Rubidium
Rubidium
Atomic properties
Rubidium crystals (silvery) compared
to caesium crystals (golden)
Oxidation states −1, +1 (a strongly basic
oxide)
Rubidium has a very low ionization energy of only Electronegativity Pauling scale: 0.82
406 kJ/mol.[10] Rubidium and potassium show a Ionization 1st: 403 kJ/mol
very similar purple color in the flame test, and energies 2nd: 2632.1 kJ/mol
distinguishing the two elements requires more
sophisticated analysis, such as spectroscopy. 3rd: 3859.4 kJ/mol
87
Rb 27.8% 4.97 × 1010 y β− 87
Sr
Rubidium-82, one of the element's non-natural isotopes, is produced by electron-capture decay of
strontium-82 with a half-life of 25.36 days. With a half-life of 76 seconds, rubidium-82 decays by positron
emission to stable krypton-82.[14]
Occurrence
Rubidium is the twenty-third most abundant element in the Earth's crust, roughly as abundant as zinc and
rather more common than copper.[21] It occurs naturally in the minerals leucite, pollucite, carnallite, and
zinnwaldite, which contain as much as 1% rubidium oxide. Lepidolite contains between 0.3% and 3.5%
rubidium, and is the commercial source of the element.[22] Some potassium minerals and potassium
chlorides also contain the element in commercially significant quantities.[23]
Seawater contains an average of 125 µg/L of rubidium compared to the much higher value for potassium of
408 mg/L and the much lower value of 0.3 µg/L for caesium.[24] Rubidium is the 18th most abundant
element in seawater.[25]
Because of its large ionic radius, rubidium is one of the "incompatible elements".[26] During magma
crystallization, rubidium is concentrated together with its heavier analogue caesium in the liquid phase and
crystallizes last. Therefore, the largest deposits of rubidium and caesium are zone pegmatite ore bodies
formed by this enrichment process. Because rubidium substitutes for potassium in the crystallization of
magma, the enrichment is far less effective than that of caesium. Zone pegmatite ore bodies containing
mineable quantities of caesium as pollucite or the lithium minerals lepidolite are also a source for rubidium
as a by-product.[21]
Two notable sources of rubidium are the rich deposits of pollucite at Bernic Lake, Manitoba, Canada, and
the rubicline ((Rb,K)AlSi3 O8 ) found as impurities in pollucite on the Italian island of Elba, with a rubidium
content of 17.5%.[27] Both of those deposits are also sources of caesium.
Production
Although rubidium is more abundant in Earth's crust than caesium, the limited
applications and the lack of a mineral rich in rubidium limits the production of
rubidium compounds to 2 to 4 tonnes per year.[21] Several methods are available
for separating potassium, rubidium, and caesium. The fractional crystallization
of a rubidium and caesium alum (Cs,Rb)Al(SO4 )2 ·12H2 O yields after 30
subsequent steps pure rubidium alum. Two other methods are reported, the
chlorostannate process and the ferrocyanide process.[21][28]
For several years in the 1950s and 1960s, a by-product of potassium production
called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium,
with the rest being potassium and a small amount of caesium.[29] Today the Flame test for rubidium
largest producers of caesium produce rubidium as a by-product from
pollucite.[21]
History
Rubidium was discovered in 1861 by Robert Bunsen and Gustav Kirchhoff, in Heidelberg, Germany, in
the mineral lepidolite through flame spectroscopy. Because of the bright red lines in its emission spectrum,
they chose a name derived from the Latin word rubidus, meaning "deep red".[30][31]
Rubidium is a minor component in lepidolite. Kirchhoff and Bunsen
processed 150 kg of a lepidolite containing only 0.24% rubidium monoxide
(Rb2 O). Both potassium and rubidium form insoluble salts with
chloroplatinic acid, but those salts show a slight difference in solubility in
hot water. Therefore, the less soluble rubidium hexachloroplatinate
(Rb2 PtCl6 ) could be obtained by fractional crystallization. After reduction
of the hexachloroplatinate with hydrogen, the process yielded 0.51 grams
of rubidium chloride (RbCl) for further studies. Bunsen and Kirchhoff
began their first large-scale isolation of caesium and rubidium compounds
with 44,000 litres (12,000 US gal) of mineral water, which yielded
7.3 grams of caesium chloride and 9.2 grams of rubidium chloride.[30][31]
Rubidium was the second element, shortly after caesium, to be discovered
Gustav Kirchhoff (left) and
by spectroscopy, just one year after the invention of the spectroscope by
Robert Bunsen (center) Bunsen and Kirchhoff.[32]
discovered rubidium by
spectroscopy. (Henry
The two scientists used the rubidium chloride to estimate that the atomic
Enfield Roscoe is on the
weight of the new element was 85.36 (the currently accepted value is
right.) 85.47).[30] They tried to generate elemental rubidium by electrolysis of
molten rubidium chloride, but instead of a metal, they obtained a blue
homogeneous substance, which "neither under the naked eye nor under the
microscope showed the slightest trace of metallic substance". They presumed that it was a subchloride
(Rb2 Cl); however, the product was probably a colloidal mixture of the metal and rubidium chloride.[33] In a
second attempt to produce metallic rubidium, Bunsen was able to reduce rubidium by heating charred
rubidium tartrate. Although the distilled rubidium was pyrophoric, they were able to determine the density
and the melting point. The quality of this research in the 1860s can be appraised by the fact that their
determined density differs by less than 0.1 g/cm3 and the melting point by less than 1 °C from the presently
accepted values.[34]
The slight radioactivity of rubidium was discovered in 1908, but that was before the theory of isotopes was
established in 1910, and the low level of activity (half-life greater than 1010 years) made interpretation
complicated. The now proven decay of 87 Rb to stable 87 Sr through beta decay was still under discussion in
the late 1940s.[35][36]
Rubidium had minimal industrial value before the 1920s.[37] Since then, the most important use of
rubidium is research and development, primarily in chemical and electronic applications. In 1995,
rubidium-87 was used to produce a Bose–Einstein condensate,[38] for which the discoverers, Eric Allin
Cornell, Carl Edwin Wieman and Wolfgang Ketterle, won the 2001 Nobel Prize in Physics.[39]
Applications
Rubidium compounds are sometimes used in fireworks to give them a purple color.[40] Rubidium has also
been considered for use in a thermoelectric generator using the magnetohydrodynamic principle, whereby
hot rubidium ions are passed through a magnetic field.[41] These conduct electricity and act like an
armature of a generator, thereby generating an electric current. Rubidium, particularly vaporized 87 Rb, is
one of the most commonly used atomic species employed for laser cooling and Bose–Einstein
condensation. Its desirable features for this application include the ready availability of inexpensive diode
laser light at the relevant wavelength and the moderate temperatures required to obtain substantial vapor
pressures.[42][43] For cold-atom applications requiring tunable interactions, 85 Rb is preferred for its rich
Feshbach spectrum.[44]
Rubidium has been used for polarizing 3 He, producing volumes of
magnetized 3 He gas, with the nuclear spins aligned rather than random.
Rubidium vapor is optically pumped by a laser, and the polarized Rb
polarizes 3 He through the hyperfine interaction.[45] Such spin-polarized
3 He cells are useful for neutron polarization measurements and for
Other potential or current uses of rubidium include a working fluid in vapor turbines, as a getter in vacuum
tubes, and as a photocell component.[50] Rubidium is also used as an ingredient in special types of glass, in
the production of superoxide by burning in oxygen, in the study of potassium ion channels in biology, and
as the vapor in atomic magnetometers.[51] In particular, 87 Rb is used with other alkali metals in the
development of spin-exchange relaxation-free (SERF) magnetometers.[51]
Rubidium-82 is used for positron emission tomography. Rubidium is very similar to potassium, and tissue
with high potassium content will also accumulate the radioactive rubidium. One of the main uses is
myocardial perfusion imaging. As a result of changes in the blood–brain barrier in brain tumors, rubidium
collects more in brain tumors than normal brain tissue, allowing the use of radioisotope rubidium-82 in
nuclear medicine to locate and image brain tumors.[52] Rubidium-82 has a very short half-life of
76 seconds, and the production from decay of strontium-82 must be done close to the patient.[53]
Rubidium was tested for the influence on manic depression and depression.[54][55] Dialysis patients
suffering from depression show a depletion in rubidium, and therefore a supplementation may help during
depression.[56] In some tests the rubidium was administered as rubidium chloride with up to 720 mg per
day for 60 days.[57][58]
References
1. "Standard Atomic Weights: Rubidium" (https://www.ciaaw.org/rubidium.htm). CIAAW. 1969.
2. Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca
Raton, FL: CRC Press. p. 4.122. ISBN 1-4398-5511-0.
3. Cverna, Fran (2002). "Ch. 2 Thermal Expansion". ASM Ready Reference: Thermal
properties of metals (http://www.owlnet.rice.edu/~msci301/ThermalExpansion.pdf) (PDF).
ASM International. ISBN 978-0-87170-768-0.
4. Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds".
CRC Handbook of Chemistry and Physics (https://web.archive.org/web/20110303222309/htt
p://www-d0.fnal.gov/hardware/cal/lvps_info/engineering/elementmagn.pdf) (PDF) (86th ed.).
Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
5. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida:
Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
6. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020
evaluation of nuclear properties" (https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.p
df) (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae (https://doi.or
g/10.1088%2F1674-1137%2Fabddae).
7. Lenk, Winfried; Prinz, Horst; Steinmetz, Anja (2010). "Rubidium and Rubidium Compounds".
Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
doi:10.1002/14356007.a23_473.pub2 (https://doi.org/10.1002%2F14356007.a23_473.pub
2).
8. Ohly, Julius (1910). "Rubidium" (https://books.google.com/books?id=dGUuAQAAIAAJ).
Analysis, detection and commercial value of the rare metals. Mining Science Pub. Co.
9. Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Vergleichende Übersicht über die
Gruppe der Alkalimetalle". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.).
Walter de Gruyter. pp. 953–955. ISBN 978-3-11-007511-3.
10. Moore, John W; Stanitski, Conrad L; Jurs, Peter C (2009). Principles of Chemistry: The
Molecular Science (https://books.google.com/books?id=ZOm8L9oCwLMC&pg=PA259).
Cengage Learning. p. 259. ISBN 978-0-495-39079-4.
11. Smart, Lesley; Moore, Elaine (1995). "RbAg4I5" (https://books.google.com/books?id=pVw98
i6gtwMC&pg=PA176). Solid state chemistry: an introduction (https://archive.org/details/solid
statechemis00smar_0/page/176). CRC Press. pp. 176–177 (https://archive.org/details/solids
tatechemis00smar_0/page/176). ISBN 978-0-7487-4068-0.
12. Bradley, J. N.; Greene, P. D. (1967). "Relationship of structure and ionic mobility in solid
MAg4I5". Trans. Faraday Soc. 63: 2516. doi:10.1039/TF9676302516 (https://doi.org/10.103
9%2FTF9676302516).
13. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.).
Butterworth-Heinemann. ISBN 978-0-08-037941-8.
14. Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The
NUBASE evaluation of nuclear and decay properties" (https://hal.archives-ouvertes.fr/in2p3-
00020241/document), Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A (http
s://ui.adsabs.harvard.edu/abs/2003NuPhA.729....3A), doi:10.1016/j.nuclphysa.2003.11.001
(https://doi.org/10.1016%2Fj.nuclphysa.2003.11.001)
15. Strong, W. W. (1909). "On the Possible Radioactivity of Erbium, Potassium and Rubidium" (h
ttps://zenodo.org/record/1545957). Physical Review. Series I. 29 (2): 170–173.
Bibcode:1909PhRvI..29..170S (https://ui.adsabs.harvard.edu/abs/1909PhRvI..29..170S).
doi:10.1103/PhysRevSeriesI.29.170 (https://doi.org/10.1103%2FPhysRevSeriesI.29.170).
16. Lide, David R; Frederikse, H. P. R (June 1995). CRC handbook of chemistry and physics: a
ready-reference book of chemical and physical data (https://books.google.com/books?id=6k
hCAQAAIAAJ). CRC-Press. pp. 4–25. ISBN 978-0-8493-0476-7.
17. "Universal Nuclide Chart" (http://www.nucleonica.net/unc.aspx). nucleonica. Archived (http
s://web.archive.org/web/20170219043412/http://www.nucleonica.net/unc.aspx) from the
original on 2017-02-19. Retrieved 2017-01-03.
18. Planck Collaboration (2016). "Planck 2015 results. XIII. Cosmological parameters (See
Table 4 on page 31 of pfd)". Astronomy & Astrophysics. 594: A13. arXiv:1502.01589 (https://
arxiv.org/abs/1502.01589). Bibcode:2016A&A...594A..13P (https://ui.adsabs.harvard.edu/ab
s/2016A&A...594A..13P). doi:10.1051/0004-6361/201525830 (https://doi.org/10.1051%2F00
04-6361%2F201525830). S2CID 119262962 (https://api.semanticscholar.org/CorpusID:119
262962).
19. Attendorn, H.-G.; Bowen, Robert (1988). "Rubidium-Strontium Dating" (https://books.google.
com/books?id=k90iAnFereYC&pg=PA162). Isotopes in the Earth Sciences. Springer.
pp. 162–165. ISBN 978-0-412-53710-3.
20. Walther, John Victor (2009) [1988]. "Rubidium-Strontium Systematics" (https://books.google.
com/books?id=cYWNAZbPhMYC&pg=PA383). Essentials of geochemistry. Jones & Bartlett
Learning. pp. 383–385. ISBN 978-0-7637-5922-3.
21. Butterman, William C.; Brooks, William E.; Reese, Robert G. Jr. (2003). "Mineral Commodity
Profile: Rubidium" (https://pubs.usgs.gov/of/2003/of03-045/of03-045.pdf) (PDF). United
States Geological Survey. Retrieved 2010-12-04.
22. Wise, M. A. (1995). "Trace element chemistry of lithium-rich micas from rare-element granitic
pegmatites". Mineralogy and Petrology. 55 (13): 203–215. Bibcode:1995MinPe..55..203W (h
ttps://ui.adsabs.harvard.edu/abs/1995MinPe..55..203W). doi:10.1007/BF01162588 (https://d
oi.org/10.1007%2FBF01162588). S2CID 140585007 (https://api.semanticscholar.org/Corpu
sID:140585007).
23. Norton, J. J. (1973). "Lithium, cesium, and rubidium—The rare alkali metals" (https://web.arc
hive.org/web/20100721060544/http://pubs.er.usgs.gov/usgspubs/pp/pp820). In Brobst, D. A.;
Pratt, W. P. (eds.). United States mineral resources. Vol. Paper 820. U.S. Geological Survey
Professional. pp. 365–378. Archived from the original (https://pubs.er.usgs.gov/usgspubs/pp/
pp820) on 2010-07-21. Retrieved 2010-09-26.
24. Bolter, E.; Turekian, K.; Schutz, D. (1964). "The distribution of rubidium, cesium and barium
in the oceans". Geochimica et Cosmochimica Acta. 28 (9): 1459.
Bibcode:1964GeCoA..28.1459B (https://ui.adsabs.harvard.edu/abs/1964GeCoA..28.1459B).
doi:10.1016/0016-7037(64)90161-9 (https://doi.org/10.1016%2F0016-7037%2864%299016
1-9).
25. William A. Hart |title=The Chemistry of Lithium, Sodium, Potassium, Rubidium, Caesium,
and Francium |page=371
26. McSween Jr., Harry Y; Huss, Gary R (2010). Cosmochemistry (https://books.google.com/boo
ks?id=385nPZOXmYAC&pg=PA224). Cambridge University Press. p. 224. ISBN 978-0-521-
87862-3.
27. Teertstra, David K.; Cerny, Petr; Hawthorne, Frank C.; Pier, Julie; Wang, Lu-Min; Ewing,
Rodney C. (1998). "Rubicline, a new feldspar from San Piero in Campo, Elba, Italy".
American Mineralogist. 83 (11–12 Part 1): 1335–1339. Bibcode:1998AmMin..83.1335T (http
s://ui.adsabs.harvard.edu/abs/1998AmMin..83.1335T). doi:10.2138/am-1998-11-1223 (http
s://doi.org/10.2138%2Fam-1998-11-1223).
28. bulletin 585 (https://books.google.com/books?id=1ikjAQAAIAAJ&q=ferrocyanide+rubidium).
United States. Bureau of Mines. 1995.
29. "Cesium and Rubidium Hit Market". Chemical & Engineering News. 37 (22): 50–56. 1959.
doi:10.1021/cen-v037n022.p050 (https://doi.org/10.1021%2Fcen-v037n022.p050).
30. Kirchhoff, G.; Bunsen, R. (1861). "Chemische Analyse durch Spectralbeobachtungen" (http://
archiv.ub.uni-heidelberg.de/volltextserver/15657/1/spektral.pdf) (PDF). Annalen der Physik
und Chemie. 189 (7): 337–381. Bibcode:1861AnP...189..337K (https://ui.adsabs.harvard.ed
u/abs/1861AnP...189..337K). doi:10.1002/andp.18611890702 (https://doi.org/10.1002%2Fan
dp.18611890702). hdl:2027/hvd.32044080591324 (https://hdl.handle.net/2027%2Fhvd.3204
4080591324).
31. Weeks, Mary Elvira (1932). "The discovery of the elements. XIII. Some spectroscopic
discoveries". Journal of Chemical Education. 9 (8): 1413–1434.
Bibcode:1932JChEd...9.1413W (https://ui.adsabs.harvard.edu/abs/1932JChEd...9.1413W).
doi:10.1021/ed009p1413 (https://doi.org/10.1021%2Fed009p1413).
32. Ritter, Stephen K. (2003). "C&EN: It's Elemental: The Periodic Table – Cesium" (http://pubs.
acs.org/cen/80th/print/rubidium.html). American Chemical Society. Retrieved 2010-02-25.
33. Zsigmondy, Richard (2007). Colloids and the Ultra Microscope (https://books.google.com/bo
oks?id=Ac2mGhqjgUkC&pg=PAPA69). Read books. p. 69. ISBN 978-1-4067-5938-9.
Retrieved 2010-09-26.
34. Bunsen, R. (1863). "Ueber die Darstellung und die Eigenschaften des Rubidiums" (https://ze
nodo.org/record/1427191). Annalen der Chemie und Pharmacie. 125 (3): 367–368.
doi:10.1002/jlac.18631250314 (https://doi.org/10.1002%2Fjlac.18631250314).
35. Lewis, G. M. (1952). "The natural radioactivity of rubidium". Philosophical Magazine. Series
7. 43 (345): 1070–1074. doi:10.1080/14786441008520248 (https://doi.org/10.1080%2F1478
6441008520248).
36. Campbell, N. R.; Wood, A. (1908). "The Radioactivity of Rubidium" (https://archive.org/strea
m/proceedingsofcam15190810camb/proceedingsofcam15190810camb_djvu.txt).
Proceedings of the Cambridge Philosophical Society. 14: 15.
37. Butterman, W. C.; Reese, R. G. Jr. "Mineral Commodity Profiles Rubidium" (https://pubs.usg
s.gov/of/2003/of03-045/of03-045.pdf) (PDF). United States Geological Survey. Retrieved
2010-10-13.
38. "Press Release: The 2001 Nobel Prize in Physics" (http://nobelprize.org/nobel_prizes/physi
cs/laureates/2001/press.html). Retrieved 2010-02-01.
39. Levi, Barbara Goss (2001). "Cornell, Ketterle, and Wieman Share Nobel Prize for Bose-
Einstein Condensates" (https://doi.org/10.1063%2F1.1445529). Physics Today. 54 (12): 14–
16. Bibcode:2001PhT....54l..14L (https://ui.adsabs.harvard.edu/abs/2001PhT....54l..14L).
doi:10.1063/1.1445529 (https://doi.org/10.1063%2F1.1445529).
40. Koch, E.-C. (2002). "Special Materials in Pyrotechnics, Part II: Application of Caesium and
Rubidium Compounds in Pyrotechnics" (https://web.archive.org/web/20110713122322/htt
p://www.jpyro.com/wp/?p=179). Journal Pyrotechnics. 15: 9–24. Archived from the original (h
ttp://www.jpyro.com/wp/?p=179) on 2011-07-13. Retrieved 2010-01-29.
41. Boikess, Robert S; Edelson, Edward (1981). Chemical principles (https://books.google.com/
books?id=59XvAAAAMAAJ&q=%22rubidium%22+%22magnetohydrodynamic%22). Harper
& Row. p. 193. ISBN 978-0-06-040808-4.
42. Eric Cornell; et al. (1996). "Bose-Einstein condensation (all 20 articles)" (https://web.archive.
org/web/20111014234040/http://nvl.nist.gov/pub/nistpubs/jres/101/4/cnt101-4.htm). Journal
of Research of the National Institute of Standards and Technology. 101 (4): 419–618.
doi:10.6028/jres.101.045 (https://doi.org/10.6028%2Fjres.101.045). PMC 4907621 (https://w
ww.ncbi.nlm.nih.gov/pmc/articles/PMC4907621). PMID 27805098 (https://pubmed.ncbi.nlm.
nih.gov/27805098). Archived from the original (http://nvl.nist.gov/pub/nistpubs/jres/101/4/cnt1
01-4.htm) on 2011-10-14. Retrieved 2015-09-14.
43. Martin, J. L.; McKenzie, C. R.; Thomas, N. R.; Sharpe, J. C.; Warrington, D. M.; Manson, P. J.;
Sandle, W. J.; Wilson, A. C. (1999). "Output coupling of a Bose-Einstein condensate formed
in a TOP trap". Journal of Physics B: Atomic, Molecular and Optical Physics. 32 (12): 3065.
arXiv:cond-mat/9904007 (https://arxiv.org/abs/cond-mat/9904007).
Bibcode:1999JPhB...32.3065M (https://ui.adsabs.harvard.edu/abs/1999JPhB...32.3065M).
doi:10.1088/0953-4075/32/12/322 (https://doi.org/10.1088%2F0953-4075%2F32%2F12%2F
322). S2CID 119359668 (https://api.semanticscholar.org/CorpusID:119359668).
44. Chin, Cheng; Grimm, Rudolf; Julienne, Paul; Tiesinga, Eite (2010-04-29). "Feshbach
resonances in ultracold gases". Reviews of Modern Physics. 82 (2): 1225–1286.
arXiv:0812.1496 (https://arxiv.org/abs/0812.1496). Bibcode:2010RvMP...82.1225C (https://ui.
adsabs.harvard.edu/abs/2010RvMP...82.1225C). doi:10.1103/RevModPhys.82.1225 (https://
doi.org/10.1103%2FRevModPhys.82.1225). S2CID 118340314 (https://api.semanticscholar.
org/CorpusID:118340314).
45. Gentile, T. R.; Chen, W. C.; Jones, G. L.; Babcock, E.; Walker, T. G. (2005). "Polarized 3He
spin filters for slow neutron physics" (https://web.archive.org/web/20161221234735/https://n
cnr.nist.gov/equipment/he3nsf/SEOP/nistSlowNeutronconf2005.pdf) (PDF). Journal of
Research of the National Institute of Standards and Technology. 110 (3): 299–304.
doi:10.6028/jres.110.043 (https://doi.org/10.6028%2Fjres.110.043). PMC 4849589 (https://w
ww.ncbi.nlm.nih.gov/pmc/articles/PMC4849589). PMID 27308140 (https://pubmed.ncbi.nlm.
nih.gov/27308140). Archived from the original (http://www.ncnr.nist.gov/equipment/he3nsf/S
EOP/nistSlowNeutronconf2005.pdf) (PDF) on 2016-12-21. Retrieved 2015-08-06.
46. "Neutron spin filters based on polarized helium-3" (http://www.ncnr.nist.gov/AnnualReport/F
Y2002_html/pages/neutron_spin.htm). NIST Center for Neutron Research 2002 Annual
Report. Retrieved 2008-01-11.
47. Eidson, John C (2006-04-11). "GPS" (https://books.google.com/books?id=jmfkJYdEANEC&
pg=PA32). Measurement, control, and communication using IEEE 1588. Springer. p. 32.
ISBN 978-1-84628-250-8.
48. King, Tim; Newson, Dave (1999-07-31). "Rubidium and crystal oscillators" (https://books.goo
gle.com/books?id=ttYt5bZqX0AC&pg=PA300). Data network engineering. Springer. p. 300.
ISBN 978-0-7923-8594-3.
49. Marton, L. (1977-01-01). "Rubidium Vapor Cell" (https://books.google.com/books?id=LesrjS
VQMPQC&pg=PA72). Advances in electronics and electron physics. Academic Press.
ISBN 978-0-12-014644-4.
50. Mittal (2009). Introduction To Nuclear And Particle Physics (https://books.google.com/book
s?id=GEVt3kpFw64C&pg=PA274). Prentice-Hall Of India Pvt. Limited. p. 274. ISBN 978-81-
203-3610-0.
51. Li, Zhimin; Wakai, Ronald T.; Walker, Thad G. (2006). "Parametric modulation of an atomic
magnetometer" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431608). Applied Physics
Letters. 89 (13): 23575531–23575533. Bibcode:2006ApPhL..89m4105L (https://ui.adsabs.h
arvard.edu/abs/2006ApPhL..89m4105L). doi:10.1063/1.2357553 (https://doi.org/10.1063%2
F1.2357553). PMC 3431608 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431608).
PMID 22942436 (https://pubmed.ncbi.nlm.nih.gov/22942436).
52. Yen, C. K.; Yano, Y.; Budinger, T. F.; Friedland, R. P.; Derenzo, S. E.; Huesman, R. H.;
O'Brien, H. A. (1982). "Brain tumor evaluation using Rb-82 and positron emission
tomography". Journal of Nuclear Medicine. 23 (6): 532–7. PMID 6281406 (https://pubmed.nc
bi.nlm.nih.gov/6281406).
53. Jadvar, H.; Anthony Parker, J. (2005). "Rubidium-82" (https://books.google.com/books?id=Fh
kLE8MC71IC&pg=PA59). Clinical PET and PET/CT. Springer. p. 59. ISBN 978-1-85233-
838-1.
54. Paschalis, C.; Jenner, F. A.; Lee, C. R. (1978). "Effects of rubidium chloride on the course of
manic-depressive illness" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1436619). J R
Soc Med. 71 (9): 343–352. doi:10.1177/014107687807100507 (https://doi.org/10.1177%2F0
14107687807100507). PMC 1436619 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1436
619). PMID 349155 (https://pubmed.ncbi.nlm.nih.gov/349155).
55. Malekahmadi, P.; Williams, John A. (1984). "Rubidium in psychiatry: Research implications".
Pharmacology Biochemistry and Behavior. 21: 49–50. doi:10.1016/0091-3057(84)90162-X
(https://doi.org/10.1016%2F0091-3057%2884%2990162-X). PMID 6522433 (https://pubme
d.ncbi.nlm.nih.gov/6522433). S2CID 2907703 (https://api.semanticscholar.org/CorpusID:290
7703).
56. Canavese, Caterina; Decostanzi, Ester; Branciforte, Lino; Caropreso, Antonio; Nonnato,
Antonello; Sabbioni, Enrico (2001). "Depression in dialysis patients: Rubidium
supplementation before other drugs and encouragement?" (https://doi.org/10.1046%2Fj.152
3-1755.2001.0600031201.x). Kidney International. 60 (3): 1201–2. doi:10.1046/j.1523-
1755.2001.0600031201.x (https://doi.org/10.1046%2Fj.1523-1755.2001.0600031201.x).
PMID 11532118 (https://pubmed.ncbi.nlm.nih.gov/11532118).
57. Lake, James A. (2006). Textbook of Integrative Mental Health Care (https://books.google.co
m/books?id=Bt5euqMwbpYC&pg=PA165). New York: Thieme Medical Publishers. pp. 164–
165. ISBN 978-1-58890-299-3.
58. Torta, R.; Ala, G.; Borio, R.; Cicolin, A.; Costamagna, S.; Fiori, L.; Ravizza, L. (1993).
"Rubidium chloride in the treatment of major depression". Minerva Psichiatrica. 34 (2): 101–
110. PMID 8412574 (https://pubmed.ncbi.nlm.nih.gov/8412574).
59. "Rubidium 276332" (https://www.sigmaaldrich.com/catalog/product/aldrich/276332). Sigma-
Aldrich.
60. Martel, Bernard; Cassidy, Keith (2004-07-01). "Rubidium" (https://books.google.com/books?i
d=vKBqqiCTB7MC&pg=PA215). Chemical risk analysis: a practical handbook. Butterworth-
Heinemann. p. 215. ISBN 978-1-903996-65-2.
61. Relman, A. S. (1956). "The Physiological Behavior of Rubidium and Cesium in Relation to
That of Potassium" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603856). The Yale
Journal of Biology and Medicine. 29 (3): 248–62. PMC 2603856 (https://www.ncbi.nlm.nih.g
ov/pmc/articles/PMC2603856). PMID 13409924 (https://pubmed.ncbi.nlm.nih.gov/1340992
4).
62. Fieve, Ronald R.; Meltzer, Herbert L.; Taylor, Reginald M. (1971). "Rubidium chloride
ingestion by volunteer subjects: Initial experience". Psychopharmacologia. 20 (4): 307–14.
doi:10.1007/BF00403562 (https://doi.org/10.1007%2FBF00403562). PMID 5561654 (https://
pubmed.ncbi.nlm.nih.gov/5561654). S2CID 33738527 (https://api.semanticscholar.org/Corp
usID:33738527).
63. Meltzer, H. L. (1991). "A pharmacokinetic analysis of long-term administration of rubidium
chloride" (https://archive.today/20120709223213/http://jcp.sagepub.com/content/31/2/179).
Journal of Clinical Pharmacology. 31 (2): 179–84. doi:10.1002/j.1552-4604.1991.tb03704.x
(https://doi.org/10.1002%2Fj.1552-4604.1991.tb03704.x). PMID 2010564 (https://pubmed.nc
bi.nlm.nih.gov/2010564). S2CID 2574742 (https://api.semanticscholar.org/CorpusID:257474
2). Archived from the original (http://jcp.sagepub.com/content/31/2/179) on 2012-07-09.
64. Follis, Richard H. Jr. (1943). "Histological effects in rats resulting from adding rubidium or
cesium to a diet deficient in potassium" (https://journals.physiology.org/doi/abs/10.1152/ajple
gacy.1943.138.2.246). AJP: Legacy Content. 138 (2): 246–250.
doi:10.1152/ajplegacy.1943.138.2.246 (https://doi.org/10.1152%2Fajplegacy.1943.138.2.24
6).
Further reading
Meites, Louis (1963). Handbook of Analytical Chemistry (New York: McGraw-Hill Book
Company, 1963)
Steck, Daniel A. "Rubidium-87 D Line Data" (https://web.archive.org/web/20131102072437/
http://george.ph.utexas.edu/~dsteck/alkalidata/rubidium87numbers.pdf) (PDF). Los Alamos
National Laboratory (technical report LA-UR-03-8638). Archived from the original (http://geor
ge.ph.utexas.edu/~dsteck/alkalidata/rubidium87numbers.pdf) (PDF) on 2013-11-02.
Retrieved 2008-02-09.
External links
"Rubidium" (https://en.wikisource.org/wiki/1911_Encyclop%C3%A6dia_Britannica/Rubidiu
m). Encyclopædia Britannica. Vol. 23 (11th ed.). 1911. p. 809.
Rubidium (http://www.periodicvideos.com/videos/037.htm) at The Periodic Table of Videos
(University of Nottingham)