CONTENTS
---------------------------------------------------------------------------------------------------------------------------
 I – Definition and examples
II – Linear independence
III – Rank of vectors
IV – Basic and Dimension
V – Subspaces
                             I. The Definition and Examples
   ---------------------------------------------------------------------------------------------------------------------------
A nonempty set V                                      Two operations
                   Addition                                 Multiplication by scalar
 Eight axioms
1. u + v = v + u;                            2. (u + v) + w = u + (v + w)
3. There is a zero vector 0 in V such that u + 0 = u
4. For each u in V, there is a vector –u in V such that u + (-u) = 0
VECTOR SPACE V
5. For all scalars a and b and any vector x: (ab)x = a(bx).
6. c(u + v) = cu + cv
7. (c + d)u = cu + du                                8. 1u = u
                           I. The Definition and Examples
 ---------------------------------------------------------------------------------------------------------------------------
Properties of Vector Space
 For each u in V and scalar c:
 1)There is a single zero element in an arbitrary vector space
 2) There is a single additive inverse vector for every vector u
 3) 0u = 0
 4) c0 = 0
5) -u = (-1)u
                             I. The Definition and Examples
   ---------------------------------------------------------------------------------------------------------------------------
Example 1
                     V1  ( x1 , x2 , x3 ) xi  R
   x  y  ( x1 , x2 , x3 )  ( y1 , y2 , y3 )  ( x1  y1 , x2  y2 , x3  y3 )
                    x   ( x1 , x2 , x3 )  (x1 ,x2 ,x3 )
                          x1  y1
                         
                 x  y   x2  y 2
                         x  y
                          3     3
                                           V1 - VECTOR SPACE R3
                            I. The Definition and Examples
  ---------------------------------------------------------------------------------------------------------------------------
Example 2
                V2  ax 2  bx  c a, b, c  R
 p ( x)  q ( x)  (a1 x 2  b1 x  c1 )  (a2 x 2  b2 x  c2 ) 
  (a1  a2 ) x 2  (b1  b2 ) x  (c1  c2 )
   p( x)   (ax 2  bx  c)  ax 2  bx  c
                       a1  a2
                       
   p1 ( x)  p2 ( x)   b1  b2
                       c  c
                        1 2
                                          V2 - VECTOR SPACE P2 [ x]
                             I. The Definition and Examples
   ---------------------------------------------------------------------------------------------------------------------------
Example 3
                     a b                    
                V3        a , b, c , d  R 
                      c d                   
             a1 b1  a2 b2  a1  a2 b1  b2 
   A1  A2                              
              c  d      c d       c  c
              1 1  2 2   1 2 1 2  d   d
                           a b   a   b
                     A                  
                           c d     c   d 
                                          V3 - VECTOR SPACE M 2 [ R ]
                          I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Example 4
             V4  ( x1, x2 , x3 ) xi  R  2 x1  x2  x3  0
The addition and multiplication vector by scalar are the
same as in Example 1.
                                       V4 - VECTOR SPACE
                          I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------
Example 4
                  V4  ( x1 , x2 , x3 ) xi  R  x1  x2  2 x3  1
The addition and multiplication vector by scalar are the
same as in Example 1.
                                       V4 - NOT VECTOR SPACE
                    x  (1,2,1)  V4 , y  (2,3,2)  V4
                    x  y  (3,5,3)  V4
Note: We can define another two operations addition and
multiplication in V1, ( or V2, or V3 ) so that V1 ( or V2, or V3 )
is a vector space.
                                     II. Linear Independence
   ---------------------------------------------------------------------------------------------------------------------------
    V- vector space over K                                           Subset
                                 M  {x1 , x2 ,..., xm }
1 , 2 , , m  K not all zero
                                                                                 M – linear dependent
1x1   2 x2     m xm  0
1x1   2 x2     m xm  0
   1   2   m  0                                                          M – linear independent
                                   II. Linear Independence
 ---------------------------------------------------------------------------------------------------------------------------
  V- vector space over K                                           Subset
                               M  {x1 , x2 ,..., xm }
Vector x in V is called a linear combination of M, if
         1 , 2 , , m  K
                               x  1 x1   2 x2     m xm
                                     II. Linear Independence
   ---------------------------------------------------------------------------------------------------------------------------
 Example 5
                 M  { (1, 1, 1 ) ; ( 2 , 1, 3 ) , (1, 2 , 0 ) }
1. Decide whether M is linearly dependent or independent?
2. Is a vector x = (2,-1,3) a linear combination of M?
Solution 1.              Suppose  ( 1,1,1)   ( 2,1, 3 )   ( 1, 2, 0 )  0
     (   2    ,    2 ,  3 )  ( 0, 0, 0 )
        2     0                                   1 2 1 
      
         2  0                                A  1 1 2                               r( A )  2
                                                               
         3  0                                       1 3 0 
                                                              
The system has many solutions, then M is a linearly dependent.
                                     II. Linear Independence
   ---------------------------------------------------------------------------------------------------------------------------
      2.       Suppose                  ( 1,1,1)   ( 2,1, 3)   ( 1, 2, 0 )  x
   (   2    ,    2 ,  3 )  ( 2, 1, 3)
       2    2                                                1 2 1 2 
    
       2  1                                      (A | b)  1 1 2 1
                                                                            
       3  3                                                    1 3 0 3 
                                                                           
               r(A | b)  r(A)
The system is inconsistent.                                  vô nghim
Thus vector x is not a linear combination of M.
                                    II. Linear Independence
  ---------------------------------------------------------------------------------------------------------------------------
                                   M  {x1 , x2 ,, xm }
1x1   2 x2     m xm  0                                                  Homogeneous
                                                                                system AX=0
Unique trivial
solution X = 0                                  M – linear independent
                              nghim duy nht
Non      trivial
solution                                    M – linear dependent
                              vô nghim
                                     II. Linear Independence
   ---------------------------------------------------------------------------------------------------------------------------
                                    M  {x1 , x2 ,, xm }
1 x1   2 x2     m xm  x                                                         System
                                                                                        AX= b
 Consistent
                                                       x is a linear combination
                                                       of M
Inconsistent                                                       x is not a linear
                                                                   combination of M.
                                    II. Linear Independence
  ---------------------------------------------------------------------------------------------------------------------------
                                                                                             tp con
Example
Let M  { x , y , 2 x  3 y , z } be a subset of a vector
space V.
a. Is a vector 2x + 3y a linear combination of {x, y, z}?
b. Is the set M linear dependent or linear independent?
                                       II. Linear Independence
     ---------------------------------------------------------------------------------------------------------------------------
  Example
 Let M = { x, y, z} be a linear independent set in a vector space V.
 Show that the set M1= {x+y+2z, 2x+3y+z, 3x+4y+z}
  is a linear independent.
Suppose  ( x  y  2 z )   (2 x  3 y  z )   (3 x  4 y  z )  0
   (  2   3 ) x  (  3  4 ) y  (2     ) z  0
 Because of M is a linear independent set, we obtain
    2   3                      0
                                                         0
    3  4                       0
   2                           0
  
 Thus M1 is a linear independent set.
                                     II. Linear Independence
   ---------------------------------------------------------------------------------------------------------------------------
Example
Let M  { x , y } be an independent subset of a vector space V.
 Decide whether each subset is linearly dependent or linearly
 independent.
 a. M1  {2x, 3y}
 b. M 2  {x+y,2x+3y}
 c. M3  {x+y,2x+3y,x-y}
                                      II. Linear Independence
    ---------------------------------------------------------------------------------------------------------------------------
       If M contains a zero vector, then M is linear dependent
        M  {x1 , x2 ,, xm } - linear dependent
                   xi - linear combination of the remaining
                           vectors in M
                                      II. Linear Independence
    ---------------------------------------------------------------------------------------------------------------------------
     If M is a linear dependent, then the set formed from M by
    adding some another vectors still linear dependent.
     If M is a linear independent, then the set formed from M by
    removing some another vectors still linear independent.
      Let M be a set containing m vectors: M  {x1 , x2 ,..., xm }
       Let N be a set containing n vectors: N  { y1 , y2 ,..., yn }
      If every vector yk from N is a linear combination of M
       and n > m, then N is dependent set.
                                      II. Linear Independence
    ---------------------------------------------------------------------------------------------------------------------------
  Example
  Let M = { x, y} is a subset of a vector space V.
  Is the set M1 ={2x+y, x+3y, 3x+y} a linear dependent or not?
Suppose         (2 x  y )   ( x  3 y )   (3x  y )  0
    (2    3 ) x  (  3   ) y  0
  2    3                           0
                                            It’s incorrect because M is maybe
 
     3                             0 not linear independent
Correct solution. It’s easy to show that every vector from M1 is a
                 linear combination of M
 And the number of vectors in M1 is greater than the number of
 vectors in M
 Hence M1 is a linear dependent.
                                    II. Linear Independence
  ---------------------------------------------------------------------------------------------------------------------------
Example
Let {x,y} be a linearly independent subset of a vector space
V and a vector z is not a linear combination of {x ,y}.
Show that the subset {x , y , z } is a linearly independent.
                                    II. Linear Independence
  ---------------------------------------------------------------------------------------------------------------------------
Example 7
Determine whether the following set of vectors is a linear
dependent or linear independent.
             M  { (1, 1, 1 ) ; ( 2 , 1, 3 ) , (1, 2 , 0 ) }
                                    II. Linear Independence
  ---------------------------------------------------------------------------------------------------------------------------
Example 8
Determine whether the following set of polynomials is a
linear dependent or linear independent.
          M  {x 2  x  1, 2 x 2  3 x  2, 2 x  1}
                                    II. Linear Independence
  ---------------------------------------------------------------------------------------------------------------------------
Example 9
Determine whether the following set of matrices is a linear
dependent or linear independent.
     1                    1     2                  1  3                        4     1                     3   
M  {                          ; 1                    ;                            ; 1                        }
     1                    0                        1  0                       1                           2   
                                   II. Linear Independence
 ---------------------------------------------------------------------------------------------------------------------------
Example 10
Determine all value(s) m, such that the following set is linear
dependent
                      M  {(1,1,0);(1, 2,1);(m,0,1)}
                               III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
Definition of a rank of a set of vectors
                   M  {x1 , x2 ,, xm ,}  V
    The rank of M is k0 if there exists k0 independent vectors
    from M and any subset of M containing greater than k0
    vectors is dependent.
The rank of M is the maximum number of independent
vectors from M.
                                 III. Rank of a set of vectors
  ---------------------------------------------------------------------------------------------------------------------------
Example 11
 Find a rank of following set of vectors
   M  {(1,1,1,0);(1, 2,1,1);(2,3, 2,1),(1,3,1, 2)}
                                 III. Rank of a set of vectors
  ---------------------------------------------------------------------------------------------------------------------------
Example
Let M  { x , y }                              be a linearly independent subset of a
vector space V.
Calculate a rank of each following subset.
a. M1  {2x, 3y}
b. M 2  {x,y, 2x  3y}
c. M3  {x,y, 2x  3y, 0}
                               III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
                               1 2 1 1
                            A 3 1 0 5 
                                        
                               2 4 1 6 
                                        
The set of row vectors of A.
M  {x1  (1, 2,1, 1); x2  (3,1,0,5); x3  (2, 4,1,6)}
 The set of column vectors of A.
               1   2   1   1 
                      
           N  3 , 1 , 0 , 5 
                      
               2   4   1   6  
                      
                               III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
Theorem of a Rank
   Let A be a mxn matrix over K.
  A rank of A is equal to a rank of the set of column
  vectors of A.
  A rank of A is equal to a rank of the set of row                                                     vectors of
  A.
                               III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
  Example 11
      Find a rank of following set of vectors
                    M  {(1,1,1,0);(1,1, 1,1);(2,3,1,1),(3, 4,0, 2)}
   Solution
                               1               1    0   1
                               1               1 1 1 
                             A                       
                               2               3 1 1
                               3               4 0 2 
                               
       M is a set of row vectors of A. It follows that rank of M is
       equal to a r(A).
                               III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------
      Let M be a set containing m vectors.
       1. If rank of M is equal to m (the number of vectors in M)
       then M is independent.
       2. If rank of M is less than to m (the number of vectors in
       M) then M is dependent.
       3. If rank of M is equal to a rank of M adjoint vector x then
       x is a linear combination of M.
                                  IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
  Definition of a spanning set
                             M  {x1 , x2 , , xm ,}  V
      A set M is called a spanning set for vector space V if
      any vector from V is a linear combination of M.
           M spans V
           Vector space V spanned by M
                                    IV. Basic and Dimension
  ---------------------------------------------------------------------------------------------------------------------------
Example 12
 Determine whether a following set is a spanning set for R3.
                      M  {(1,1,1);(1, 2,1);(2,3,1)}
 x  (x 1 , x 2 , x 3 )  R 3 .
        x  (x 1 , x 2 , x 3 )  1 (1,1,1)   2 (1, 2,1)   3 (2, 3,1)
      1   2  2 3                                x1
                                                                          Direct calculation shows that
    1  2 2  3 3                          x2
                                                                     the system is consistent
      1       2    3                           x3
Thus, x is a linear combination of M and M is a spanning set for R3
                                      IV. Basic and Dimension
    ---------------------------------------------------------------------------------------------------------------------------
 Example
 Determine whether a following set is a spanning set for R3.
                                  M  {(1,1, 1);(2,3,1);(3, 4,0)}
  x  (x 1 , x 2 , x 3 )  R 3 .
    x  (x 1 , x 2 , x 3 )  1 (1,1, 1)   2 (2, 3,1)   3 (3, 4, 0)
         1  2 2  3 3                                x1
         
        1  3 2  4 3                          x2
                                               x3
               1     2
  For x  (1, 2,1), the system is inconsistent
 The element (1,2,1) is not linear combination of M. Thus M is not a
spanning set for R3.
                                      IV. Basic and Dimension
    ---------------------------------------------------------------------------------------------------------------------------
  Example 13
   Determine whether a following set is a spanning set for P2[x].
              M  {x 2  x  1; 2 x 2  3 x  1; x 2  2 x}
      p (x )  ax 2  bx  c  P2 [x].
                          2                                              2                                              2
p (x )  1 (x  x  1)   2 (2x  3x  1)   3 (x  2x )
      1  2 2   3                           a
     
    1  3 2  2 3                           b
                                             c
           1    2
                        2
For the element p 0  2x  x the system has no solution. Thus
 the set M is not a spanning set for P2[x].
                                  IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
            M  {x1 , x2 ,, xm ,}  V
       M- independent                                                Span M = V
                                       M- Basic of V
  M is a basic
                                             V – finite dimentional
   M- finite set                             Dim V = number of vectors in a
                                             basic of V
  If V is not spanned by a finite set, then V is said to be
  infinite - dimensional
                                      III. Basic and Dimension
    ---------------------------------------------------------------------------------------------------------------------------
                                dim(V) =n
      Any set in V containing more than n vectors must be
     linearly dependent
     Any set in V containing less than n vectors doesn’t span V
      Any independent set in V containing exactly n vectors
     must be basic of V
      Any spanning set of V containing exactly n vectors must
     be basic of V
                                       III. Basic and Dimension
     ---------------------------------------------------------------------------------------------------------------------------
Let S  {v1 , v2 ,..., v p } be a set in V and let H = Span {v1 , v2 ,..., v p }
a. If S is a linearly dependent, then the set formed from S by
removing one vector still spans H.
b. If S is a linearly Independent, then any proper subset of S
doesn’t spans H.
                                    IV. Basic and Dimension
  ---------------------------------------------------------------------------------------------------------------------------
Example 14
 Determine whether a following set is a basic for R3.
                     M  {(1,1,1);(2,3,1);(3,1,0)}
                                    IV. Basic and Dimension
  ---------------------------------------------------------------------------------------------------------------------------
Example 15
 Determine whether a following set is a basic for P2[x].
         M  {x 2  x  1; 2 x 2  x  1; x 2  2 x  2}