65-4-3 Mathematics
65-4-3 Mathematics
J{UV
MATHEMATICS
*
:3 : 80
Time allowed : 3 hours Maximum Marks : 80
NOTE :
(i) - 23
Please check that this question paper contains 23 printed pages.
(ii) - - -
-
Q.P. Code given on the right hand side of the question paper should be written on the title
page of the answer-book by the candidate.
(iii) - 38
Please check that this question paper contains 38 questions.
(iv) -
Please write down the serial number of the question in the answer-book before
attempting it.
(v) - 15 -
10.15 10.15 10.30 -
-
15 minute time has been allotted to read this question paper. The question paper will be
distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the
question paper only and will not write any answer on the answer-book during this period.
(iv) 21 25 (VSA)
(v) 26 31 (SA)
(vi) 32 35 (LA)
(vii) 36 38
(viii) 2 3
2 2
(ix)
IÊS> H$
1
1. `{X A EH$ 3 4 Amì`yh h¡ VWm B EH$ Eogm Amì`yh h¡ {H AB VWm AB XmoZm| n[a^m{fV
h¢, Vmo Amì`yh B H$s H$mo{Q> h¡ :
(a) 3 4 (b) 3 3
(c) 4 4 (d) 4 3
2. `{X erfmªo (2, 6), (5, 4) VWm (k, 4) dmbo {Ì^wO H$m joÌ\$b 35 dJ© BH$mB© h¡, Vmo
k ~am~a h¡ :
(a) 12 (b) 2
SECTION A
This section comprises multiple choice questions (MCQs) of 1 mark each.
(a) 3 4 (b) 3 3
(c) 4 4 (d) 4 3
2. If the area of a triangle with vertices (2, 6), (5, 4) and (k, 4) is
35 sq units, then k is
(a) 12 (b) 2
(c) 12, 2 (d) 12, 2
(c) 3 (d) 2
1 2 4
4. `{X x y h¡, Vmo :
2 5 9
(a) x = 1, y = 2 (b) x = 2, y = 1
(c) x = 1, y = 1 (d) x = 3, y = 2
5. `{X Amì`yh A = [1 2 3] h¡, Vmo Amì`yh AA h¡ (Ohm± A Amì`yh A H$m n[adV© h¡) :
1 0 0
(a) 14 (b) 0 2 0
0 0 3
1 2 3
(c) 2 3 1 (d) 14
3 1 2
a b a b
6. JwUZ\$b ~am~a h¡ :
b a b a
a2 b2 0 a b2 0
(a) (b)
0 a2 b2 a b2 0
a2 b2 0 a 0
(c) (d)
a2 b2 0 0 b
(a) q (b) q
(c) q + r (d) p2 r2
1 2 4
4. If x y , then :
2 5 9
(a) x = 1, y = 2 (b) x = 2, y = 1
(c) x = 1, y = 1 (d) x = 3, y = 2
of A) is :
1 0 0
(a) 14 (b) 0 2 0
0 0 3
1 2 3
(c) 2 3 1 (d) 14
3 1 2
a b a b
6. The product is equal to :
b a b a
a2 b2 0 a b2 0
(a) (b)
0 a2 b2 a b2 0
a2 b2 0 a 0
(c) (d)
a2 b2 0 0 b
(a) q (b) q
(c) q + r (d) p2 r2
(c) aoIm 3x + 5y = 7 na
_yb-q~Xþ ^r h¡ &
(d) dh Iwbm AmYm Vb {Og_| _yb-q~Xþ Zht h¡ &
a
(a) 2 (b) 4
(c) 8 (d) 10
^ ^ ^ ^ ^ ^
10. g{Xem| a = 3i + j + 2k VWm b = i + j + 2k Ho$ ~rM Ho$ H$moU H$m Á`m (gmBZ) h¡ :
5 5
(a) (b)
21 21
3 4
(c) (d)
21 21
2 3
d 2y dy dy
11. AdH$b g_rH$aU 2
x sin Ho$ H$mo{Q> d KmV (`{X n[a^m{fV h¢)
dx dx dx
H«$_e: h¢ :
(a) 2, 2 (b) 1, 3
(c) 2, 3 (d) 2, KmV n[a^m{fV Zht
(b) whole xy-plane along with the points lying on the line 3x + 5y = 7.
(c) open half plane containing the origin except the points of line
3x + 5y = 7.
9. If 3x 2 dx = 8,
0
(a) 2 (b) 4
(c) 8 (d) 10
^ ^ ^
10. The sine of the angle between the vectors a = 3 i + j + 2 k and
^ ^ ^
b = i + j + 2 k is :
5 5
(a) (b)
21 21
3 4
(c) (d)
21 21
11. The order and degree (if defined) of the differential equation,
2 3
d 2y dy dy
2
x sin respectively are :
dx dx dx
(a) 2, 2 (b) 1, 3
(c) 2, 3 (d) 2, degree not defined
x5 x6
(a) +C (b) +C
5 6
(c) 5x4 + C (d) 6x5 + C
1 ^ ^
(b) (4 i 3k )
5
1 ^ ^
(c) (4 i 3k )
7
1 ^ ^
(d) (4 i 3k )
5
14. {ZåZ{b{IV _| go H$m¡Z-gm q~Xþ {ZåZ XmoZm| Ag{_H$mAm| H$mo g§VwîQ> H$aVm h¡ ?
2x + y 10 VWm x + 2y 8
dy
15. `{X y = sin2 (x3) h¡, Vmo ~am~a h¡ :
dx
16. xy-Vb H$m H$moB© q~Xþ (x, y, 0), q~XþAm| (1, 2, 3) VWm (3, 2, 1) H$mo {_bmZo dmbo aoImIÊS>
H$mo {Og AZwnmV _| ~m±Q>Vm h¡, dh h¡ :
(a) 1:2 AÝV: (b) 2 : 1 AÝV:
1 ^ ^
(a) (4 i 3k )
7
1 ^ ^
(b) (4 i 3k )
5
1 ^ ^
(c) (4 i 3k )
7
1 ^ ^
(d) (4 i 3k )
5
dy
15. If y = sin2 (x3), then is equal to :
dx
16. The point (x, y, 0) on the xy-plane divides the line segment joining the
points (1, 2, 3) and (3, 2, 1) in the ratio :
19 20 1
(A) (R)
(a), (b), (c) (d)
(a) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢ Am¡a VH©$ (R), A{^H$WZ (A) H$s ghr
ì¶m»¶m H$aVm h¡ &
(b) A{^H$WZ (A) Am¡a VH©$ (R) XmoZm| ghr h¢, naÝVw VH©$ (R), A{^H$WZ (A) H$s ghr
ì¶m»¶m H$aVm h¡ &
(c) A{^H$WZ (A) ghr h¡ VWm VH©$ (R) µJbV h¡ &
(d) A{^H$WZ (A) µJbV h¡ VWm VH©$ (R) ghr h¡ &
20. (A) : g^r {ÌH$moU{_Vr` \$bZm| Ho$ AnZo àmÝV _| ì`wËH«$_ hmoVo h¢ &
(R) : tan 1 x Ho$ {H$gr x Ho$ {bE ì`wËH«$_ H$m ApñVËd h¡ &
65/4/3 JJJJ Page 10
17. The events E and F are independent. If P(E) = 0·3 and P(E F) = 0·5,
then P(E/F) P(F/E) equals :
1 2
(a) (b)
7 7
3 1
(c) (d)
35 70
18. The integrating factor for solving the differential equation
dy
x y 2x 2 is :
dx
(a) e y (b) e x
1
(c) x (d)
x
Questions number 19 and 20 are Assertion and Reason based questions carrying
1 mark each. Two statements are given, one labelled Assertion (A) and the other
labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d)
as given below.
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the
correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not
the correct explanation of the Assertion (A).
(c) Assertion (A) is true and Reason (R) is false.
(d) Assertion (A) is false and Reason (R) is true.
20. Assertion (A) : All trigonometric functions have their inverses over their
respective domains.
(VSA) 2
dy y 1
21. `{X xy = ex y h¡, Vmo Xem©BE {H$ .
dx xy 1
^ ^ ^ ^ ^ ^ 1
23. `{X g{Xe i + j + k H$m g{Xe pi + j 2k na àjon h¡, Vmo p H$m/Ho$ _mZ
3
kmV H$s{OE &
24. dH«$ y2 = 8x na dh q~Xþ kmV H$s{OE Ohm± x-{ZX}em§H$ VWm y-{ZX}em§H$ g_mZ Xa go
~XbVo h¢ &
x 1 y 2 z 3
25. (H$) {~ÝXþ (2, 1, 3) go hmoH$a OmZo dmbr VWm aoImAm| ;
1 2 3
x y z
XmoZm| Ho$ b§~dV² EH$ aoIm H$m g{Xe g_rH$aU kmV H$s{OE &$
3 2 5
AWdm
(I) EH$ aoIm Ho$ g_rH$aU 5x 3 = 15y + 7 = 3 10z h¢ & Bg aoIm Ho$
{XH²$-H$mogmBZ {b{IE VWm Bg na pñWV EH$ q~Xþ Ho$ {ZX}em§H$ kmV H$s{OE &
This section comprises very short answer (VSA) type questions of 2 marks each.
dy y 1
21. If xy = ex y, then show that .
dx xy 1
7
cos 1 cos
3
^ ^ ^ ^ ^ ^ 1
23. If the projection of the vector i + j + k on the vector p i + j 2 k is ,
3
then find the value(s) of p.
24. Find the point on the curve y2 = 8x for which the abscissa and ordinate
change at the same rate.
25. (a) Find the vector equation of the line passing through the point
(2, 1, 3) and perpendicular to both the lines
x 1 y 2 z 3 x y z
; .
1 2 3 3 2 5
OR
(b) The equations of a line are 5x 3 = 15y + 7 = 3 10z. Write the
direction cosines of the line and find the coordinates of a point
through which it passes.
AWdm
(I) _mZ kmV H$s{OE :
3
1 (x 2) dx
1
5x + 2y 10,
x, y 0
Ho$ A§VJ©V z = 5x + 3y H$m A{YH$V_ _mZ kmV H$s{OE &
29. 30 ~ë~m| H$s EH$ T>oar _| go, {Og_| 6 ~ë~ Iam~ h¢, 2 ~ë~m| H$m EH$ Z_yZm `mÑÀN>`m
EH$-EH$ H$aHo$ à{VñWmnZ g{hV {ZH$mbm J`m & Iam~ ~ë~m| H$s g§»`m H$m àm{`H$Vm ~§Q>Z
kmV H$s{OE, AV: Iam~ ~ë~m| H$s g§»`m H$m _mÜ` kmV H$s{OE &
26. Find :
2
dx
(1 x) (1 x2 )
OR
(b) Evaluate :
3
1 (x 2) dx
1
Maximise z = 5x + 3y
AWdm
(I) AdH$b g_rH$aU ex tan y dx + (1 ex) sec2 y dy = 0 H$m ì`mnH$> hb kmV
H$s{OE &$
31. (H$) _mZ kmV H$s{OE :
/2
1 sin 2x
e 2x dx
1 cos 2x
/4
AWdm
(I) _mZ kmV H$s{OE :
2
x2
dx
1 5x
2
IÊS> K
(LA) 5
11 y 2 z 8
32. (H$) q~Xþ (2, 1, 5) H$m aoIm _| à{V{~å~ kmV H$s{OE &
10 4 11
AWdm
x 2 y 1 z
(I) EH$ ABC Ho$ erf© B VWm C aoIm na pñWV h¢ &
2 1 4
ABC H$m joÌ\$b kmV H$s{OE O~{H$ {X`m J`m h¡ {H$ q~Xþ A Ho$ {ZX}em§H$
(1, 1, 2) h¢ VWm aoImIÊS> BC H$s b§~mB© 5 BH$mB© h¡ &
1 1 2
33. Amì`yh A 0 2 3 H$m ì`wËH«$_ kmV H$s{OE & ì`wËH«$_ A 1 Ho$ à`moJ go,
3 2 4
a¡{IH$ g_rH$aU {ZH$m` x y + 2z = 1; 2y 3z = 1; 3x 2y + 4z = 3 H$mo hb
H$s{OE &
OR
(b) Evaluate :
2
x2
dx
1 5x
2
SECTION D
This section comprises long answer (LA) type questions of 5 marks each.
32. (a) Find the image of the point (2, 1, 5) in the line
11 y 2 z 8
.
10 4 11
OR
x 2 y 1 z
(b) . Find
2 1 4
point A has coordinates (1, 1, 2) and
the line segment BC has length of 5 units.
1 1 2
33. Find the inverse of the matrix A 0 2 3 . Using the inverse,
3 2 4
1
A , solve the system of linear equations
x y + 2z = 1; 2y 3z = 1; 3x 2y + 4z = 3.
3 4
àH$aU AÜ``Z 1
36. EH$ ^dZ ~ZmZo dmbm R>oHo$Xma, EH$ ßbm°Q na 4 âb¡Q> VWm nm{Hª$J joÌ H$m H$m_ boVm h¡ &
l{_H$m| Ho$ Z hmoZo na ^r H$m`© Ho$ g_` na nyam hmo OmZo H$s àm{`H$Vm >0·35 h¡ & g^r
l{_H$m| Ho$ H$m_ na AmZo na H$m`© g_` na nyam hmoZo H$s àm{`H$Vm 0·80 h¡ &
_mZm : E1 : {Zê${nV H$aVm h¡ Cg KQ>Zm H$mo O~ ~hþV go l{_H$ H$m_ na Zht AmE;
35. (a) If N denotes the set of all natural numbers and R is the relation on
N N defined by (a, b) R (c, d), if ad(b + c) = bc(a + d). Show that R
is an equivalence relation.
OR
4 4x
(b) Let f : be a function defined as f (x ) . Show
3 3x 4
that f is a one-one function. Also, check whether f is an onto
function or not.
SECTION E
workers not being present for the job is 0·65. The probability that many
are not present and still the work gets completed on time is 0·35. The
probability that work will be completed on time when all workers are
present is 0·80.
Let : E1 : represent the event when many workers were not present for
the job;
(i) ? 1
(iii) (H$) {X`m J`m h¡ {H$ H$m`© g_` na nyam hmo J`m, Vmo ~hþV go l{_H$m| Ho$ H$m_ na
Z AmZo ? 2
AWdm
(iii) (I) {X`m J`m h¡ {H$ H$m`© g_` na nyam hmo J`m, Vmo g^r l{_H$m| Ho$ H$m_ na
àH$aU AÜ``Z 2
37. _mZm f(x) EH$ dmñV{dH$ _mZ dmbm \$bZ h¡ & Vmo BgH$m
f (a h) f (a)
~mE± nj H$m AdH$bO (L.H.D.) : Lf (a) = lim
h 0 h
f (a h) f (a)
XmE± nj H$m AdH$bO (R.H.D.) : Rf (a) = lim
h 0 h
gmW hr, EH$ \$bZ f(x), x = a na AdH$bZr` H$hbmVm h¡ `{X x=a na BgHo$ L.H.D.
Am¡a R.H.D. H$m ApñVËd h¡ VWm XmoZm| g_mZ h¢ &
x 3, x 1
\$bZ f( x ) 2
x 3x 13
,x 1
4 2 4
Ho$ {bE {ZåZ{b{IV àíZm| Ho$ CÎma Xr{OE :
(i) f(x) H$m x = 1 na XmE± nj H$m AdH$bO (R.H.D.) ? 1
(i) What is the probability that all the workers are present for the job ? 1
(iii) (a) What is the probability that many workers are not present
given that the construction work is completed on time ? 2
OR
(iii) (b) What is the probability that all workers were present given
that the construction job was completed on time ? 2
Case Study 2
AWdm
(iii) (I) f (2) VWm f ( 1) kmV H$s{OE & 2
àH$aU AÜ``Z 3
38. gyaO Ho$ {nVm EH$ BªQ>m| H$s Xrdma H$mo EH$ gmBS> boH$a, EH$ Am`VmH$ma ~mJ ~ZmZm MmhVo h¢
bJmZm MmhVo h¢ (O¡gm {MÌ _| {XIm`m h¡) &
Ho$ {bE 200 _rQ>a H$s Vma h¡ &
Cn`w©º$ gyMZm Ho$ AmYma na, {ZåZ{b{IV àíZm| Ho$ CÎma Xr{OE :
(i) _mZm ~mJ _| BªQ> H$s Xrdma Ho$ b§~dV² gmBS> H$s b§~mB© _rQ>a h¡ VWm BªQ> H$s
Xrdma Ho$ g_m§Va gmBS> H$s b§~mB© _rQ>a h¡ & Hw$b bJZo dmbr Vma H$s b§~mB© H$m
gyÌ (g§~§Y) kmV H$s{OE VWm ~mJ H$m joÌ\$b A(x) ^r {b{IE & 2
OR
Case Study 3
38.
on one side of the garden and wire fencing for the other three sides as
shown in the figure. He has 200 metres of fencing wire.
(i)