0% found this document useful (0 votes)
54 views41 pages

Chap4 - VectorSpace-B N GHI CHÉP

1) The document defines vector spaces and provides examples of vector spaces including R3, the set of polynomials of degree less than or equal to 2, and the set of 2x2 matrices. 2) It discusses the concepts of linear independence and dependence of vectors. A set of vectors is linearly independent if the only solution to the equation involving their linear combination is the trivial solution with all coefficients equal to 0. 3) It provides examples to illustrate linear independence and dependence, and whether a given vector can be expressed as a linear combination of other vectors.

Uploaded by

Anh Lan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
54 views41 pages

Chap4 - VectorSpace-B N GHI CHÉP

1) The document defines vector spaces and provides examples of vector spaces including R3, the set of polynomials of degree less than or equal to 2, and the set of 2x2 matrices. 2) It discusses the concepts of linear independence and dependence of vectors. A set of vectors is linearly independent if the only solution to the equation involving their linear combination is the trivial solution with all coefficients equal to 0. 3) It provides examples to illustrate linear independence and dependence, and whether a given vector can be expressed as a linear combination of other vectors.

Uploaded by

Anh Lan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 41

CONTENTS

---------------------------------------------------------------------------------------------------------------------------

I – Definition and examples

II – Linear independence

III – Rank of vectors

IV – Basic and Dimension

V – Subspaces
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------

A nonempty set V Two operations

Addition Multiplication by scalar

Eight axioms

1. u + v = v + u; 2. (u + v) + w = u + (v + w)
3. There is a zero vector 0 in V such that u + 0 = u
4. For each u in V, there is a vector –u in V such that u + (-u) = 0
VECTOR SPACE V
5. For all scalars a and b and any vector x: (ab)x = a(bx).
6. c(u + v) = cu + cv

7. (c + d)u = cu + du 8. 1u = u
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------

Properties of Vector Space


For each u in V and scalar c:

1)There is a single zero element in an arbitrary vector space

2) There is a single additive inverse vector for every vector u


3) 0u = 0
4) c0 = 0

5) -u = (-1)u
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------

Example 1

V1  ( x1 , x2 , x3 ) xi  R

x  y  ( x1 , x2 , x3 )  ( y1 , y2 , y3 )  ( x1  y1 , x2  y2 , x3  y3 )

  x   ( x1 , x2 , x3 )  (x1 ,x2 ,x3 )


 x1  y1

x  y   x2  y 2
x  y
 3 3

V1 - VECTOR SPACE R3
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------

Example 2

V2  ax 2  bx  c a, b, c  R
p ( x)  q ( x)  (a1 x 2  b1 x  c1 )  (a2 x 2  b2 x  c2 ) 
 (a1  a2 ) x 2  (b1  b2 ) x  (c1  c2 )

  p( x)   (ax 2  bx  c)  ax 2  bx  c

a1  a2

p1 ( x)  p2 ( x)   b1  b2
c  c
 1 2

V2 - VECTOR SPACE P2 [ x]
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------

Example 3
a b  
V3    a , b, c , d  R 
 c d  

a1 b1  a2 b2  a1  a2 b1  b2 


A1  A2       
c d c d c  c
 1 1  2 2   1 2 1 2  d  d

a b   a   b
  A    
c d     c   d 

V3 - VECTOR SPACE M 2 [ R ]
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------

Example 4
V4  ( x1, x2 , x3 ) xi  R  2 x1  x2  x3  0
The addition and multiplication vector by scalar are the
same as in Example 1.

V4 - VECTOR SPACE
I. The Definition and Examples
---------------------------------------------------------------------------------------------------------------------------

Example 4
V4  ( x1 , x2 , x3 ) xi  R  x1  x2  2 x3  1

The addition and multiplication vector by scalar are the


same as in Example 1.

V4 - NOT VECTOR SPACE

x  (1,2,1)  V4 , y  (2,3,2)  V4
x  y  (3,5,3)  V4

Note: We can define another two operations addition and


multiplication in V1, ( or V2, or V3 ) so that V1 ( or V2, or V3 )
is a vector space.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

V- vector space over K Subset

M  {x1 , x2 ,..., xm }

1 , 2 , , m  K not all zero


M – linear dependent
1x1   2 x2     m xm  0

1x1   2 x2     m xm  0
 1   2   m  0 M – linear independent
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

V- vector space over K Subset

M  {x1 , x2 ,..., xm }

Vector x in V is called a linear combination of M, if

1 , 2 , , m  K
x  1 x1   2 x2     m xm
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

Example 5

M  { (1, 1, 1 ) ; ( 2 , 1, 3 ) , (1, 2 , 0 ) }
1. Decide whether M is linearly dependent or independent?
2. Is a vector x = (2,-1,3) a linear combination of M?

Solution 1. Suppose  ( 1,1,1)   ( 2,1, 3 )   ( 1, 2, 0 )  0


 (   2    ,    2 ,  3 )  ( 0, 0, 0 )

  2     0 1 2 1 

     2  0 A  1 1 2   r( A )  2
 
   3  0 1 3 0 
  

The system has many solutions, then M is a linearly dependent.


II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

2. Suppose  ( 1,1,1)   ( 2,1, 3)   ( 1, 2, 0 )  x

 (   2    ,    2 ,  3 )  ( 2, 1, 3)

   2    2 1 2 1 2 

     2  1 (A | b)  1 1 2 1
 
   3  3 1 3 0 3 
  

r(A | b)  r(A)

The system is inconsistent. vô nghim

Thus vector x is not a linear combination of M.


II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

M  {x1 , x2 ,, xm }

1x1   2 x2     m xm  0 Homogeneous
system AX=0

Unique trivial
solution X = 0 M – linear independent
nghim duy nht

Non trivial
solution M – linear dependent
vô nghim
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

M  {x1 , x2 ,, xm }

1 x1   2 x2     m xm  x System
AX= b

Consistent
x is a linear combination
of M

Inconsistent x is not a linear


combination of M.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

tp con

Example
Let M  { x , y , 2 x  3 y , z } be a subset of a vector
space V.

a. Is a vector 2x + 3y a linear combination of {x, y, z}?

b. Is the set M linear dependent or linear independent?


II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
Example
Let M = { x, y, z} be a linear independent set in a vector space V.
Show that the set M1= {x+y+2z, 2x+3y+z, 3x+4y+z}
is a linear independent.

Suppose  ( x  y  2 z )   (2 x  3 y  z )   (3 x  4 y  z )  0
 (  2   3 ) x  (  3  4 ) y  (2     ) z  0
Because of M is a linear independent set, we obtain
  2   3  0
     0
  3  4  0
 2      0

Thus M1 is a linear independent set.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

Example
Let M  { x , y } be an independent subset of a vector space V.

Decide whether each subset is linearly dependent or linearly


independent.
a. M1  {2x, 3y}

b. M 2  {x+y,2x+3y}

c. M3  {x+y,2x+3y,x-y}
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

 If M contains a zero vector, then M is linear dependent

M  {x1 , x2 ,, xm } - linear dependent

 xi - linear combination of the remaining


vectors in M
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

If M is a linear dependent, then the set formed from M by


 adding some another vectors still linear dependent.

If M is a linear independent, then the set formed from M by


 removing some another vectors still linear independent.

Let M be a set containing m vectors: M  {x1 , x2 ,..., xm }

Let N be a set containing n vectors: N  { y1 , y2 ,..., yn }


 If every vector yk from N is a linear combination of M
and n > m, then N is dependent set.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------
Example
Let M = { x, y} is a subset of a vector space V.

Is the set M1 ={2x+y, x+3y, 3x+y} a linear dependent or not?

Suppose  (2 x  y )   ( x  3 y )   (3x  y )  0
 (2    3 ) x  (  3   ) y  0
2    3  0
It’s incorrect because M is maybe

   3    0 not linear independent
Correct solution. It’s easy to show that every vector from M1 is a
linear combination of M
And the number of vectors in M1 is greater than the number of
vectors in M
Hence M1 is a linear dependent.
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

Example
Let {x,y} be a linearly independent subset of a vector space
V and a vector z is not a linear combination of {x ,y}.

Show that the subset {x , y , z } is a linearly independent.


II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

Example 7
Determine whether the following set of vectors is a linear
dependent or linear independent.

M  { (1, 1, 1 ) ; ( 2 , 1, 3 ) , (1, 2 , 0 ) }
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

Example 8
Determine whether the following set of polynomials is a
linear dependent or linear independent.

M  {x 2  x  1, 2 x 2  3 x  2, 2 x  1}
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

Example 9
Determine whether the following set of matrices is a linear
dependent or linear independent.

1 1  2 1  3 4   1 3 
M  { ; 1  ; ; 1 }
1 0   1  0 1   2 
II. Linear Independence
---------------------------------------------------------------------------------------------------------------------------

Example 10
Determine all value(s) m, such that the following set is linear
dependent

M  {(1,1,0);(1, 2,1);(m,0,1)}
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------

Definition of a rank of a set of vectors


M  {x1 , x2 ,, xm ,}  V

The rank of M is k0 if there exists k0 independent vectors


from M and any subset of M containing greater than k0
vectors is dependent.

The rank of M is the maximum number of independent


vectors from M.
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------

Example 11

Find a rank of following set of vectors

M  {(1,1,1,0);(1, 2,1,1);(2,3, 2,1),(1,3,1, 2)}


III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------

Example

Let M  { x , y } be a linearly independent subset of a


vector space V.
Calculate a rank of each following subset.

a. M1  {2x, 3y}

b. M 2  {x,y, 2x  3y}

c. M3  {x,y, 2x  3y, 0}
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------

 1 2 1 1
A 3 1 0 5 
 
 2 4 1 6 
 

The set of row vectors of A.


M  {x1  (1, 2,1, 1); x2  (3,1,0,5); x3  (2, 4,1,6)}

The set of column vectors of A.

 1   2   1   1 
        
N  3 , 1 , 0 , 5 
       
 2   4   1   6  
        
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------

Theorem of a Rank

Let A be a mxn matrix over K.

A rank of A is equal to a rank of the set of column


vectors of A.

A rank of A is equal to a rank of the set of row vectors of


A.
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------

Example 11

Find a rank of following set of vectors

M  {(1,1,1,0);(1,1, 1,1);(2,3,1,1),(3, 4,0, 2)}

Solution

1 1 0 1
1 1 1 1 
A 
2 3 1 1
3 4 0 2 

M is a set of row vectors of A. It follows that rank of M is
equal to a r(A).
III. Rank of a set of vectors
---------------------------------------------------------------------------------------------------------------------------

Let M be a set containing m vectors.

1. If rank of M is equal to m (the number of vectors in M)


then M is independent.
2. If rank of M is less than to m (the number of vectors in
M) then M is dependent.

3. If rank of M is equal to a rank of M adjoint vector x then


x is a linear combination of M.
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------

Definition of a spanning set


M  {x1 , x2 , , xm ,}  V
A set M is called a spanning set for vector space V if
any vector from V is a linear combination of M.

M spans V

Vector space V spanned by M


IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------

Example 12
Determine whether a following set is a spanning set for R3.
M  {(1,1,1);(1, 2,1);(2,3,1)}

x  (x 1 , x 2 , x 3 )  R 3 .

x  (x 1 , x 2 , x 3 )  1 (1,1,1)   2 (1, 2,1)   3 (2, 3,1)

 1   2  2 3  x1
 Direct calculation shows that
 1  2 2  3 3  x2
    the system is consistent
 1 2 3  x3

Thus, x is a linear combination of M and M is a spanning set for R3


IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------
Example
Determine whether a following set is a spanning set for R3.

M  {(1,1, 1);(2,3,1);(3, 4,0)}

x  (x 1 , x 2 , x 3 )  R 3 .
x  (x 1 , x 2 , x 3 )  1 (1,1, 1)   2 (2, 3,1)   3 (3, 4, 0)
1  2 2  3 3  x1

 1  3 2  4 3  x2
     x3
 1 2

For x  (1, 2,1), the system is inconsistent

The element (1,2,1) is not linear combination of M. Thus M is not a


spanning set for R3.
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------

Example 13
Determine whether a following set is a spanning set for P2[x].

M  {x 2  x  1; 2 x 2  3 x  1; x 2  2 x}

p (x )  ax 2  bx  c  P2 [x].
2 2 2
p (x )  1 (x  x  1)   2 (2x  3x  1)   3 (x  2x )
 1  2 2   3  a

 1  3 2  2 3  b
    c
 1 2
2
For the element p 0  2x  x the system has no solution. Thus

the set M is not a spanning set for P2[x].


IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------

M  {x1 , x2 ,, xm ,}  V

M- independent Span M = V

M- Basic of V

M is a basic
V – finite dimentional
M- finite set Dim V = number of vectors in a
basic of V

If V is not spanned by a finite set, then V is said to be


infinite - dimensional
III. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------

dim(V) =n

Any set in V containing more than n vectors must be


 linearly dependent

 Any set in V containing less than n vectors doesn’t span V

Any independent set in V containing exactly n vectors


 must be basic of V

Any spanning set of V containing exactly n vectors must


 be basic of V
III. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------

Let S  {v1 , v2 ,..., v p } be a set in V and let H = Span {v1 , v2 ,..., v p }


a. If S is a linearly dependent, then the set formed from S by
removing one vector still spans H.
b. If S is a linearly Independent, then any proper subset of S
doesn’t spans H.
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------

Example 14

Determine whether a following set is a basic for R3.

M  {(1,1,1);(2,3,1);(3,1,0)}
IV. Basic and Dimension
---------------------------------------------------------------------------------------------------------------------------

Example 15

Determine whether a following set is a basic for P2[x].

M  {x 2  x  1; 2 x 2  x  1; x 2  2 x  2}

You might also like