0 ratings0% found this document useful (0 votes) 43 views3 pagesFunctions Solutions
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
ii
133. 6) =Hos (x +571) ana
£9) = log (-r+ vei)
fx) + x)
=log (x+V? 41) + toe(-x
2 £@) pan odd function.
1M 83) = sin(loe(x-+ V7)
fa 2) = sin[ fog (x ex) ]
= sng (Sie 4) “*)
(vies? +3)
1
Vitex +x
= sin log(x+ i? y]
= sia{ og(x+ V+) |
7 ~sin[fog(x+ Vir )
=-f(x)
(2) is an odd function.
= sing
35, f-2)= see|log(—x + i+=F)|
se[loe( -=+Vie)]
see{fog(vi+ xx
|
)]
5]
mle ger
[-! log( Vie +)|
= se[log( VF]
f(x) is an even function.
= sd e{
= sec}
136. Consider option (C),
(a* -1)
fa)= 4
-x(a*=1
w(i-a')_ x02"=l) ey
+a" ated
(2) is an even function.
137. Since, f(x) is even
f(x) = fle)
138. As f{-x)=f%) VxeR
‘. y remains unchanged when x is changed to ~~.
Hence, the graph of y = f(x) is symmetric
about Y-axis.
139. f&) = f- x) > (0 + x) = {0 - x is
symmetrical about x= 0. .
£2 + x) = {(2 —x) is symmetrical about x=
140. Value of the function f(x) does not exist.
= 1or—1ie,, not unique)
x
143.
3S
Gvenesreion= $24]
22a e724
-2(2.4), 8 faa
tea] a [33]
-on 8 [2 ;
5G]
= 66
each term in the summation is one
but less than 2 when i = 33, 34, 35 mes145.
(46.
1
=1+ 3 [oseaes on (4 >)
~eoe{ 21+) -e(2}]
+ arco 20+ 28)
-eos{2x4)
3
+) cos 2-2 sin 2008 sin{ =
2 2 6
+1 cos ax-asin Ese) 4
2 2 )2
+} (cos2x—00s2x)
0
3
a
3
a
3
ry
3
4
+2=2
=P=2-2
y= log: (2 - 2°) is defined, if2- 2"> 0
= <2
a2t 0, logs x > 0 and x>0
= logsx > 3°= 1,x>4°= 1 andx>0
=x>4'jx>landx>0
=x>4
domain of fis (4, «).
. f(x) is defined, if
1 = logy (2? — 5x + 16) > O and x* = Sx+16>0
=> logio@? — 5x +16) <1 and
2
(5 +32 50 for all real x
2) 4
=> 5x+16<10'=10
=P -5x+6<0
= (r= 3)(&-2)<0
32 0,14 p> Oand.x£0
z
1
= lon (It fe eh + > 0 andx#0
¥ z
a
1
> (ta}> (4) sche >and x #0
= toot, Ay Ht and 40
wy
2 0-I andx #0
domain of f(x) =(0, 1).
Since, e* is defined for all real x.
domain is (— 2, 0)
|. Since, domain of Va? —x* is [-a, a]
domain of V4—x" is [-2, 2].
Since,domain of Vx’ —a” is (=, ~a] U [a, =)
domain of Vx? -16 is (~~,-4] U [4, 0)
1
Since, domain of is (-a, a).
1
domain of is (-3, 3).
1
Since, domain of ————$———= is.
Vee)
(-, a) U (b, «), where a 0
=>xt>(0.5)!
Sat21
xl=1=x=0orl
Domain of the function
jx+2]
= isR-
f(x) 2 ® {2}
|x+¢]
isR- «|
xt
157. f(x) = log (Ve=4 4 o=x)is defined,
when x-4>0and6-x>0
=>x2>4andx<6 = [4, 0) A(-~, 6]
domain of f(x) = [4, 6]— =
158. Dr = fF ER: 1-x>0}nfreR
~&ERIX< A Ger:
ieys~lorxet
= Ee, IV (00, Uli eo oe
bse
Comune
=(,-1] “ett
159. Dr=Dp Dy
. 1
where g(x) = Toga(iza othe) = Vex
Now, Dp= { € R: 1—x>0, logo (1 —2)0}
={xeRix0}
= {xe Rix>2}
Dr= [(-~, 1) - {0}] 9-2, «)
=[-2, 1) - {0}
160. Let g(x) = sin os 32 ana ne) = “ton x)
g(x) is defined, if
-1 3 <1520>x<4
domain ofy=[1, 5] 0 [-,4)
=[1,4)
161.
5
Let 262) =logi-=7 > and
h(x) = fe+5
Now, g(x) is defined, if
D,=(4,5)U 6,2) oi)
h@)
Yx+5 is defined for all real x
Dy=R
From (i) and (ii), we get
domain of f(x) =D, 0 Ds
=RA (4,5) V6,2)}
= (4,5) (6,%)
162. For domain of f(), x + 3 > 0 and
P43 220
=px>—3and (r+ 1) (e+2)#0
= x>-Bandx 4-1, -2
Hence, domain = (-3, ©) ~ {-1,-2}
He hive
0 1 3
3 2
D: +) 3|
x43
164. = |_—,
®” Va-aG-5
f(x) is defined, if
+3) Q-a) (e520
and (2—x) (x5) #0
= (v3) @-2)(e-5) <0 andx #2, 5
domain of ffx) = (20, -3] U 2, 5)
2H 2Oand2- |x| #0
= Uob)(2-b)
(2-h\)
= ([s|-1) ([x]-2) > 0 andx 4-2, 2
= || s Lor fx] >2
2Oandx#-2,2
> -1Sx<1 or(e<—2orx>2)
domain of fix) = [-1, 1] U (0, -2) u (2, 0)