIR and MIR regions,
proven useful for studying processes at the semiconductor/so- has been evidenced for anatase TiO2. Importantly, it was
lution interface on a molecular level, thus providing a micro- shown that the electron population is the same upon band-
scopic view of the reactive interface.[307, 308, 356] The high sensitiv- gap excitation at open circuit and upon external polarization
ity of IR spectroscopy is beneficial for the detection of low con- in the dark as long as the electrode potential is kept constant
centrations of reactants, intermediates or products, but the in- (Figure 35). This demonstrates that the Fermi level throughout
terference of typically strong IR absorption by the working (fre-
quently aqueous) solution presents a major challenge.
Measurements are therefore frequently performed in attenuat-
ed total reflection (ATR) mode. IR spectroscopy has been ap-
plied extensively to the study of the semiconductor/solution
interface under both reactive and nonreactive condi-
tions,[307, 308, 356] Raman spectroscopy has been used much less
due to its low sensitivity.[356] However, signal intensification has
successfully been achieved by surface enhancement (SERS)
and resonance (RRS) mechanisms. Lana-Villarreal et al.[309] stud-
ied by SERS the adsorption of phthalic acid at nanoporous ana-
tase films deposited over roughened Au substrates. The Au
substrate features an electromagnetic magnification of the
Raman signal, which extends spatially into the anatase film.
Spectral bands corresponding to vibrations of molecules ad-
sorbed on the semiconductor were thus intensified. In addi-
tion, SERS was used to study the adsorption of formic acid and
methanol on anatase films. The interaction of salicylic acid
with TiO2 films and slurries was also addressed by Raman spec-
troscopy. In this case, detection of the surface complex formed
by salicylate on TiO2 relied on the visible resonance (RRS)
Figure 35. ATR-IR spectra of anatase TiO2 nanocrystal electrodes upon UV ex-
mechanism.[310] posure at open circuit and external polarization in the dark, respectively. The
Taking advantage of the complementarity of the information reference spectra were taken prior to UV exposure at open circuit/polariza-
extractable from spectroscopic and electrochemical measure- tion in the dark. Representation of the two types of perturbation together
ments, multi-technique approaches have successfully been de- with the electronic properties deduced. Electrolyte: N2-saturated 2 m
HCOOH/0.1 m HClO4 aqueous solution. Reprinted with permission from
veloped and were applied to the study of photo- and bias-in- [314]. Copyright 2012 American Chemical Society.
duced processes at the SEI. The charge-transfer complex
formed upon adsorption of catechol on anatase NPs in contact
with aqueous acidic solutions has been studied by photoelec- the mesoporous film is homogeneous in both cases as long as
trochemical techniques, IR spectroscopy and RRS.[311] At least the concentration of electron acceptors in solution is kept low.
two adsorbate configurations, catecholate in a chelate configu- More generally, the IR–spectrophotoelectrochemical approach
ration and molecularly adsorbed catechol, were evidenced. allows for studying both the electronic properties of the semi-
Upon electron injection from the chelating catecholate, which conductor as well as the vibrational properties of solution spe-
was found to form a charge-transfer complex with the semi- cies during a photoinduced reaction. Consequently, combined
conductor, catechol polymerization was tracked by an increas- spectroscopic and photoelectrochemical approaches may find
ing fluorescence signal in the Raman spectra. Later, the adsorp- direct application in a wide range of systems where following
tion and photoreactivity of catechol was studied for slurries the reactivity of the SEI at a chemical level is critical.
and films of WO3 and TiO2, respectively, and it was concluded
that catechol adsorption is initially faster on WO3, but yields
4.5. Photoelectrochemistry of Mixed and Modified Titanium
larger final coverages with TiO2.[356]
Dioxide Nanomaterials
Finally, a combined IR spectroscopic and electrochemical ap-
proach was used to address the photoreactivity of the SEI The use of TiO2 nanostructured thin films for both photocata-
under potential control (spectrophotoelectrochemical stud- lytic and energy conversion applications is hindered by a series
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &31&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&32& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
the particle band gap, and hence a blue shift of the semicon- harvesters.[351] Graphite oxide was also used as co-catalyst for
ductor absorption edge; and 2) a shift of the conduction and hydrogen production, upon exfoliation and subsequent cover-
valence band edges to more negative and positive potentials, age of titanium dioxide NPs.[352] More recently, large reduced
respectively. graphene oxide[353] and nanosized reduced graphene oxide
Quantum dots are used not only as solar cell sensitizers (visi- composites with titania have shown increased photoactivi-
ble-light harvesters, Figure 37 a) but also as efficient photocata- ties.[354]
lysts. The band-edge shift leads to an increased photocatalytic
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &33&
These are not the final page numbers! ÞÞ
R. Gmez et al.
Spectral Sensitizers
&34& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &35&
These are not the final page numbers! ÞÞ
R. Gmez et al.
structure. Anatase and TiO2(B) forms were expected to show of the Li + insertion/extraction process is evidenced by the vol-
better performance.[393–395] In fact, anatase was considered to tammogram symmetry and the cathodic/anodic current values
be the most promising candidate as anode material for Li-ion plotted in the inset of Figure 41.
batteries due to its fast Li + insertion/extraction kinetics and In summary, TiO2 is a promising candidate for the negative
high insertion capacity.[396–398] The reversible insertion into ana- material in lithium-ion batteries, although there is still room for
tase TiO2 takes place up to about 0.6 mol Li + per TiO2 mol at improvement of the structure of TiO2 by optimizing the prepa-
1.78 V versus Li + /Li.[399] The presence of a Li content greater ration method and, therefore, the final nanostructure. It should
than x = 0.5 in LixTiO2 leads to strong Li–Li interaction in the be mentioned that other aspects of the Li + -based batteries are
lattice and, finally, to a loss of reversibility. In fact, the stoichi- also under investigation, such as the electrolyte composition
ometry Li1TiO2 can only be obtained from anatase at high tem- and nature. Mainly, four types of electrolytes have been used:
perature, or with a particle size inferior to 7 nm.[400, 401] liquid,[410] gel,[411] polymer[412] and ceramic electrolytes. The uti-
Lately, rutile has also been investigated as a possible candi- lization of solid electrolytes has the advantage of eliminating
date for lithium-ion batteries. Reversible Li + insertion/extrac- the need to use flammable solvents, thus increasing the safety
tion up to 0.5 mol Li per mol of TiO2 at room temperature of the Li-ion batteries.[413]
into/from nanosized rutile has been demonstrated.[123, 131] Kinet-
ic limitations are responsible for the difference between micro-
sized and nanosized TiO2 rutile.[402, 403] The latter materials are 5.2. TiO2 Electrochromics
beneficial for this particular application because they provide Electrochromism can be defined as the ability of a material to
a larger electrode/electrolyte interface, and because the inser- undergo color change upon oxidation or reduction. Electro-
tion/extraction kinetics is faster.[395, 404, 405] chromic properties can be found in almost all the transition-
Besides its crystalline phase and the particle size, a third cru- metal oxides.[132] These materials have been extensively investi-
cial characteristic of TiO2 that should be taken into account for gated because of their potential applications in practical devi-
its application in Li + batteries is the morphology of the parti- ces.[128, 131, 414, 415]
cles. Recently, one-dimensional nanostructures, such as those The mechanism for electrochromics, as in the case of the in-
constituted by NTs, nanorods, and NWs have been stud- tercalation batteries, is the double injection of electrons and
ied.[142, 406, 407] Employing TiO2(B) NWs, compositions up to ions into the oxide matrix [Eq. (84)]:[416]
Li0.91TiO2 have been obtained without structural degradation.
TiO2(B) has a lower density than rutile and anatase, thus TiO2 þ xðMþ þ e Þ Ð Mx TiO2 ð84Þ
making it an ideal host for Li + intercalation.[134, 136, 396, 408]
Figure 41 shows cyclic voltammograms at different scan rates
where M + can be either H + or Li + (x is the insertion coeffi-
for TiO2(B) in a Li + -containing electrolyte.[409] The reversibility
cient, whose value depends on the micro- and nanostructure
of the deposited thin film). During charge injection, electrons
are localized at titanium sites, thereby changing the valence of
Ti ions to 3. As mentioned in Section 3.3.3, the absorption in
the visible region was attributed to localized states near the
CB edge or to intraband transitions of free electrons in the CB.
To quantitatively compare the electrochromic properties of
different nanomaterials, spectroelectrochemical measurements
are performed, the coloration efficiency (CE) being one of the
characteristic parameters employed for such a purpose. It is
defined according to Equations (85) and (86):
DODðlÞ
CEðlÞ ¼ ð85Þ
Q
Tb ðlÞ
DODðlÞ ¼ log ð86Þ
Tc ðlÞ
where DOD is the change in the optical density of the film be-
tween its colored (Tc) and bleached (Tb) states at a certain
wavelength (l), and Q is the corresponding injected (or eject-
Figure 41. Cyclic voltammograms of TiO2(B) in 1 m LiN(CF3SO2)2 + ethylene ed) charge density per unit area. Tungsten oxide (WO3) is one
carbonate/1,2-dimethoxyethane (1:1, v/v); scan rate 0.1–1.2 mV s1 (in of the most investigated electrochromic inorganic materials
0.1 mV s1 steps for plots from bottom to top). Inset: the normalized peak because of its fast switching between colored and bleached
current, i/i01, where i01 is the peak current at the slowest scan rate
states and long-term durability, its properties serving as a refer-
(0.1 mV s1) and i is the peak current at the actual scan rate. Circles and
crosses denote two individual peaks. Reprinted with permission from [409]. ence in this field. It shows a blue color when a sufficiently neg-
Copyright 2005 American Chemical Society. ative potential is applied.[417–420] More recently, efforts have
&36& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &37&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&38& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &39&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&40& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
1
H2 OðlÞ hn! H2 ðgÞ þ O2 ðgÞ
2 ð87Þ
DG0298 K ¼ 237 kJ mol1
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &41&
These are not the final page numbers! ÞÞ
R. Gmez et al.
&42& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
6. Conclusions and Outlook taking into account the fact that many reactions in heteroge-
neous catalysis actually result from the sum of two redox half-
Semiconductor oxides, particularly titanium dioxide, are materi- reactions, which imply an interfacial charge transfer that
als receiving a growing interest due to their multiple industrial should be affected by changes in the solid/electrolyte interface
and technological applications (solar cells, catalysts, photocata- conditions. From these ideas, it can be concluded that the
lysts, sensors, etc.). Most of these applications require nano- electrochemical measurements may play a fundamental role in
scopic materials (NPs), which show peculiar properties depend- studies that aim at enhancing the TiO2 photoactivity. In fact,
ing frequently on their shape and size. The study of such mate- electrochemical experiments in the dark may provide informa-
rials has also triggered important progress in science and tech- tion on oxygen, water or CO2 reduction processes, while those
nology. It is worthwhile to emphasize the relation existing be- under illumination may allow us to study reactions of hole
tween the nanoscopic oxide electrochemical properties and transfer to water or organic species in solution.
others much more studied, such as the structural, electrical, It is important to mention that electrochemistry not only
electronic, optical and catalytic properties. This relation is often provides techniques for analyzing the interfacial processes. It
neglected, misusing its potential advantages, probably be- can also be used to prepare nanostructures (for instance, syn-
cause many groups working in the science and technology of thesis of NTs by anodization) or to modify their properties, for
titanium dioxide nanomaterials lack a good background in example, by electrochemical doping. This possibility can be
electrochemical science. Being aware of this fact, in this review, employed to optimize the nanostructures for some particular
we have tried to summarize the main conceptual tools that applications.
can be employed to rationalize the electrochemical behavior Although our understanding of the electrochemistry of
of TiO2 nanostructured materials, and to briefly present some nanostructured TiO2 electrodes has improved dramatically in
applications of these materials based on their electrochemical the last two decades, there are still significant scientific chal-
properties. lenges that will require the attention of the scientific commun-
It is noteworthy that charge generation, injection, separa- ity in the future. For instance, the factors that govern band
tion, transport and/or accumulation in the nanostructure un- edge pinning/unpinning are not fully understood. This is im-
derlie many of the TiO2 nanomaterial applications, which clear- portant not only from a fundamental point of view, as the DOS
ly shows that an exhaustive study of the electrochemistry of can easily be derived from the electrochemical response in the
these materials is a key point to understand and enhance or case of band edge pinning, but also from an applied point of
optimize some of the effects. Some of these applications are view, as electrochromism or charge accumulation would be en-
related to environmental issues (heterogeneous photocatalysis) hanced. On the other hand, the reactivity under illumination
and others to energy issues, including both saving (electro- should strongly depend on the NP morphology and assembly
chromic devices) and generation or accumulation (third-gener- within the film. However, to date, the dependency of the elec-
ation solar cells, lithium batteries). We believe that once the in- trochemical behavior on NP size and shape is not systematical-
fluence of the TiO2 structure on the electrochemical properties ly known. Other questions, such as the optimization of elec-
is understood, the structure of the nanomaterial will be opti- trode properties via the irreversible adsorption of simple ions
mized using the electrochemical response as a guideline and (fluoride, for instance), are still in their infancy, as is the possi-
taking into account the requirements of each practical applica- bility of doping/modifying the TiO2 nanomaterial via (photo)-
tion. electrochemical processes. Undoubtedly, many open questions
Already by the 1990s, it was clearly shown that the behavior remain and we just hope that this work may contribute to im-
of nanostructured TiO2 electrodes was different from that of proving the electrochemical background of scientists working
single crystals and polycrystalline samples. Concretely, charge or planning to work in the fascinating world of nanostructured
separation (and therefore photocurrent generation) in nanopo- TiO2 materials.
rous electrodes was shown to originate from the difference in
the charge-transfer kinetics for both carriers (electrons and Abbreviations and Symbols
holes) at the solid/solution interface. On the other hand, it was
also evidenced that electron transport inside the electrode A Electrode geometric area [cm2]
takes place mainly by diffusion. ATR Attenuated total reflection mode of IR spectroscopy
Although not as popular as their photoelectrochemistry, the B Conversion unit factor between surface and volumic
dark electrochemistry of these materials provides a wealth of rates [cm]
information that spans from the electronic structure of the Cm Chemical capacitance [F]
oxide to the determination of the electrochemically active in- Cm,v Chemical capacitance by volume unit [F cm3]
CB
terfacial area, or the presence of grain boundaries. These dark Cm;v Chemical capacitance by volume unit associated to
electrochemical properties of TiO2 underlie applications as im- the CB [F cm3]
GB
portant as electrochromism and intercalation electrodes for Cm;s Chemical capacitance by area unit associated to
batteries. monoenergetic states [F cm2]
That the electrochemistry of TiO2 nanoparticulate samples is ci(x,t) Concentration of species i [cm3]
ss
central in the understanding of heterogeneous photocatalytic Cm;s Chemical capacitance by area unit associated to
or photosynthetic processes is not particularly surprising, a distribution of surface states [F cm2]
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &43&
These are not the final page numbers! ÞÞ
R. Gmez et al.
CH Double-layer capacitance (Helmholtz layer) [F] Ji(x,t) Flux of charge species i [cm2 s1]
CH,v Double-layer capacitance by volume unit [F cm3] joff Current density in the dark [A cm2]
c0 Standard concentration [cm3] jon Current density under illumination [A cm2]
ci,0 Dark equilibrium concentration of charge car- jph Photocurrent density [A cm2]
riers [cm3] jphEE Stationary photocurrent for EE illumination [A cm2]
Cs Experimental capacitance by area unit [F cm2] jphSE Stationary photocurrent for SE illumination [A cm2]
CSC Space charge capacitance [F] jph,n Photocurrent density for electrons [A cm2]
Csolid Capacitance associated with the solid [F] jph,p Photocurrent density for holes [A cm2]
CB Conduction band k Boltzmann constant
CBD Chemical bath deposition k Average pseudo-first-order rate constant [s1]
CE Coloration efficiency k(E) Microcanonical rate constants from their respective
CV Cyclic voltammetry averages [k] [s1]
CVD Chemical vapor deposition kback Rate constant for the RHC intermediate mediated re-
d Film thickness [cm] combination step [cm7 s1]
Di Diffusion coefficient [cm2 s1] kinj Rate constant for the current-doubling step [cm s1]
D(e) Density of states function [cm-3 eV1] kox Rate constant for the electron scavenging by the ex-
DOS Density of states [cm3] ternal oxidant [cm4 s1]
DSCs Dye-sensitized solar cells kr Rate constant for recombination of free electrons
DT Direct transfer, if a valence band free hole is adiabat- and trapped holes [cm3 s1]
ically transferred to pollutant molecules L Diffusion length of charge carriers [cm]
e Elementary charge [C] mc Effective mass of electrons in the conduction band
ef Conduction band free electron n Concentration of conduction band electrons per
E Applied potential with respect to a reference elec- unit volume [cm3]
trode [V] N Total surface density of bridging oxygen
E0 Open-circuit potential in the dark [V] groups [cm2]
EC Potential corresponding to the bottom CB edge [V] Nc Effective density of states in the conduction
EF Potential corresponding to the Fermi level of the band [cm3]
electrode [V] ncontact Electron concentration in the electrode contact
EFB Flatband potential [V] under illumination [cm3]
EGB Potential corresponding to the GB level [V] nph Photogenerated electron concentration under illu-
dark
Eoc Stationary potential in the dark [V] mination [cm3]
Eoc ðtÞ Potential at any time after the illumination [V] n0 Electron concentration in the electrode contact in
Eph Open-circuit potential under illumination [V] the dark [cm3]
ERed/Ox Redox potential of the electrolyte [V] ND Donor density [cm3]
EV Potential corresponding to the top VB edge [V] Nf Surface concentration of surface-trapped
EE Electrolyte–electrode illumination direction holes [cm2]
EIS Electrochemical impedance spectroscopy NGB Total electrode volume density of monoenergetic
f Fraction of surface-trapped holes in the bridging states [cm3]
oxygen sites of TiO2 NP Nanoparticle
f(e-eF) Average occupancy or the Fermi–Dirac function NT Nanotube
FTO Fluorine tin oxide conducting glass NW Nanowire
FWHM Full width at half maximum OCP Open-circuit potential
Gi(x,t) Generation of charged species i [cm3 s1] OCVD Open-circuit photovoltage decay
GB Grain boundary ORR Oxygen reduction reaction
gss(e) Density of surface states function [cm3 eV1] Ox Dissolved oxidant
hf + Valence band free hole p Fraction of electrode (film) volume not occupied by
hs + Surface-trapped hole the SC
I Current [A] PEPS Photoelectrochemical photocurrent switching effect
IMPS Intensity modulated photocurrent spectroscopy Q Charge [C]
IMVS Intensity modulated photovoltage spectroscopy qv Charge per unit volume [C cm3]
IPCE Incident photon-to-current efficiency qs Charge per geometric (projected) electrode surface
IR Infrared area [C cm2]
IT Indirect transfer if a hole trapped at the semicon- Ri(x,t) Recombination of the charged species i (cm3 s1)
ductor surface is isoenergetically transferred to dis- RH2 Oxidizable species in solution
solved pollutant molecules RHaqC Reaction intermediate
jC Capacitive current density [A cm2] RRS Resonance Raman spectroscopy
&44& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
SC Semiconductor ackowledged. T.B. and M.J. also thank the Spanish MICINN for
SE Substrate–electrode illumination direction the award of a “Ramn y Cajal” contract and an FPI grant, re-
SEI Semiconductor/electrolyte interface spectively.
SERS Surface-enhanced Raman spectroscopy
t Time [s] Keywords: electrochemistry · heterogeneous catalysis ·
T Temperature [K] nanostructures · photochemistry · titanium dioxide
Tc Characteristic temperature that defines the broaden-
ing of the surface-state exponential distribution [K] [1] X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891 – 2959.
v Potential scan rate [V s1] [2] A. A. Ismail, D. W. Bahnemann, J. Mater. Chem. 2011, 21, 11686 – 11707.
[3] F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl.
Voc Open-circuit voltage [V] Catal. A 2009, 359, 25 – 40.
Vph Photopotential [V] [4] D. P. Macwan, P. N. Dave, S. Chaturvedi, J. Mater. Sci. 2011, 46, 3669 –
VphEE Photopotential under EE illumination [V] 3686.
VphSE Photopotential under SE illumination [V] [5] S. Girish Kumar, L. Gomathi Devi, J. Phys. Chem. A 2011, 115, 13211 –
13241.
VB Valence band [6] O. Carp, C. L. Huisman, A. Reller, Prog. Solid State Chem. 2004, 32, 33 –
W Width of space charge region [cm] 177.
x Distance [cm] [7] M. Grtzel, Inorg. Chem. 2005, 44, 6841 – 6851.
zi Charge number of species i [8] S. Gnes, N. S. Sariciftci, Inorg. Chim. Acta 2008, 361, 581 – 588.
[9] J. H. Yum, P. Chen, M. Grtzel, M. K. Nazeeruddin, ChemSusChem 2008,
a(l) Wavelength-dependent absorption coeffi- 1, 699 – 707.
cient [cm1] [10] I. Mora-Ser, S. Gimnez, F. Fabregat-Santiago, R. Gmez, Q. Shen, T.
ac Coefficient describing the broadening of the elec- Toyoda, J. Bisquert, Acc. Chem. Res. 2009, 42, 1848 – 1857.
tron state distribution in the band gap [11] R. Abe, J. Photochem. Photobiol. C 2010, 11, 179 – 209.
[12] K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655 – 2661.
DH Electrostatic potential drop across the double [13] R. Beranek, Adv. Phys. Chem. 2011, 786759.
layer [V] [14] T. Djenizian, I. Hanzu, P. Knauth, J. Mater. Chem. 2011, 21, 9925 – 9937.
DSC Potential difference associated to the band energy [15] N. Nang Dinh, N. Minh Quyen, D. N. Chung, M. Zikova, V.-V. Truong,
bending [V] Sol. Energy Mater. Sol. Cells 2011, 95, 618 – 623.
[16] A. Fujishima, X. Zhang, D. A. Tryk, Surf. Sci. Rep. 2008, 63, 515 – 582.
Dsolid Potential drop over the interfacial part of the [17] K. Honda, J. Photochem. Photobiol. A 2004, 166, 63 – 68.
solid [V] [18] E. Becquerel, C. R. Acad. Sci.1839, 9, 561-567.
DOD Change in the optical density of the film between [19] R. Audubert, Les Piles Sensibles l’Action de la Lumire, Hermann et
its colored and bleached states at a certain wave- Cie, Paris, 1931, p. 16.
[20] W. H. Brattain, C. G. B. Garrett, Bell Syst. Tech. J. 1955, 34, 129.
length [21] A. V. Byalobzheskii, V. D. Val’kov, Dokl. Akad. Nauk SSSR 1960, 134,
eF Electrochemical potential, or equivalently the Fermi 121 – 124.
level, of electrons in the electrode [eV] [22] A. Fujishima, S. Kikuchi, K. Honda, J. Chem. Soc. Jpn. Ind. Chem. Sect.
*
eF;n Quasi-Fermi level of electrons [eV] 1969, 72, 108 – 113.
[23] A. Fujishima, A. Sakamoto, K. Honda, Seisan Kenkyu 1969, 21, 450 –
*
eF;p Quasi-Fermi level of holes [eV] 452.
ec Lower CB edge energy [eV] [24] A. Fujishima, K. Honda, Bull. Chem. Soc. Jpn. 1971, 44, 1148 – 1150.
eFTO
F Applied potential (conducting substrate Fermi leve- [25] A. Fujishima, K. Honda, Nature 1972, 238, 37 – 38.
l) [eV] [26] A. Fujishima, E. Hayashitani, K. Honda, Seisan Kenkyu 1971, 23, 363 –
365.
220 Permittivity of the semiconductor [27] A. Fujishima, K. Kohayakawa, K. Honda, J. Electrochem. Soc. 1975, 122,
Vt Total volume density of traps [cm3] 1487 – 1489.
l Wavelength [cm] [28] B. O’Regan, J. Moser, M. Anderson, M. Grtzel, J. Phys. Chem. 1990, 94,
m Chemical potential of electrons [eV] 8720 – 8726.
[29] B. O’Regan, M. Grtzel, Nature 1991, 353, 737 – 740.
m0i Standard chemical potential of i [eV] [30] B. O’Regan, M. Grtzel, D. Fitzmaurice, J. Phys. Chem. 1991, 95, 10525 –
1c ðeÞ Density of states function in the conduction 10528.
band [cm3 eV1] [31] G. Rothenberger, D. Fitzmaurice, M. Grtzel, J. Phys. Chem. 1992, 96,
ti Average lifetime of species i [s] 5983 – 5986.
[32] G. Redmond, D. Fitzmaurice, M. Grtzel, J. Phys. Chem. 1993, 97, 6951 –
Local electrostatic potential (inner or Galvani poten- 6954.
tial) [V] [33] K. Vinodgopal, S. Hotchandani, P. V. Kamat, J. Phys. Chem. 1993, 97,
F0 Monochromatic-light incident photon flux [cm2 s1] 9040 – 9044.
F1=2 ðzÞ Fermi–Dirac integral with index 1/2 [34] K. Vinodgopal, U. Stafford, K. A. Gray, P. V. Kamat, J. Phys. Chem. 1994,
98, 6797 – 6803.
[35] D. H. Kim, M. A. Anderson, Environ. Sci. Technol. 1994, 28, 479 – 483.
[36] A. Wahl, M. Ulmann, A. Carroy, J. Augustynski, J. Chem. Soc. Chem.
Commun. 1994, 2277 – 2278.
Acknowledgements [37] L. Kavan, K. Kratochvilov, M. Grtzel, J. Electroanal. Chem. 1995, 394,
93 – 102.
[38] F. Cao, G. Oskam, P. C. Searson, J. M. Stipkala, T. A. Heimer, F. Farzad,
Financial support from the Spanish Ministry of Science and Inno-
G. J. Meyer, J. Phys. Chem. 1995, 99, 11974 – 11980.
vation (MCINN) through projects MAT2009-14004 (Fondos FEDER) [39] G. K. Boschloo, A. Goossens, J. Schoonman, J. Electroanal. Chem. 1997,
and HOPE CSD2007-00007 (Consolider-Ingenio 2010) is gratefully 428, 25 – 32.
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &45&
These are not the final page numbers! ÞÞ
R. Gmez et al.
[40] S. K. Poznyak, A. I. Kokorin, A. I. Kulak, J. Electroanal. Chem. 1998, 442, [78] C. D. Lokhande, E.-H. Lee, K.-D. Jung, O.-S. Joo, J. Mater. Sci. 2004, 39,
99 – 105. 2915 – 2918.
[41] Y. Wang, Y. Hao, H. Cheng, J. Ma, B. Xu, W. Li, S. Cai, J. Mater. Sci. 1999, [79] B. Liu, E. S. Aydil, J. Am. Chem. Soc. 2009, 131, 3985 – 3990.
34, 2773 – 2779. [80] Q. Zeng, L. Wu, Y. Zhang, B. Qi, J. Zhi, Scr. Mater. 2010, 62, 810 – 813.
[42] S. Soedergren, A. Hagfeldt, J. Olsson, S.-E. Lindquist, J. Phys. Chem. [81] S. Yamabi, H. Imai, Chem. Mater. 2002, 14, 609 – 614.
1994, 98, 5552 – 5556. [82] T. Berger, T. Lana-Villarreal, D. Monllor-Satoca, R. Gmez, Chem. Phys.
[43] A. Solbrand, H. Lindstrçm, H. Rensmo, A. Hagfeldt, S.-E. Lindquist, J. Lett. 2007, 447, 91 – 95.
Phys. Chem. B 1997, 101, 2514 – 2518. [83] M. Jankulovska, T. Berger, T. Lana-Villarreal, R. Gmez, Electrochim. Acta
[44] H. Gerischer, Electrochim. Acta 1990, 35, 1677 – 1699. 2012, 62, 172 – 180.
[45] W. W. Dunn, Y. Aikawa, A. J. Bard, J. Am. Chem. Soc. 1981, 103, 3456 – [84] E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, J. Am. Chem. Soc. 2004,
3459. 126, 7790 – 7791.
[46] K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghesem, G. K. Mor, X. [85] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A.
Feng, M. Paulose, J. A. Seabold, K.-S. Choi, C. A. Grimes, J. Phys. Chem. Grimes, Nano Lett. 2008, 8, 3781 – 3786.
C 2009, 113, 6327 – 6359. [86] X. Yang, J. Zhuang, X. Li, D. Chen, G. Ouyang, Z. Mao, Y. Han, Z. He, C.
[47] J.G. Lu, P. Chang, Z. Fan, Mater. Sci. Eng. 2006, 52, 49 – 91. Liang, M. Wu, J. C. Yu, ACS Nano 2009, 3, 1212 – 1218.
[48] M. Hernndez-Vlez, Thin Solid Films 2006, 495, 51 – 63. [87] M. O. Abou-Helal, W. T. Seeber, Appl. Surf. Sci. 2002, 195, 53 – 62.
[49] S. V. N. T. Kuchibhatla, A. S. Karakoti, D. Bera, S. Seal, Prog. Mater. Sci. [88] M. Okuya, N. A. Prokudina, K. Mushika, S. Kaneko, J. Eur. Ceram. Soc.
2007, 52, 699 – 913. 1999, 19, 903 – 906.
[50] H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, S. Ito, J. Phys. Chem. B [89] P. J. Cameron, L. M. Peter, J. Phys. Chem. B 2003, 107, 14394 – 14400.
2000, 104, 4585 – 4587. [90] H. Sun, C. Wang, S. Pang, X. Li, Y. Tao, H. Tang, M. Liu J. Non-Cryst.
[51] L. Andronic, A. Duta, Adv. Mater. Res. 2007, 23, 325 – 328. Solids 2008, 354, 1440 – 1443.
[52] I. M. Arabatzis, S. Antonarakj, T. Stergiopoulous, A. Hiskia, E. Papacon- [91] S. A. O’Neill, R. J. H. Clark, I. P. Parkin, N. Elliot, A. Mills, Chem. Mater.
stantinou, M. C. Bernard, P. Falaras, J. Photochem. Photobiol. A 2002, 2003, 15, 46 – 50.
149, 237 – 245. [92] K. Nakaso, K. Okuyama, M. Shimada, S. E. Pratsinis, Chem. Eng. Sci.
[53] L. Andronic, D. Andrasi, A. Enesca, M. Visa, A. Duta, J. Sol-Gel Sci. Tech- 2003, 58, 3327 – 3335.
nol. 2011, 58, 201 – 208. [93] H. Lee, M. Y. Song, J. Jurng, Y.-K. Park, Powder Technol. 2011, 214, 64 –
[54] G. Syrrokostas, M. Giannouli, P. Yianoulis, Renewable Energy 2009, 34, 68.
1759 – 1764. [94] A. Brevet, M. C. Marco de Lucas, V. Potin, R. Chassagnon, L. Imhoff, B.
[55] C. J. Barb, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, Domenichini, S. Bourgeois, J. Phys. D 2009, 42, 175302.
M. Grtzel, J. Am. Ceram. Soc. 1997, 80, 3157 – 3171. [95] J.-H. Chang, A. V. Ellis, Y.-H. Hsieh, C.-H. Tung, S.-Y. Shen, Sci. Total Envi-
[56] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mller, P. ron. 2009, 407, 5914 – 5920.
Liska, N. Vlachopoulos, M. Grtzel, J. Am. Chem. Soc. 1993, 115, 6382 – [96] A.R. Zainun, S. Tomoya, U. M. Noor, M. Rusop, I. Masaya, Mater. Lett.
6390. 2012, 66, 254 – 256.
[57] B. van der Zanden, A. Goossens, J. Phys. Chem. B 2000, 104, 7171 – [97] T.-Y. Tsai, S.-Y. Lu, Electrochem. Commun. 2009, 11, 2180 – 2183.
7178. [98] S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura,
[58] D. S. Tsoukleris, I. M. Arabatzis, E. Chatzivasiloglou, A. I. Kontos, V. Be- Solid State Ionics 2002, 151, 19 – 27.
lessi, M. C. Bernard, P. Falaras, Sol. Energy 2005, 79, 422 – 430. [99] I. J. Zhitomirsky, L. Gal-Or, A. Kohn, H.W. Hennicke J.Mater. Sci. 1995,
[59] K. Fan, M. Liu, T. Peng, L. Ma, K. Dai, Renewable Energy 2010, 35, 555 – 30, 5307 – 5312.
561. [100] M.-S. Wu, M.-J. Wang, J.-J. Jow, W.-D. Yang, C.-Y. Hsieh, H.-M. Tsai, J.
[60] T. Ma, T. Kida, M. Akiyama, K. Inoue, S. Tsunematsu, K. Yao, H. Noma, E. Power Sources 2008, 185, 1420 – 1424.
Abe, Electrochem. Commun. 2003, 5, 369 – 372. [101] C.-C. Hu, C.-C. Huang, K.-H. Chang, Electrochem. Commun. 2009, 11,
[61] E. M. El-Maghraby, Y. Nakamura, S. Rengakuji, Catal. Commun. 2008, 9, 434 – 437.
2357 – 2360. [102] S. Sawatani, T. Yoshida, T. Ohya, T. Ban, Y. Takahashi, H. Minoura, Elec-
[62] H. Cui, H. S. Shen, Y. M. Gao, K. Dwight, A. Wold, Mater. Res. Bull. 1993, trochem. Solid-State Lett. 2005, 8, C69 – C71.
28, 195 – 201. [103] K. Wessels, M. Minnermann, J. Rathousky, M. Wark, T. Oekermann, J.
[63] R. Mechiakh, N. Ben Sedrine, R. Chtourou, R. Bensaha, Appl. Surf. Sci. Phys. Chem. C 2008, 112, 15122 – 15128.
2010, 257, 670 – 676. [104] M. S. Wu, C.-H. Tsai, J.-J. Jow, T.-C. Wei, Electrochim. Acta 2011, 56,
[64] K. K. Saini, S. D. Sharma, Chanderkant, M. Kar, D. Singh, C. P. Sharma, J. 8906 – 8911.
Non-Cryst. Solids 2007, 353, 2469 – 2473. [105] K. Wessels, A. Feldhoff, M. Wark, J. Rathousky, T. Oekermann, Electro-
[65] S. Sokolov, E. Ortel, J. Radnik, R. Kraehnert, Thin Solid Films 2009, 518, chem. Solid-State Lett. 2006, 9, C93 – C96.
27 – 35. [106] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 1999,
[66] A. G. Agrios, I. Cesar, P. Comte, M. K. Nazeeruddin, M. Grtzel, Chem. 45, 921 – 929.
Mater. 2006, 18, 5395 – 5397. [107] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin,
[67] J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 2000, 379, 7 – 14. M. Aucouturier, Surf. Interface Anal. 1999, 27, 629 – 637.
[68] C. Su, B.-Y. Hong, C.-M. Tseng, Catal. Today 2004, 96, 119 – 126. [108] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C.
[69] R. Zhang, L. Gao, Q. Zhang, Chemosphere 2004, 54, 405 – 411. Dickey, J. Mater. Res. 2001, 16, 3331 – 3334.
[70] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc. 1991, 113, 2826 – 2833. [109] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol.
[71] B. B. Lakshmi, C. J. Patrissi, C. R. Martin, Chem. Mater. 1997, 9, 2544 – Energy Mater. Sol. Cells 2006, 90, 2011 – 2075.
2550. [110] P. Roy, S. Berger, P. Schmuki, Angew. Chem. 2011, 123, 2956 – 2995;
[72] B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Chem. Mater. 1997, 9, 857 – Angew. Chem. Int. Ed. 2011, 50, 2904 – 2939.
862. [111] J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, L.
[73] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Nano Lett. 2002, 2, Zou, J. Mater. Sci. 2008, 43, 1880 – 1884.
717 – 720. [112] O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, J. Mater.
[74] L. Zhou, R. C. Hoffmann, Z. Zhao, J. Bill, F. Aldinger, Thin Solid Films Res. 2003, 18, 156 – 165.
2008, 516, 7661 – 7666. [113] S. P. Albu, A. Ghicov, J. M. Macak, P. Schmuki, Phys. Status Solidi RRL
[75] S. M. Pawar, B. S. Pawar, J. H. Kim, O.-S. Joo, C. D. Lokhande, Curr. Appl. 2007, 1, R65 – R67.
Phys. 2011, 11, 117 – 161. [114] M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K.
[76] A. M. More, T. P. Gujar, J. L. Gunjakar, C. D. Lokhande, O.-S. Joo, Appl. Mor, T. A. Desai, C. A. Grimes, J. Phys. Chem. C 2007, 111, 14992 – 14997.
Surf. Sci. 2008, 255, 2682 – 2687. [115] N. K. Allam, C. A. Grimes, J. Phys. Chem. C 2007, 111, 13028 – 13032.
[77] R. S. Mane, Y. H. Hwang, C. D. Lokhande, S. D. Sartale, S.-H. Han, Appl. [116] N. K. Allam, K. Shankar, C. A. Grimes, J. Mater. Chem. 2008, 18, 2341 –
Surf. Sci. 2005, 246, 271 – 278. 2348.
&46& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
[117] G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, J. [154] D. Guan, C. Cai, Y. Wang, J. Nanosci. Nanotechnol. 2011, 11, 3641 –
Mater. Res. 2003, 18, 2588 – 2593. 3650.
[118] Q. Cai, M. Paulose, O. K. Varghese, C. A. Grimes, J. Mater. Res. 2005, 20, [155] Y. Sun, G. Wang, K. Yan, Int. J. Hydrogen Energy 2011, 36, 15502 –
230 – 236. 15508.
[119] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano [156] Q.-Q. Meng, J.-G. Wang, Q. Xie, H.-Q. Dong, X.-N. Li, Catal. Today 2011,
Lett. 2005, 5, 191 – 195. 165, 145 – 149.
[120] G.-J. Wang, S.-W. Chou, Nanotechnology 2010, 21, 115206. [157] O. K. Varghese, M. Paulose, K. Shankar, G. K. Mor, C. A. Grimes, J. Nano-
[121] J.-H. Yum, S.-S. Kim, D.-Y. Kim, Y.-E. Sung, J. Photochem. Photobiol. A sci. Nanotechnol. 2005, 5, 1158 – 1165.
2005, 173, 1 – 6. [158] A. Ghicov, H. Tsuchiya, R. Hahn, J. M. Macak, A. G. MuÇoz, P. Schmuki,
[122] W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, Y. Lin, Electrochim. Acta 2009, Electrochem. Commun. 2006, 8, 528 – 532.
54, 4467 – 4472. [159] Y. V. Pleskov, Y. Y. Gurevich, Semiconductor Photoelectrochemistry, Con-
[123] Y.-S. Hu, L. Kienle, Y.-G. Guo, J. Maier, Adv. Mater. 2006, 18, 1421 – 1426. sultants Bureau, New York, 1986.
[124] D. S. Tsoukleris, A. I. Kontos, P. Aloupogiannis, P. Falaras, Catal. Today [160] D. Vanmaekelbergh, A. J. Houtepen, J. J. Kelly, Electrochim. Acta 2007,
2007, 124, 110 – 117. 53, 1140 – 1149.
[125] C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, C. Thanachayanont, [161] A. Natarajan, G. Oskam, P. C. Searson, J. Phys. Chem. B 1998, 102,
Ceram. Int. 2008, 34, 1067 – 1071. 7793 – 7799.
[126] M. C. Carotta, M. Ferroni, V. Guidi, G. Martinelli, Adv. Mater. 1999, 11, [162] J. J. Kelly, D. Vanmaekelbergh, Electrochim. Acta 1998, 43, 2773 – 2780.
943 – 946. [163] A. Wahl, J. Augustynski, J. Phys. Chem. B 1998, 102, 7820 – 7828.
[127] M. Sasani Ghamsari, A. R. Bahramian, Mater. Lett. 2008, 62, 361 – 364. [164] F. Fabregat-Santiago, I. Mora-Ser, G. Garcia-Belmonte, J. Bisquert, J.
[128] N. N. Dinh, N. T. T. Oanh, P. D. Long, M. C. Bernard, A. H. L. Goff, Thin Phys. Chem. B 2003, 107, 758 – 768.
Solid Films 2003, 423, 70 – 76. [165] I. Abayev, A. Zaban, F. Fabregat-Santiago, J. Bisquert, Phys. Status Solidi
[129] R. Jourdani, D. Aitelhabti, E. L. Ameziane, S. Barazzouk, S. Hotchandani, A 2003, 196, R4 – R6.
Act. Passive Electron. Compon. 2004, 27, 125 – 131. [166] J. Bisquert, F. Fabregat-Santiago, I. Mora-Ser, G. Garcia-Belmonte,
[130] J. Zhu, J. Yang, Z.-F. Bian, J. Ren, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, K.-N. E. M. Barea, E. Palomares, Inorg. Chim. Acta 2008, 361, 684 – 698.
Fan, Appl. Catal. B 2007, 76, 82 – 91. [167] V. G. Kytin, J. Bisquert, I. Abayev, A. Zaban, Phys. Rev. B 2004, 70,
[131] M. A. Reddy, M. S. Kishore, V. Pralong, V. Caignaert, U. V. Varadaraju, B. 1933041.
Raveau, Electrochem. Commun. 2006, 8, 1299 – 1303. [168] A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walter, K. G. U. Wijayan-
[132] C. G. Granqvist, P. C. Lans ker, N. R. Mlyuka, G. A. Niklasson, E. Avenda- tha, J. Phys. Chem. B 2000, 104, 949 – 958.
[169] J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B 2000, 104, 4292 – 4294.
Ço, Sol. Energy Mater. Sol. Cells 2009, 93, 2032 – 2039.
[170] J. Nelson, Phys. Rev. B 1999, 59, 15374 – 15380.
[133] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano
[171] R. Kçnenkamp, Phys. Rev. B 2000, 61, 11057 – 11064.
Lett. 2006, 6, 215 – 218.
[172] A. L. Roest, J. J. Kelly, D. Vanmaekelbergh, E. A. Meulenkamp, Phys. Rev.
[134] J. Li, W. Wan, H. Zhou, J. Li, D. Xu, Chem. Commun. 2011, 47, 3439 –
Lett. 2002, 89, 0368011.
3441.
[173] G. Boschloo, D. Fitzmaurice, J. Phys. Chem. B 1999, 103, 2228 – 2231.
[135] A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, J. Power Sources
[174] L. M. Peter, N. W. Duffy, R. L. Wang, K. G. U. Wijayantha, J. Electroanal.
2005, 146, 501 – 506.
Chem. 2002, 524 – 525, 127 – 136.
[136] Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo, N. Sharma, H. Liu, Electro-
[175] M. Bailes, P. J. Cameron, K. Lobato, L. M. Peter, J. Phys. Chem. B 2005,
chem. Commun. 2011, 13, 46 – 49.
109, 15429 – 15435.
[137] Q. Mu, Y. Li, Q. Zhang, H. Wang, J. Hazard. Mater. 2011, 188, 363 – 368.
[176] G. Boschloo, A. Hagfeldt, J. Phys. Chem. B 2005, 109, 12093 – 12098.
[138] S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, S. Yoshi-
[177] J. van de Lagemaat, N. G. Park, A. J. Frank, J. Phys. Chem. B 2000, 104,
kawa, J. Photochem. Photobiol. A 2006, 184, 163 – 169.
2044 – 2052.
[139] X. Gao, H. Zhu, G. Pan, S. Ye, Y. Lan, F. Wu, D. Song, J. Phys. Chem. B
[178] F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban, P. Sal-
2004, 108, 2868 – 2872.
vador, J. Phys. Chem. B 2002, 106, 334 – 339.
[140] Z. Liu, B. Pesic, K. S. Raja, R. R. Rangaraju, M. Misra, Int. J. Hydrogen
[179] R. L. Willis, C. Olson, B. O’Regan, T. Lutz, J. Nelson, J. R. Durrant, J. Phys.
Energy 2009, 34, 3250 – 3257. Chem. B 2002, 106, 7605 – 7613.
[141] R. Hahn, A. Ghicov, H. Tsuchiya, J. M. Macak, A. G. MuÇoz, P. Schmuki, [180] H. Wang, J. He, G. Boschloo, H. Lindstrçm, A. Hagfeldt, S. E. Lindquist,
Phys. Status Solidi A 2007, 204, 1281 – 1285. J. Phys. Chem. B 2001, 105, 2529 – 2533.
[142] J. R. Li, Z. L. Tang, Z. T. Zhang, Electrochem. Solid-State Lett. 2005, 8, [181] G. Schlichthçrl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B
A316 – A319. 1997, 101, 8141 – 8155.
[143] P. S. Patil, S. H. Mujawar, A. I. Inamdar, S. B. Sadale, Appl. Surf. Sci. 2005, [182] G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, I. Uhlendorf, J. Phys.
250, 117 – 123. Chem. B 1999, 103, 692 – 698.
[144] A. Sobczyk-Guzenda, M. Gazicki-Lipman, H. Szymanowski, J. Kowalski, [183] B. O’Regan, M. Grtzel, D. Fitzmaurice, Chem. Phys. Lett. 1991, 183, 89 –
P. Wojciechowski, T. Halamus, A. Tracz, Thin Solid Films 2009, 517, 93.
5409 – 5414. [184] G. Boschloo, D. Fitzmaurice, J. Phys. Chem. B 1999, 103, 7860 – 7868.
[145] J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, J. Aarik, V. Sammelselg, Thin [185] T. Berger, J. A. Anta, V. Morales-Flrez, J. Phys. Chem. C 2012, 116,
Solid Films 1997, 305, 270 – 273. 11444 – 11455.
[146] M. Wu, Z. H. Yang, Y. H. Jiang, J. J. Zhang, S. Q. Liu, Y. M. Sun, J. Solid [186] J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Ser, J. Am. Chem. Soc.
State Electrochem. 2010, 14, 857 – 863. 2004, 126, 13550 – 13559.
[147] W.-J. Lee, M. Alhoshan, W. H. Smyrl, J. Electrochem. Soc. 2006, 153, [187] L. Kavan, M. Grtzel, S. E. Gilbert, C. Klemenz, H. J. Scheel, J. Am. Chem.
B499 – B505. Soc. 1996, 118, 6716 – 6723.
[148] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. [188] T. Berger, T. Lana-Villarreal, D. Monllor-Satoca, R. Gmez, J. Phys. Chem.
Schmuki, Curr. Opin. Solid State Mater. Sci. 2007, 11, 3 – 18. C 2007, 111, 9936 – 9942.
[149] M. Adachi, Y. Murata, M. Harada, S. Yoshikawa, Chem. Lett. 2000, 29, [189] J. Durrant, J. Photochem. Photobiol. A 2002, 148, 5 – 10.
942 – 943. [190] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A.
[150] S. Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda, S. Awatsu, J. Phys. Chem. Hagfeldt, Sol. Energy Mater. Sol. Cells 2005, 87, 117 – 131.
B 2003, 107, 6586 – 6589. [191] E. Guilln, L. M. Peter, J. A. Anta, J. Phys. Chem. C 2011, 115, 22622 –
[151] M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, K. G. Ong, Nano- 22632.
technology 2006, 17, 398 – 402. [192] F. Fabregat-Santiago, H. Randriamahazaka, A. Zaban, J. Garc a-CaÇadas,
[152] K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Var- G. Garcia-Belmonte, J. Bisquert, Phys. Chem. Chem. Phys. 2006, 8,
ghese, C. A. Grimes, Nanotechnology 2007, 18, 065707. 1827 – 1833.
[153] J. Yan, F. Zhou, J. Mater. Chem. 2011, 21, 9406 – 9418. [193] S. Ardo, G. J. Meyer, Chem. Soc. Rev. 2009, 38, 115 – 164.
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &47&
These are not the final page numbers! ÞÞ
R. Gmez et al.
[194] M. A. Henderson, Surf. Sci. Rep. 2011, 66, 185 – 297. [232] J.-J. Lee, G. M. Coia, N. S. Lewis, J. Phys. Chem. B 2004, 108, 5269 –
[195] K. Westermark, A. Henningsson, H. Rensmo, S. Sodergren, H. Siegbahn, 5281.
A. Hagfeldt, Chem. Phys. 2002, 285, 157 – 165. [233] E. Pelizzetti, C. Minero, Electrochim. Acta 1993, 38, 47 – 55.
[196] G. Liu, W. Jgermann, J. He, V. Sundstrçm, L. Sun, J. Phys. Chem. B [234] A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solu-
2002, 106, 5814 – 5819. tions, Marcel Dekker, New York, 1985.
[197] L. M. Peter, Acc. Chem. Res. 2009, 42, 1839 – 1847. [235] A. J. Bard, L. R. Faulkner, Electrochemical Methods, 2nd ed., Wiley, New
[198] I. Abayev, A. Zaban, V. G. Kytin, A. A. Danilin, G. Garcia-Belmonte, J. Bis- York, 2001.
quert, J. Solid State Electrochem. 2007, 11, 647 – 653. [236] J. Nelson in Encyclopedia of Electrochemistry, Vol. 6 (Eds.: A. J. Bard, M.
[199] F. Marken, A. S. Bhambra, D. H. Kim, R. J. Mortimer, S. J. Stott, Electro- Stratmann), Wiley-VCH, Weinheim, 2002.
chem. Commun. 2004, 6, 1153 – 1158. [237] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevi-
[200] T. Berger, T. Lana-Villarreal, D. Monllor-Satoca, R. Gmez, Electrochem. er, Amsterdam, 1998.
Commun. 2006, 8, 1713 – 1718. [238] L. M. Peter, Phys. Chem. Chem. Phys. 2007, 9, 2630 – 2642.
[201] T. Lana-Villarreal, Y. Mao, S. S. Wong, R. Gmez, Nanoscale 2010, 2, [239] J. Bisquert, Phys. Chem. Chem. Phys. 2008, 10, 49 – 72.
1690 – 1698. [240] L. M. Peter, J. Phys. Chem. C 2007, 111, 6601 – 6612.
[202] L. A. Lyon, J. T. Hupp, J. Phys. Chem. B 1999, 103, 4623 – 4628. [241] N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, A. J. Frank, J.
[203] L. A. Lyon, J. T. Hupp, J. Phys. Chem. 1995, 99, 15718 – 15720. Phys. Chem. B 2000, 104, 3930 – 3936.
[204] S. Y. Huang, L. Kavan, I. Exnar, M. Grtzel, J. Electrochem. Soc. 1995, [242] S. Nakade, S. Lambe, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B
142, L142 – L144. 2001, 105, 9150 – 9152.
[205] J. Kang, S. H. Wei, K. Zhu, Y. H. Kim, J. Phys. Chem. C 2011, 115, 4909 – [243] S. Nakade, S. Lambe, M. Matsuda, Y. Saito, T. Kitamura, Y. Wada, S. Ya-
4915. nagida, Phys. E 2002, 14, 210 – 214.
[206] A. Krlikowska, P. Barczuk, R. Jurczakowski, J. Augustynski, J. Electroa- [244] S. Lambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B
nal. Chem. 2011, 662, 229 – 239. 2002, 106, 2967 – 2972.
[207] L. de La Garza, Z. V. Saponjic, N. M. Dimitrijevic, M. Thurnauer, T. Rajh, J. [245] J. Bisquert, V. S. Vilhrenko, J. Phys. Chem. B 2004, 108, 2313 – 2322.
Phys. Chem. B 2006, 110, 680 – 686. [246] N. W. Duffy, L. M. Peter, K. G. U. Wijayantha, Electrochem. Commun.
[208] A. Kay, R. Humphry-Baker, M. Grtzel, J. Phys. Chem. 1994, 98, 952 – 2000, 2, 262 – 266.
959. [247] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G.
[209] F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, P. Bogdanoff, A. Redmond, N. J. Shaw, I. Uhlendorf, J. Phys. Chem. B 1997, 101, 10281 –
Zaban, J. Electrochem. Soc. 2003, 150, E293 – E298. 10289.
[248] V. Duzhko, V. Y. Timoshenko, F. Koch, T. Dittrich Phys. Rev. B 2001, 64,
[210] V. M. Khomenko, K. Langer, H. Rager, A. Fett, Phys. Chem. Miner. 1998,
075204.
25, 338 – 346.
[249] S.-E. Lindquist, B. Finnstrçm, L. Tegnr, J. Electrochem. Soc. 1983, 130,
[211] D. A. Panayotov, S. P. Burrows, J. T. Yates, J. R. Morris, J. Phys. Chem. C
351 – 358.
2011, 115, 22400 – 22408.
[250] C. Minero, Catal. Today 1999, 54, 205 – 216.
[212] T. Berger, M. Sterrer, O. Diwald, E. Knçzinger, D. Panayotov, T. L.
[251] D. Monllor-Satoca, R. Gmez, M. Gonzlez-Hidalgo, P. Salvador, Catal.
Thompson, J. T. Yates, J. Phys. Chem. B 2005, 109, 6061 – 6068.
Today 2007, 129, 247 – 255.
[213] S. Szczepankiewicz, J. A. Moss, M. R. Hoffmann, J. Phys. Chem. B 2002,
[252] T. Lana-Villarreal, R. Gmez, M. Neumann-Spallart, N. Alonso-Vante, P.
106, 2922 – 2927.
Salvador, J. Phys. Chem. B 2004, 108, 15172 – 15181.
[214] T. Yoshihara, R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S.
[253] N. Hykaway, W. M. Sears, H. Morisaki, S. R. Morrison, J. Phys. Chem.
Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 2004, 108, 3817 –
1986, 90, 6663 – 6667.
3823.
[254] A. Imanishi, T. Okamura, N. Ohashi, R. Nakamura, Y. Nakato, J. Am.
[215] D. S. Warren, A. J. McQuillan, J. Phys. Chem. B 2004, 108, 19373 – 19379.
Chem. Soc. 2007, 129, 11569 – 11578.
[216] D. M. Savory, D. S. Warren, A. J. McQuillan, J. Phys. Chem. C 2011, 115,
[255] I. Mora-Ser, T. Lana-Villarreal, J. Bisquert, . Pitarch, R. Gmez, P. Salva-
902 – 907.
dor, J. Phys. Chem. B 2005, 109, 3371 – 3380.
[217] A. Hagfeldt, N. Vlachopoulos, M. Grtzel, J. Electrochem. Soc. 1994, 141,
[256] G. Waldner, R. Gmez, M. Neumann-Spallart, Electrochim. Acta 2007,
L82 – L84. 52, 2634 – 2639.
[218] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. [257] T. Lana-Villarreal, R. Gmez, M. Gonzlez-Hidalgo, P. Salvador, J. Phys.
1995, 95, 69 – 96. Chem. B 2004, 108, 20278 – 20290.
[219] M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341 – 357. [258] D. Monllor-Satoca, L. Borja, A. Rodes, R. Gmez, P. Salvador, ChemPhys-
[220] J. M. Macak, P. J. Barczuk, H. Tsuchiya, M. Z. Nowakowska, A. Ghicov, M. Chem 2006, 7, 2540 – 2551.
Chojak, S. Bauer, S. Virtanen, P. J. Kulesza, P. Schmuki, Electrochem. [259] T. Berger, T. Lana-Villarreal, D. Monllor-Satoca, R. Gmez, J. Phys. Chem.
Commun. 2005, 7, 1417 – 1422. C 2008, 112, 15920 – 15928.
[221] K. W. Park, K. S. Seol, Electrochem. Commun. 2007, 9, 2256 – 2260. [260] D. Monllor-Satoca, R. Gmez, Electrochim. Acta 2010, 55, 4661 – 4668.
[222] H. Chhina, S. Campbell, O. Kesler, J. Electrochem. Soc. 2009, 156, [261] A. Solbrand, A. Henningsson, S. Sçdergren, H. Lindstrçm, A. Hagfeldt,
B1232 – B1237. S.-E. Lindquist, J. Phys. Chem. B 1999, 103, 1078 – 1083.
[223] S.-Y. Huang, P. Ganesan, S. Park, B. N. Popov, J. Am. Chem. Soc. 2009, [262] A. J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 2004,
131, 13898 – 13899. 248, 1165 – 1179.
[224] S. Shanmugam, A. Gedanken, J. Phys. Chem. C 2009, 113, 18707 – [263] S. E. Lindquist, A. Hagfeldt, S. Sçdergren, H. Lindstrçm, Charge trans-
18712. port in nanostructured thin-film electrodes in Electrochemistry of Nano-
[225] A. Bauer, K. Lee, C. Song, Y. Xie, J. Zhang, R. Hui, J. Power Sources materials (Ed.: G. Hodes), Wiley-VCH, Weinheim, 2001.
2010, 195, 3105 – 3110. [264] W. H. Leng, P. R. F. Barnes, M. Juozapavicius, B. C. O’Regan, J. R. Dur-
[226] D. Chu, M. Xu, J. Lu, P. Zheng, G. Qin, X. Yuan, Electrochem. Commun. rant, J. Phys. Chem. Lett. 2010, 1, 967 – 972.
2008, 10, 350 – 353. [265] T. Lana-Villarreal, D. Monllor-Satoca, R. Gmez, P. Salvador, Electrochem.
[227] D. Chu, Y. Hou, J. He, M. Xu, Y. Wang, S. Wang, J. Wang, L. Zha, J. Nano- Commun. 2006, 8, 1784 – 1790.
part. Res. 2009, 11, 1805 – 1809. [266] T. Lana-Villarreal, R. Gmez, Chem. Phys. Lett. 2005, 414, 489 – 494.
[228] C. A. Koval, J. N. Howard, Chem. Rev. 1992, 92, 411 – 433. [267] G. Hodes, I. D. J. Howell, L. M. Peter, J. Electrochem. Soc. 1992, 139,
[229] P. V. Kamat, K. Tvrdy, D. R. Baker, J. G. Radich, Chem. Rev. 2010, 110, 3136 – 3140.
6664 – 6688. [268] A. Tsujiko, H. Itoh, T. Kisumi, A. Shiga, K. Murakoshi, Y. Nakato, J. Phys.
[230] A. Hagfeldt, H. Lindstrçm, S. Sçdergren, S.-E. Lindquist, J. Electroanal. Chem. B 2002, 106, 5878 – 5885.
Chem. 1995, 381, 39 – 46. [269] K. Szaciłowski, W. Macyk, Solid-State Electron. 2006, 50, 1649 – 1655.
[231] D. Vanmaekelbergh, P. E. de Jongh, J. Phys. Chem. B 1999, 103, 747 – [270] P. A. Mandelbaum, A. E. Regazzoni, M. A. Blesa, J. Phys. Chem. B 1999,
750. 103, 5505 – 5511.
&48& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
[271] P. Mandelbaum, S. A. Bilmes, A. E. Regazzoni, M. A. Blesa, Solar Energy [315] M. X. Tan, R. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton,
1999, 65, 75 – 80. N. S. Lewis, Prog. Inorg. Chem. 1994, 41, 21 – 144.
[272] M. E. Calvo, R. J. Candal, S. A. Bilmes, Catal. Today 2002, 76, 133 – 139. [316] A. Islam, H. Sugihara, K. Hara, L. P. Singh, R. Katoh, M. Yanagida, Y. Taka-
[273] M. E. Calvo, R. J. Candal, S. A. Bilmes, Environ. Sci. Technol. 2001, 35, hashi, S. Murata, H. Arakawa, G. Fujihashi, Inorg. Chem. 2001, 40,
4132 – 4138. 5371 – 5380.
[274] W. Y. Gan, M. W. Lee, R. Amal, H. Zhao, K. Chiang, J. Appl. Electrochem. [317] A. Hagfeldt, M. Grtzel, Acc. Chem. Res. 2000, 33, 269 – 277.
2008, 38, 703 – 712. [318] M. Neumann-Spallart, Chimia 2007, 61, 806 – 809.
[275] W. Y. Gan, D. Friedmann, R. Amal, S. Zhang, K. Chiang, H. Zhao, Chem. [319] K. Rajeshwar, N. R. De Tacconi, C. R. Chenthamarakshan, Chem. Mater.
Eng. J. 2010, 158, 482 – 488. 2001, 13, 2765 – 2782.
[276] H. Zhang, P. Liu, X. Liu, S. Zhang, X. Yao, T. An, R. Amal, H. Zhao, Lang- [320] P. V. Kamat, J. Phys. Chem. C 2007, 111, 2834 – 2860.
muir 2010, 26, 11226 – 11232. [321] H. Zhang, G. Chen, D. W. Bahnemann, J. Mater. Chem. 2009, 19, 5089 –
[277] W. Y. Gan, H. Zhao, R. Amal, Appl. Catal. A 2009, 354, 8 – 16. 5121.
[278] D. Jiang, H. Zhao, Z. Jia, J. Cao, R. John, J. Photochem. Photobiol. A [322] A. N. Banerjee, Nanotechnol. Sci. Appl. 2011, 4, 35 – 65.
2001, 144, 197 – 204. [323] A. A. Aal, H. B. Hassan, M. A. Abdel Rahim, J. Electroanal. Chem. 2008,
[279] D. Jiang, H. Zhao, S. Zhang, R. John, J. Phys. Chem. B 2003, 107, 619 – 620, 17 – 25.
12774 – 12780. [324] J. Georgieva, S. Armyanov, E. Valova, I. Poulios, S. Sotiropoulos, Electro-
[280] D. Jiang, H. Zhao, S. Zhang, R. John, J. Catal. 2004, 223, 212 – 220. chem. Commun. 2007, 9, 365 – 370.
[281] D. Jiang, H. Zhao, S. Zhang, R. John, G. D. Will, J. Photochem. Photobiol. [325] J. Georgieva, S. Sotiropoulos, S. Armyanov, N. Philippidis, I. Poulios, J.
A 2003, 156, 201 – 206. Appl. Electrochem. 2011, 41, 173 – 181.
[282] H. Zhang, H. Zhao, S. Zhang, X. Quan, ChemPhysChem 2008, 9, 117 – [326] Y. Sun, E. Hao, X. Zhang, B. Yang, J. Shen, L. Chi, H. Fuchs, Langmuir
123. 1997, 13, 5168 – 5174.
[283] A. Solbrand, K. Keis, S. Sçdergren, H. Lindstrçm, S.-E. Lindquist, A. Hag- [327] H. Gerischer, M. Lbke, J. Electroanal. Chem. 1986, 204, 225 – 227.
feldt, Sol. Energy Mater. Sol. Cells 2000, 60, 181 – 193. [328] S. Chen, M. Paulose, C. Ruan, G. K. Mor, O. K. Varghese, D. Kouzoudis,
[284] P. E. de Jongh, D. Vanmaekelbergh, Phys. Rev. Lett. 1996, 77, 3427 – C. A. Grimes, J. Photochem. Photobiol. A 2006, 177, 177 – 184.
3430. [329] D. R. Baker, P. V. Kamat, Adv. Funct. Mater. 2009, 19, 805 – 811.
[285] P. E. de Jongh, D. Vanmaekelbergh, J. Phys. Chem. B 1997, 101, 2716 – [330] I. Bedja, P. V. Kamat, J. Phys. Chem. 1995, 99, 9182 – 9188.
2722. [331] K. Vinodgopal, I. Bedja, P. V. Kamat, Chem. Mater. 1996, 8, 2180 – 2187.
[286] D. Vanmaekelbergh, P. E. de Jongh, Phys. Rev. B 2000, 61, 4699 – 4704. [332] Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, J. Yao, Chem. Mater. 2000,
[287] W. P. Gomes, D. Vanmaekelbergh, Electrochim. Acta 1996, 41, 967 – 973.
12, 3445 – 3448.
[288] J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P.
[333] D. Liu, P. V. Kamat, J. Electroanal. Chem. 1993, 347, 451 – 456.
Bogdanoff, E. C. Pereira, J. Phys. Chem. B 2000, 104, 2287 – 2298.
[334] D. Liu, P. V. Kamat, J. Phys. Chem. 1993, 97, 10769 – 10773.
[289] J. Bisquert, J. Phys. Chem. B 2002, 106, 325 – 333.
[335] R. Beranek, H. Kisch, Angew. Chem. 2008, 120, 1340 – 1342; Angew.
[290] W. H. Leng, Z. Zhang, J. Q. Zhang, C. N. Cao, J. Phys. Chem. B 2005,
Chem. Int. Ed. 2008, 47, 1320 – 1322.
109, 15008 – 15023.
[336] A. Henglein, Chem. Rev. 1989, 89, 1861 – 1873.
[291] H. Liu, S. Cheng, M. Wu, H. Wu, J. Zhang, W. Li, C. Cao, J. Phys. Chem. A
[337] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735 – 758.
2000, 104, 7016 – 7020.
[338] R. S. Dibbell, G. R. Soja, R. M. Hoth, D. F. Watson, Langmuir 2007, 23,
[292] H. Liu, X. Z. Li, Y. J. Leng, W. Z. Li, J. Phys. Chem. B 2003, 107, 8988 –
3432 – 3439.
8996.
[339] Q. Shen, D. Arae, T. Toyoda, J. Photochem. Photobiol. A 2004, 164, 75 –
[293] N. Baram, Y. Ein-Eli, J. Phys. Chem. C 2010, 114, 9781 – 9790.
80.
[294] Z. Hosseini, N. Taghavinia, N. Sharifi, M. Chavoshi, M. Rahnman, J. Phys.
[340] H. Tada, M. Fujishima, H. Kobayashi, Chem. Soc. Rev. 2011, 40, 4232 –
Chem. C 2008, 112, 18686 – 18689.
4243.
[295] L. Peter, K. G. U. Wijayantha, Electrochem. Commun. 1999, 1, 576 – 580.
[341] T. Lana-Villarreal, R. Gmez, Electrochem. Commun. 2005, 7, 1218 –
[296] E. Marchante, T. Lana-Villarreal, V. Sez, J. Gonzlez-Garc a, R. Gmez,
1224.
Chem. Commun. 2009, 4127 – 4129.
[297] N. S. Lewis, J. Electrochem. Soc. 1984, 131, 2496 – 2503. [342] M. Anpo, M. Takeuchi, J. Catal. 2003, 216, 505 – 516.
[298] A. Zaban, M. Greenshtein, J. Bisquert, ChemPhysChem 2003, 4, 859 – [343] N. Chandrasekharan, P. V. Kamat, J. Phys. Chem. B 2000, 104, 10851 –
864. 10857.
[299] I. Mora-Ser, T. Dittrich, A. Belaidi, G. Garc a-Belmonte, J. Bisquert, J. [344] V. Subramanian, E. Wolf, P. V. Kamat, J. Phys. Chem. B 2001, 105,
Phys. Chem. B 2005, 109, 14932 – 14938. 11439 – 11446.
[300] M. Neumann-Spallart, O. Eneo, J. Electrochem. Soc. 1984, 131, 2767 – [345] C. He, Y. Xiong, X. H. Zhu, Thin Solid Films 2002, 422, 235 – 238.
2772. [346] C. He, X. Li, Y. Xiong, X. Zhu, S. Liu, Chemosphere 2005, 58, 381 – 389.
[301] J. Desilvestro, M. Neumann-Spallart, J. Phys. Chem. 1985, 89, 3684 – [347] P. V. Kamat, J. Phys. Chem. C 2008, 112, 18737 – 18753.
3689. [348] D. Yu, E. Nogelli, F. Du, L. Dai, J. Phys. Chem. Lett. 2010, 1, 2165 – 2173.
[302] J. A. Byrne, B. R. Eggins, J. Electroanal. Chem. 1998, 457, 61 – 72. [349] Y. Park, N. J. Singh, K. S. Kim, T. Tachikawa, T. Majima, W. Choi, Chem.
[303] J. A. Byrne, A. Davidson, S. P. M. Dunlop, B. R. Eggins, J. Photochem. Eur. J. 2009, 15, 10843 – 10850.
Photobiol. A 2002, 148, 365 – 374. [350] A. Kongkanand, R. M. Dom nguez, P. V. Kamat, Nano Lett. 2007, 7,
[304] R. Gmez, P. Salvador, Sol. Energy Mater. Sol. Cells 2005, 88, 377 – 388. 676 – 680.
[305] D. Monllor-Satoca, R. Gmez, J. Phys. Chem. C 2008, 112, 139 – 147. [351] S. Barazzouk, S. Hotchandani, K. Vinodgopal, P. V. Kamat, J. Phys. Chem.
[306] N. Guijarro, Q. Shen, S. Gimnez, I. Mora-Ser, J. Bisquert, T. Lana-Villar- B 2004, 108, 17015 – 17018.
real, T. Toyoda, R. Gmez, J. Phys. Chem. C 2010, 114, 22352 – 22360. [352] Y. Park, S.-H. Kang, W. Choi, Phys. Chem. Chem. Phys. 2011, 13, 9425 –
[307] T. Brgi, A. Baiker, Adv. Catal. 2006, 50, 227 – 283. 9431.
[308] P. Araujo, C. B. Mendive, L. A. Garc a Rodenas, P. J. Morando, A. E. Re- [353] Y. H. Ng, I. V. Lightcap, K. Goodwin, M. Matsumura, P. V. Kamat, J. Phys.
gazzoni, M. A. Blesa, D. Bahnemann, Colloids Surf. A 2005, 265, 73 – 80. Chem. Lett. 2010, 1, 2222 – 2227.
[309] T. Lana-Villarreal, J. M. Prez, R. Gmez, Surf. Sci. 2004, 572, 329 – 336. [354] H.-i. Kim, G.-h. Moon, D. Monllor-Satoca, Y. Park, W. Choi, J. Phys. Chem.
[310] T. Lana-Villarreal, J. M. Prez, R. Gmez, C. R. Chim. 2006, 9, 806 – 816. C 2012, 116, 1535 – 1543.
[311] T. Lana-Villarreal, A. Rodes, J. M. Prez, R. Gmez, J. Am. Chem. Soc. [355] J. Boucl, P. Ravirajan, J. Nelson, J. Mater. Chem. 2007, 17, 3141 – 3153.
2005, 127, 12601 – 12611. [356] T. Lana-Villarreal, D. Monllor-Satoca, A. Rodes, R. Gmez, Catal. Today
[312] T. Berger, A. Rodes, R. Gmez, Chem. Commun. 2010, 46, 2992 – 2994. 2007, 129, 86 – 95.
[313] T. Berger, A. Rodes, R. Gmez, Phys. Chem. Chem. Phys. 2010, 12, [357] H. Xia, Q. Wang, Chem. Mater. 2002, 14, 2158 – 2165.
10503 – 10511. [358] M. R. Nabid, M. Golbabaee, A. B. Moghaddam, R. Dinarvand, R. Sedghi,
[314] T. Berger, J. A. Anta, Anal. Chem. 2012, 84, 3053 – 3057. Int. J. Electrochem. Sci. 2008, 3, 1117 – 1126.
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &49&
These are not the final page numbers! ÞÞ
R. Gmez et al.
[359] S.-Y. Kwak, S. H. Kim, S. S. Kim, Environ. Sci. Technol. 2001, 35, 2388 – [398] L. Kavan, J. Rathousky, M. Grtzel, V. Shklover, A. Zukal, J. Phys. Chem. B
2394. 2000, 104, 12012 – 12020.
[360] Y. Liu, A. Wang, R. Claus, J. Phys. Chem. B 1997, 101, 1385 – 1388. [399] S. Huang, L. Kavan, I. Exnar, M. Grtzel, J. Electrochem. Soc. 1995, 142,
[361] R. Beranek, H. Kisch, Electrochem. Commun. 2007, 9, 761 – 766. L142 – L144.
[362] R. Beranek, H. Kisch, Photochem. Photobiol. Sci. 2008, 7, 40 – 48. [400] W. J. Macklin, R. J. Neat, Solid State Ionics 1992, 53 – 56, 694 – 700.
[363] R. Beranek, J. M. Macak, M. Grtner, K. Meyer, P. Schmuki, Electrochim. [401] U. Lafont, D. Carta, G. Mountjoy, A. V. Chadwick, E. M. Kelder, J. Phys.
Acta 2009, 54, 2640 – 2646. Chem. C 2010, 114, 1372 – 1378.
[364] P. Calza, E. Pelizzetti, Pure Appl. Chem. 2001, 73, 1839 – 1848. [402] E. Baudrin, S. Cassaignon, M. Koelsch, J.-P. Jolivet, L. Dupont, J.-M. Tar-
[365] M. Abdullah, G. K.-C. Low, R. W. Matthews, J. Phys. Chem. 1990, 94, ascon, Electrochem. Commun. 2007, 9, 337 – 342.
6820 – 6825. [403] S. Bach, J. P. Pereira-Ramos, P. Willman, Electrochim. Acta 2010, 55,
[366] H. Ross, J. Bendig, S. Hecht, Sol. Energy Mater. Sol. Cells 1994, 33, 475 – 4952 – 4959.
481. [404] S. Panero, B. Scrosati, M. Wachtler, F. Croce, J. Power Sources 2004, 129,
[367] J. Lobedank, E. Bellmann, J. Bendig, J. Photochem. Photobiol. A 1997, 90 – 95.
108, 89 – 93. [405] M. Wagemaker, W. J. H. Borghols, F. M. Mulder, J. Am. Chem. Soc. 2007,
[368] M. Stylidi, D. I. Kondarides, X. E. Verykios, Appl. Catal. B 2004, 47, 189 – 129, 4323 – 4327.
201. [406] Y. K. Zhou, L. Cao, F. B. Zhang, B. L. He, H. L. Li, J. Electrochem. Soc.
[369] J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Pa- 2003, 150, A1246 – A1249.
trocinio, N. Y. M. Iha, J. L. Templeton, T. J. Meyer, Acc. Chem. Res. 2009, [407] A. R. Armstrong, G. Armstrong, J. Canales, R. Garc a, P. G. Bruce, Adv.
42, 1954 – 1965. Mater. 2005, 17, 862 – 865.
[370] W. Song, M. K. Brennaman, J. J. Concepcion, J. W. Jurss, P. G. Hoertz, H. [408] G. Armstrong, A. R. Armstrong, P. G. Bruce, P. Reale, B. Scrosati, Adv.
Luo, C. Chen, K. Hanson, T. J. Meyer, J. Phys. Chem. C 2011, 115, 7081 – Mater. 2006, 18, 2597 – 2600.
7091. [409] M. Zukalov, M. Kalbc, L. Kavan, I. Exnar, M. Graetzel, Chem. Mater.
[371] H. Park, W. Choi, J. Phys. Chem. B 2004, 108, 4086 – 4093. 2005, 17, 1248 – 1255.
[372] D. Monllor-Satoca, T. Lana-Villarreal, R. Gmez, Langmuir 2011, 27, [410] K. Xu, Chem. Rev. 2004, 104, 4303 – 4418.
15312 – 15321. [411] N. H. Idris, Md. M. Rahman, J.-Z. Wang, H.-K. Liu, J. Power Sources 2012,
[373] M. I. Franch, J. Peral, X. Dom nech, J. A. Aylln, Chem. Commun. 2005, 201, 294 – 300.
1851 – 1853. [412] A. M. Stephan, K. S. Nahm, Polymer 2006, 47, 5952 – 5964.
[374] V. Maurino, C. Minero, E. Pelizzetti, G. Mariella, A. Arbezzano, F. Ruber- [413] S. Kalnaus, A. S. Sabau, W. E. Tenhaeff, N. J. Dudney, C. Daniel, J. Power
Sources 2012, 201, 280 – 287.
telli, Res. Chem. Intermed. 2007, 33, 319 – 332.
[414] C. G. Granqvist, A. Azens, P. Heszler, L. B. Kish, L. sterlund, Sol. Energy
[375] H. Park, W. Choi, J. Phys. Chem. B 2003, 107, 3885 – 3890.
Mater. Sol. Cells 2007, 91, 355 – 365.
[376] J. D. Zhao, C. Chen, Y. Wang, H. Ji, W. Ma, L. Zang, J. Zhao, J. Phys.
[415] N. N. Dinh, N. M. Quyen, D. N. Chung, M. Zikova, V.-V. Truong, Sol.
Chem. C 2008, 112, 5993 – 6001.
Energy Mater. Sol. Cells 2011, 95, 618 – 623.
[377] I. C. Cheon, M. S. Lee, H. K. Shim, Y. I. Kim, Bull. Korean Chem. Soc.
[416] C. G. Granqvist, Appl. Phys. A 1991, 52, 83 – 93.
2003, 24, 1535 – 1537.
[417] J. Zhang, X. L. Wang, X. H. Xia, C. D. Gu, Z. J. Zhao, J. P. Tu, Electrochim.
[378] H. Pelouchova, P. Janda, J. Weber, L. Kavan, J. Electroanal. Chem. 2004,
Acta 2010, 55, 6953 – 6958.
566, 73 – 83.
[418] V. V. Abramova, A. S. Sinitskii, E. A. Goodilin, Y. D. Tretyakov, Mendeleev
[379] L. A. Harris, M. E. Gerstner, R. H. Wilson, J. Electrochem. Soc. 1979, 126,
Commun. 2005, 15, 178 – 180.
850 – 855.
[419] A. A. Joraid, Curr. Appl. Phys. 2009, 9, 73 – 79.
[380] D. S. Ginley, M. L. Knotek, J. Electrochem. Soc. 1979, 126, 2163 – 2166.
[420] D. Isik, M. Ak, C. Durucan, Thin Solid Films 2009, 518, 104 – 111.
[381] P. Clechet, C. Martelet, R. Olier, J. P. Thomas, M. Fallavier, J. Electrochem.
[421] S. R. Bathe, P. S. Patil, Solid State Ionics 2008, 179, 314 – 323.
Soc. 1983, 130, 1795 – 1796.
[422] N. R. de Tacconi, C. R. Chenthamarakshan, K. L. Wouters, F. M. MacDon-
[382] M. F. Weber, L. C. Schumacher, M. J. Dignam, J. Electrochem. Soc. 1982,
nell, K. Rajeshwar, J. Electroanal. Chem. 2004, 566, 249 – 256.
129, 2022 – 2028.
[423] C.-M. Wang, S.-Y. Lin, Y.-C. Chen, J. Phys. Chem. Solids 2008, 69, 451 –
[383] B. H. Meekins, P. V. Kamat, ACS Nano 2009, 3, 3437 – 3446. 455.
[384] R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 2004, 108, 10617 – [424] P. Delich re, P. Falaras, A. Hugot-Le Goff, Sol. Energy Mater., 1989, 19,
10620. 323 – 333.
[385] B. Neumann, P. Bogdanoff, H. Tributsch, S. Sakthivel, H. Kisch, J. Phys. [425] S. Sallard, T. Brezesinski, B. M. Smarsly, J. Phys. Chem. C 2007, 111,
Chem. B 2005, 109, 16579 – 16586. 7200 – 7206.
[386] H. Liu, A. Imanishi, Y. Nakato, J. Phys. Chem. C 2007, 111, 8603 – 8610. [426] J. Wang, X. W. Sun, Z. Jiao, Materials 2010, 3, 5029 – 5053.
[387] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. [427] T. Gaoa, A. Gustavsen, B. P. Jelleb, Zero emission buildings—proceedings
2010, 110, 6595 – 6663. of Renewable Energy Conference 2010, Trondheim, Norway.
[388] S. Rhle, M. Shalom, A. Zaban, ChemPhysChem 2010, 11, 2290 – 2304. [428] A. Mills, S. Le Hunte, J. Photochem. Photobiol. A 1997, 108, 1 – 35.
[389] L. F. Nazar, G. Goward, F. Leroux, M. Duncan, H. Huang, T. Kerr, J. Gau- [429] A. J. Bard, J. Photochem. 1979, 10, 59 – 75.
bicher, Int. J. Inorg. Mater. 2001, 3, 191 – 200. [430] K. Rajeshwar, J. Appl. Electrochem. 1995, 25, 1067 – 1082.
[390] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, J. Power [431] J. M. Kesselman, G. A. Shreve, M. R. Hoffmann, N. S. Lewis, J. Phys.
Sources 2001, 97 – 98, 235 – 239. Chem. 1994, 98, 13385 – 13395.
[391] C. Natarajan, K. Setoguchi, G. Nogami, Electrochim. Acta 1998, 43, [432] H. Rensmo, H. Lindstrçm, S. Sçdergren, A. K. Willstedt, A. Solbrand, A.
3371 – 3374. Hagfeldt, S. E. Lindquist, J. Electrochem. Soc. 1996, 143, 3173 – 3178.
[392] V. Subramanian, A. Karki, K. I. Gnanasekar, F. Posey Eddy, B. Rambabu, [433] R. Solarska, I. Rutkowska, R. Morand, J. Augustynski, Electrochim. Acta
J. Power Sources 2006, 159, 186 – 192. 2006, 51, 2230 – 2236.
[393] B. Zachau-Christiansen, K. West, T. Jacobsen, S. Atlung, Solid State [434] R. Solarska, I. Rutkowska, J. Augustynski, Inorg. Chim. Acta 2008, 361,
Ionics 1988, 28 – 30, 1176 – 1182. 792 – 797.
[394] G. Armstrong, A. R. Armstrong, J. Canales, P. G. Bruce, Electrochem. [435] S. R. Morrison, T. Freund, J. Chem. Phys. 1967, 47, 1543 – 1551.
Solid-State Lett. 2006, 9, A139 – A143. [436] R. Solarska, I. Rutkowska, R. Morand, J. Augustynski, Electrochim. Acta
[395] P. G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. 2008, 120, 2972 – 2006, 52, 694 – 703.
2989; Angew. Chem. Int. Ed. 2008, 47, 2930 – 2946. [437] W. Wen, H. Zhao, S. Zhang, V. Pires, J. Phys. Chem. C 2008, 112, 3875 –
[396] C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, J. Power Sources 3880.
2007, 166, 239 – 243. [438] W. Sun, C. R. Chenthamarakshan, K. Rajeshwar, J. Phys. Chem. B 2002,
[397] G. Sudant, E. Baudrin, D. Larcher, J. M. Tarascon, J. Mater. Chem. 2005, 106, 11531 – 11538.
15, 1263 – 1269. [439] A. G. MuÇoz, Electrochim. Acta 2007, 52, 4167 – 4176.
&50& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
The Electrochemistry of Nanostructured TiO2 Electrodes
[440] O. A. Semenikhin, V. E. Kazarinov, L. Jiang, K. Hashimoto, A. Fujishima, [478] C. He, Y. Xiong, J. Chen, C. Zha, X. Zhu, J. Photochem. Photobiol. A
Langmuir 1999, 15, 3731 – 3737. 2003, 157, 71 – 79.
[441] D. Jiang, S. Zhang, H. Zhao, Environ. Sci. Technol. 2007, 41, 303 – 308. [479] H. Chen, S. Chen, X. Quan, H. Yu, H. Zhao, Y. Zhang, J. Phys. Chem. C
[442] P. C. Angelom, L. Andrini, M. E. Calvo, F. G. Requejo, S. A. Bilmes, 2008, 112, 9285 – 9290.
G. J. A. A. Soler-Illia, J. Phys. Chem. C 2007, 111, 10886 – 10893. [480] K. Xie, L. Sun, C. Wang, Y. Lai, M. Wanga, H. Chen, C. Lin, Electrochim.
[443] I. Bilecka, P. J. Barczuk, J. Augustynski, Electrochim. Acta 2010, 55, 979 – Acta 2010, 55, 7211 – 7218.
984. [481] A. A. Ismail, D. W. Bahnemann, J. Rathousky, V. Yarovyi, M. Wark, J.
[444] S. K. Poznyak, A. I. Kokorin, A. I. Kulak, J. Electroanal. Chem. 1998, 442, Mater. Chem. 2011, 21, 7802 – 7810.
99 – 105. [482] H. Yu, X. Quan, S. Chen, H. Zhao, Y. Zhang, J. Photochem. Photobiol. A
[445] H. Hidaka, K. Ajisaka, S. Horikoshi, T. Oyama, K. Takeuchi, J. Zhao, N. 2008, 200, 301 – 306.
Serpone, J. Photochem. Photobiol. A 2001, 138, 185 – 192. [483] B. Gao, C. Peng, G. Z. Chen, G. L. Puma, Appl. Catal. B 2008, 85, 17 – 23.
[446] J. Krýsa, M. Keppert, G. Waldner, J. Jirkovský, Electrochim. Acta 2005, [484] J. Lin, R. Zong, M. Zhou, Y. Zhu, Appl. Catal. B 2009, 89, 425 – 431.
50, 5255 – 5260. [485] L. C. Chen, Y. C. Ho, W. S. Guo, C. M. Huang, T. C. Pan, Electrochim. Acta
[447] H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo, P. V. Kamat, 2009, 54, 3884 – 3891.
J. Phys. Chem. B 2006, 110, 5537 – 5541. [486] Y. Xie, Adv. Funct. Mater. 2006, 16, 1823 – 1831.
[448] D. Chen, Y. Gao, G. Wang, H. Zhang, W. Lu, J. Li, J. Phys. Chem. C 2007, [487] D. Mitoraj, R. Bernek, H. Kisch, Photochem. Photobiol. Sci. 2010, 9, 31 –
111, 13163 – 13169. 38.
[449] J. Y. Kim, S. B. Choi, D. W. Kim, S. Lee, H. S. Jung, J. K. Lee, K. S. Hong, [488] X. Li, W. Teng, Q. Zhao, L. Wang, J. Nanopart. Res. 2011, 13, 6813 –
Langmuir 2008, 24, 4316 – 4319. 6820.
[450] H. C. Liang, X. Z. Li, J. Hazard. Mater. 2009, 162, 1415 – 1422. [489] X. Zhou, F. Peng, H. Wang, H. Yua, Y. Fang, Chem. Commun. 2011, 47,
[451] H. J. Yun, H. Lee, J. B. Joo, W. Kim, J. Yi, J. Phys. Chem. C 2009, 113, 10323 – 10325.
3050 – 3055. [490] M. Bledowski, L. Wang, A. Ramakrishnan, O. V. Khavryuchenko, V. D.
[452] A. Atyaoui, L. Bousselmi, H. Cachet, P. Pu, E. M. M. Sutter, J. Photochem. Khavryuchenko, P. C. Ricci, J. Strunk, T. Cremer, C. Kolbeck, R. Beranek,
Photobiol. A 2011, 224, 71 – 79. Phys. Chem. Chem. Phys. 2011, 13, 21511 – 21519.
[453] F. Sordello, V. Maurino, C. Minero, J. Mater. Chem. 2011, 21, 19144 – [491] P. S. M. Dunlop, J. A. Byrne, N. Manga, B. R. Eggins, J. Photochem. Pho-
19152. tobiol. A 2002, 148, 355 – 363.
[454] Y. Su, X. Zhang, M. Zhou, S. Han, L. Lei, J. Photochem. Photobiol. A [492] P. A. Christensen, T. P. Curtis, T. A. Egerton, S. A. M. Kosa, J. R. Tinlin,
2008, 194, 152 – 160.
Appl. Catal. B 2003, 41, 371 – 386.
[455] X. Zhang, K. Udagawa, Z. Liu, S. Nishimoto, C. Xu, Y. Liu, H. Sakai, M.
[493] T. A. Egerton, S. A. M. Kosa, P. A. Christensen, Phys. Chem. Chem. Phys.
Abe, T. Murakami, A. Fujishima, J. Photochem. Photobiol. A 2009, 202,
2006, 8, 398 – 406.
39 – 47.
[494] N. Baram, D. Starosvetsky, J. Starosvetsky, M. Epshtein, R. Armon, Y.
[456] Y. Wang, H. Cheng, L. Zhang, Y. Hao, J. Ma, B. Xu, W. Li, J. Mol. Catal. A
Ein-Eli, Electrochim. Acta 2009, 54, 3381 – 3386.
2000, 151, 205 – 216.
[495] N. Philippidis, E. Nikolakaki, S. Sotiropoulos, I. Poulios, J. Chem. Technol.
[457] A. V. Emeline, Y. Furubayashi, X. Zhang, M. Jin, T. Murakami, A. Fujishi-
Biotechnol. 2010, 85, 1054 – 1060.
ma, J. Phys. Chem. B 2005, 109, 24441 – 24444.
[496] T. A. Egerton, J. Chem. Technol. Biotechnol. 2011, 86, 1024 – 1031.
[458] B. Xin, Z. Ren, P. Wang, J. Liu, L. Jing, H. Fu, Appl. Surf. Sci. 2007, 253,
[497] M. V. Boldrin Zanoni, J. J. Sene, H. Selcuk, M. A. Anderson, Environ. Sci.
4390 – 4395.
Technol. 2004, 38, 3203 – 3208.
[459] K. Esquivel, M. G. Garc a, J. F. J. Rodr guez, M. Vega Gonzlez, L. Esco-
[498] J. Nemoto, N. Gokan, H. Ueno, M. Kaneko, J. Photochem. Photobiol. A
bar-Alarcn, L. Ortiz-Frade, L. A. God nez, J. Nanopart. Res. 2011, 13,
2007, 185, 295 – 300.
3313 – 3325.
[499] F. M. Monteiro Paschoal, G. Pepping, M. V. Boldrin Zanoni, M. A. Ander-
[460] N. Lu, X. Quan, J. Y. Li, S. Chen, H. T. Yu, G. H. Chen, J. Phys. Chem. C
son, Environ. Sci. Technol. 2009, 43, 7496 – 7502.
2007, 111, 11836 – 11842.
[500] F. M. Monteiro Paschoal, M. A. Anderson, M. V. Boldrin Zanoni, Desali-
[461] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang,
nation 2009, 249, 1350 – 1355.
J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026 – 3033.
[462] X. F. Cheng, W. H. Leng, D. P. Liu, Y. M. Xu, J. Q. Zhang, C. N. Cao, J. [501] D. Jiang, H. Zhao, S. Zhang, R. John, J. Photochem. Photobiol. A 2006,
Phys. Chem. C 2008, 112, 8725 – 8734. 177, 253 – 260.
[463] R. Bernek, B. Neumann, S. Sakthivel, M. Janczarek, T. Dittrich, H. Trib- [502] H. Zhao, D. Jiang, S. Zhang, W. Wen, J. Catal. 2007, 250, 102 – 109.
utsch, H. Kisch, Chem. Phys. 2007, 339, 11 – 19. [503] I. M. Butterfield, P. A. Christensen, A. Hamnett, K. E. Shaw, G. M. Walker,
[464] K. Vinodgopal, P. V. Kamat, Environ. Sci. Technol. 1995, 29, 841 – 845. S. A. Walker, C. R. Howarth, J. Appl. Electrochem. 1997, 27, 385 – 395.
[465] M. G. Kang, H. E. Han, K. J. Kim, J. Photochem. Photobiol. A 1999, 125, [504] R. J. Candal, W. A. Zeltner, M. A. Anderson, Environ. Sci. Technol. 2000,
119 – 125. 34, 3443 – 3451.
[466] Y. Shaogui, Q. Xie, L. Xinyong, L. Yazi, C. Shuoa, C. Guohua, Phys. Chem. [505] H. Hidaka, H. Nagaoka, K. Nohara, T. Shimura, S. Horikoshi, J. Zhao, N.
Chem. Phys. 2004, 6, 659 – 664. Serpone, J. Photochem. Photobiol. A 1996, 98, 73 – 78.
[467] S. Kuang, L. Yang, S. Luo, Q. Cai, Appl. Surf. Sci. 2009, 255, 7385 – 7388. [506] D. H. Kim, M. A. Anderson, J. Photochem. Photobiol. A 1996, 94, 221 –
[468] F. Fabregat-Santiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. 229.
Grimes, J. Am. Chem. Soc. 2008, 130, 11312 – 11316. [507] J. A. Byrne, B. R. Eggins, W. Byers, N. M. D. Brown, Appl. Catal. B 1999,
[469] Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Environ. Sci. Technol. 2009, 43, 20, L85 – L89.
858 – 863. [508] H. Hidaka, T. Shimura, K. Ajisaka, S. Horikoshi, J. Zhao, N. Serpone, J.
[470] Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, Environ. Sci. Technol. 2010, 44, Photochem. Photobiol. A 1997, 109, 165 – 170.
5098 – 5103. [509] Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami, A. Fujishi-
[471] W. Zhu, X. Liu, H. Liu, D. Tong, J. Yang, J. Peng, J. Am. Chem. Soc. 2010, ma, J. Phys. Chem. C 2008, 112, 253 – 259.
132, 12619 – 12626. [510] H. G. Oliveira, D. C. Nery, C. Longo, Appl. Catal. B 2010, 93, 205 – 211.
[472] J. Zhang, J. H. Bang, C. Tang, P. V. Kamat, ACS Nano 2010, 4, 387 – 395. [511] M. Zhou, X. Ma, Electrochem. Commun. 2009, 11, 921 – 924.
[473] H. I. Kim, J. Kim, W. Kim, W. Choi, J. Phys. Chem. C 2011, 115, 9797 – [512] A. Taghizadeh, M. F. Lawrence, L. Miller, M. A. Anderson, N. Serpone, J.
9805. Photochem. Photobiol. A 2000, 130, 145 – 156.
[474] H. Zhao, W. Fu, H. Yang, Y. Xu, W. Zhao, Y. Zhang, H. Chen, Q. Jing, X. [513] Y. Xie, Electrochim. Acta 2006, 51, 3399 – 3406.
Qi, J. Cao, X. Zhou, Y. Li, Appl. Surf. Sci. 2011, 257, 8778 – 8783. [514] J. M. Kesselman, N. S. Lewis, M. R. Hoffmann, Environ. Sci. Technol.
[475] X. Zhao, H. Liu, J. Qu, Appl. Surf. Sci. 2011, 257, 4621 – 4624. 1997, 31, 2298 – 2302.
[476] S. Chai, G. Zhao, P. Li, Y. Lei, Y. N. Zhang, D. Li, J. Phys. Chem. C 2011, [515] X. Quan, S. Yang, X. Ruan, H. Zhao, Environ. Sci. Technol. 2005, 39,
115, 18261 – 18269. 3770 – 3775.
[477] T. H. Jeon, W. Choi, H. Park, J. Phys. Chem. C 2011, 115, 7134 – 7142. [516] S. Yang, Y. Liu, C. Sun, Appl. Catal. A 2006, 301, 284 – 291.
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &51&
These are not the final page numbers! ÞÞ
R. Gmez et al.
[517] M. Tian, G. Wu, B. Adams, J. Wen, A. Chen, J. Phys. Chem. C 2008, 112, [539] P. A. Christensen, T. A. Egerton, S. A. M. Kosa, J. R. Tinlin, K. Scott, J.
825 – 831. Appl. Electrochem. 2005, 35, 683 – 692.
[518] B. Su, Y. Ma, Y. Du, C. Wang, Electrochem. Commun. 2009, 11, 1154 – [540] Y. Xu, Y. He, X. Cao, D. Zhong, A. Jia, Environ. Sci. Technol. 2008, 42,
1157. 2612 – 2617.
[519] J. Carvalho Cardoso, T. Mescoloto Lizier, M. V. Boldrin Zanoni, Appl. [541] Y. Xu, J. Jia, D. Zhong, Y. Wang, Chem. Eng. J. 2009, 150, 302 – 307.
Catal. B 2010, 99, 96 – 102. [542] J. Bai, Y. Liu, J. Li, B. Zhou, Q. Zheng, W. Cai, Appl. Catal. B 2010, 98,
[520] Y. Xin, H. Liu, L. Han, Y. Zhou, J. Hazard. Mater. 2011, 192, 1812 – 1818. 154 – 160.
[521] K. Vinodgopal, P. V. Kamat, Sol. Energy Mater. Sol. Cells 1995, 38, 401 – [543] A. Zhang, M. Zhou, L. Liu, W. Wang, Y. Jiao, Q. Zhou, Electrochim. Acta
410. 2010, 55, 5091 – 5099.
[522] M. Zlamal, J. M. Macak, P. Schmuki, J. Krýsa, Electrochem. Commun. [544] D. Bahnemann, Sol. Energy 2004, 77, 445 – 459.
2007, 9, 2822 – 2826. [545] S. Malato, J. Blanco, D. C. Alarcn, M. I. Maldonado, P. Fernndez-
[523] J. Yang, C. Chen, H. Ji, W. Ma, J. Zhao, J. Phys. Chem. B 2005, 109, IbÇez, W. Gernjak, Catal. Today 2007, 122, 137 – 149.
21900 – 21907. [546] R. J. Braham, A. T. Harris, Ind. Eng. Chem. Res. 2009, 48, 8890 – 8905.
[524] A. Turolla, M. Fumagalli, M. Bestetti, M. Antonelli, Desalination 2012, [547] C. McCullagh, N. Skillen, M. Adams, P. K. J. Robertson, J. Chem. Technol.
285, 377 – 382. Biotechnol. 2011, 86, 1002 – 1017.
[525] T. T. Guaraldo, S. H. Pulcinelli, M. V. Boldrin Zanoni, J. Photochem. Photo- [548] K. Kalyanasundaram, M. Grtzel, Curr. Opin. Biotechnol. 2010, 21, 298 –
biol. A 2011, 217, 259 – 266. 310.
[526] T. C. An, X. H. Zhu, Y. Xiong, Chemosphere 2002, 46, 897 – 903. [549] J. Augustyr ski, B. D. Alexander, R. Solarska, Top. Curr. Chem. 2011, 303,
[527] X. Wu, Y. Ling, L. Liu, Z. Huang, J. Electrochem. Soc. 2009, 156, K65 – 1 – 38.
K71. [550] S. Caramori, V. Cristino, L. Meda, R. Argazzi, C. A. Bignozzi, Top. Curr.
[528] Z. Zhang, Y. Yuan, G. Shi, Y. Fang, L. Liang, H. Ding, L. Jin, Environ. Sci. Chem. 2011, 303, 39 – 94.
Technol. 2007, 41, 6259 – 6263. [551] P. Hartmann, D.-K. Lee, B. M. Smarsly, J. Janek, ACS Nano 2010, 4,
[529] A. Kar, Y. R. Smith, V. Subramanian, Environ. Sci. Technol. 2009, 43, 3147 – 3154.
3260 – 3265. [552] Z. Su, W. Zhou, J. Mater. Chem. 2011, 21, 8955 – 8970.
[530] Y. R. Smith, A. Kar, V. Subramanian, Ind. Eng. Chem. Res. 2009, 48, [553] G. Centi, S. Perathoner, Catal. Today 2009, 148, 191 – 205.
10268 – 10276. [554] T. Yui, Y. Tamaki, K. Sekizawa, O. Ishitani, Top. Curr. Chem. 2011, 303,
[531] Y. S. Sohn, Y. R. Smith, M. Misra, V. Subramanian, Appl. Catal. B 2008, 151 – 184.
84, 372 – 378. [555] S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, ACS Nano 2010, 4,
[532] P. A. Carneiro, M. E. Osugi, J. J. Sene, M. A. Anderson, M. V. B. Zanoni, 1259 – 1278.
Electrochim. Acta 2004, 49, 3807 – 3820. [556] P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Ind.
[533] Z. Jiang, H. Wang, H. Huang, C. Cao, Chemosphere 2004, 56, 503 – 508. Eng. Chem. Res. 2006, 45, 2558 – 2568.
[534] G. Waldner, J. Krýsa, Electrochim. Acta 2005, 50, 4498 – 4504. [557] T. Inoue, A. Fujishima, S. Konichi, K. Honda, Nature 1979, 277, 637 –
[535] P. Christensen, G. Hutson, Photoelectrochemical Reactor, European 638.
Patent 9592 1936.1, 1996. [558] C. Ampelli, G. Centi, R. Passalacqua, S. Perathoner, Energy Environ. Sci.
[536] P. Fernandez-IbaÇez, S. Malato, O. Enea, Catal. Today 1999, 54, 329 – 2010, 3, 292 – 301.
339.
[537] J. Krýsa, J. Jirkovský, J. Appl. Electrochem. 2002, 32, 591 – 596.
[538] T. An, Y. Xiong, G. Li, C. Zha, X. Zhu, J. Photochem. Photobiol. A 2002, Received: January 29, 2012
152, 155 – 165. Published online on && &&, 2012
&52& www.chemphyschem.org 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 0000, 00, 1 – 53
ÝÝ These are not the final page numbers!
REVIEWS
Ubiquitous titania electrodes: The T. Berger, D. Monllor-Satoca,
electrochemistry of nanostructured tita- M. Jankulovska, T. Lana-Villarreal,
nium dioxide electrodes is reviewed R. Gmez*
with a focus on the fundamental as-
&& – &&
pects that determine their behavior
both in the dark and under illumination The Electrochemistry of
(see picture). Some applications in the Nanostructured Titanium Dioxide
fields of environmental remediation Electrodes
(heterogeneous photocatalysis), and
energy saving (electrochromism), gener-
ation (artificial photosynthesis) and ac-
cumulation (Li-ion batteries) are also
dealt with.
ChemPhysChem 0000, 00, 1 – 53 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemphyschem.org &53&
These are not the final page numbers! ÞÞ