0 ratings0% found this document useful (0 votes) 62 views52 pagesIp Project
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, 
claim it here.
Available Formats
Download as PDF or read online on Scribd
INFORMATICS PRACTICES
- Inventory Management
System
L ATHUL TOM MATHEW
L Roll No. 6
Class : XII
Submitted to:CERTIFICATE
It is hereby certified that Mast./Miss Athul Tom Mathew
of class XH has carried out the necessary practical work for the subject
Informatics Practices as per the syllabus prescribed by the Central
Board of Senior Education, New Dethi, for the year 2021-22.
Prbbasbsioa Y LAgipe
Internal Invigilator irnal Invigilator
Date: 10/01/2022 GRE SENTATS ches
School SealFirst and foremost, | would like to extend my sincere thanks and
gratitude to my Informatics teacher Mrs.Naga Subhashini.B and our
principal Mr.V.S. Suresh who gave me the golden opportunity to do
this wonderful project which has provided valuable information about
‘USED CARS- INVENTORY SYSTEM’ which has also helped me in
doing a lot of Research and learn about many new things. I am really
thankful to them for giving valuable time and moral support to develop
this software.
Also, I would like to take the opportunity to thank my family and
friends for their sincere support, who helped in gathering different
information, guiding me from time to time and providing all the
essential requirements in making this project a successful one and
without whom I couldn’t have succeeded in completing this task.
Last but not the least, I would like to thank my school and
everyone who helped and motivated me in completing this project with
utmost perfection, within the limited time frame.Cera) ey Page no.
a sce alec
a
a rome a]
nsThe Used Cars- Inventory Management GUI models an interface
that is designed to let the user gain insights and summary statistics on
listed used cars. The user can get reports on car brands, available colors,
average price for each brand, which area/state lists the most used
cars,..cte,.
Various data analysis techniques and visualizations were implemented to
facilitate the process for the user to get the information they want
visualized and clear to understand.
‘The dataset used in this project is limited to cars in USA, however it can
be extended to work in any area where data of used cars are available.
In this project two datasets were used (collected from Kaggle). The two
data sets were joined using pandas functions and analytics were done on
the full merged data.
This interface was built on Jupyter notebook using modules like pandas,
matplotlib and numpy, however it can work on any python supporting
environment.BOURCE CODE |Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time
File paths
csv_file_1 ='used_cars_l.csv' # File Path
esv_file_2 ='nsed_cars_2.csv' # Second file path
Application
def preprocessing(dfl, df2):
"This function is to preprocess data before analysis """
# Droping duplicate columns
df2,drop(columns = ['price’, ‘brand’), inplace = True)
#Joining both tables
df = pd.concat([dfl, df2], axis=1, join="inner")
# Dropping unuseful column
df-drop(columns = ['Unnamed: 0'], inplace = True)
a# Dropping rows with invalid values for price
df.drop(df[df'price] — 0].index, inplace = True)
return df
def introduction():
msg=""
This project is to help people get summary statistics and get
insights from data visulaizations for used cars before buying.
‘The dataset contains the list of used cars listed in USA.
There are two files containing the data, this project imports both
files and merge them to deal with them as whole data
In this project I'm going to analyse the same dataset using Python
Pandas on windows machine but the project can be run on any
machine support Python and Pandas. Besides pandas we also used
matplotlib and seaborn modules for visualization of this dataset.
The whole project is divided into four major parts ie reading,
analysis, visualization and export. all these part are further
divided into menus for easy navigation\n\n\nin"
for x in msg:
print(x,end =")
time.sleep(0.000001)
wait = input(Press any key to continue.
def made_by()
msg=""
UsedCars Project made by : ATHUL TOM MATHEW
Roll No : 6/ GR No: 1521
School Name : Indian School Ibri
session 2021-22
Thanks for evaluating my Project.
\n\n\n
for x in msg:
print(x, end=")time.sleep(0,000001)
wait = input('Press any key to continue..
 
 
 
 
 
  
defread_csv file(csv_file);
 
 
df=pd.read_csv(csv_file)
print(df)
 
 
 
 
  
def data_analysis_menu():
dfl = pd.read_esv(esv_file_1)
 
 
df2 = pd.read_esv(csv_file_2)
 
 
df= preprocessing(dfl, df2)
 
   
 
 
while True:
   
print('\n\nData Analysis MENU’)
 
print(’_*100)
    
Print('l. Show Whole DataFrame\n')
    
print('2. Show Columns\n')
    
Print('3. Show Top Rows\n'y
    
print('4, Show Bottom Rows\n')
    
print('S. Show Specific Column\n')print('6. Add a New Record\n’)
print(7. Add a New Column\n’)
print('8. Delete a Column\n’)
print('9, Delete a Record\n’)
print('10. Update a Record\n')
print('I1. Car Brands Report \n')
print('12. Available Colors Report \n')
print('13. Data Summary\n’)
print('14. Exit (Move to main menu)\n')
ch = int(input('Enter your choice:'))
ifch=
print(df)
wait = input()
iftch
print(df.columns)
wait = input()
if ch ==3:
n= int(input(Enter Total rows you want to show :'))
print(df.head(n))
wait = input()if ch == 4:
n = int(input('Enter Total rows you want to show :'))
print(df.tail(n))
wait — input()
ifch == 5:
print(df.columns)
col_name = input(‘Enter Column Name that You want to print :')
print(df[col_name])
wait = input()
if ch==6:
a = int(input('Enter price :'))
b = input(‘Enter brand name :’)
c= input(' Enter model name :’)
d= int(input('Enter year of model :'))
e = input(Enter the car status :')
f= int(input('Enter mileage of the car :'))
g~ input('Enter vin: ")
h = int(input(‘Enter lot :'))
i =input('Enter the state where the car is listed :')
j= input(Enter country where the car is listed :
k = input(Enter the car condtion *
We
ir‘brand':b,'model':,'year'sd,title_status':e,'mileage'f'vin':g
+ 'lot'sh,'state'si, country, ‘condition'sk}
df= df.append(data,ignore_index=True)
print(df)
wait=input()
if ch:
col_name = input('Enter new column name :')
col_value = input('Enter default column value :)
dffeol_name]=col_value
print(df)
print(‘\n\n\n Press any key to continue...
col_name =input('Enter column Name to delete :’)
del dflcol_name]
print(df)
print('\n\n\n Press any key to continue.
wait=input() aeif ch==9:
index_no =int(input(‘Enter the Index Number that You want to
delete :'))
df= df.drop(df.index[index_no])
print(df)
print('\n\n\n Press any key to continue...)
wait = input()
if ch—=10:
index_no =int(input('Enter the Index Number that You want to
update :'))
col_name = input('Enter the column name that You want to
update :')
new_val = input('Enter the new value you want to update :)
df.at[index_no, col_name]= new_val
print(df)
print('\n\n\n Press any key to continue...)
wait = input()print(‘Available brands :',df1)
print(‘\n\n')
brandName =input('Enter the brand you want a)
dfl=df[df.brand—=brandName]
print(dfl)
print(‘\n\n\n Press any key to continue....')
wait = input()
dfl=df.color.unique()
print('Available colors :',df1)
print('\n\n')
color_=input('Enter the color you want :)
dfl=df[df.color==color_]
print(dfl)
print(\n\n\n Press any key to continue.
wait = input()
if ch=13:
print(df.describe())
print("\n\n\nPress any key to continuwait=input()
ifch = 14:
break
def graph():
afl = pd.read_esv(csv_file_1)
df2 = pd.read_csv(csy_file 2)
df= preprocessing(dfl, df2)
while True:
print(\nData visualization menu(Graphs) ')
print(_'*100)
print('l. Line Graph For Average Price For Fach State\n’)
print('2. Bar Chart Showing Top 10 States Selling Cars\n’)
print('3. Scatter Plot Between Mileage and Price\n')
print('4. Pie Chart for Brands\n')
print('5. Bar Graph for Average Price Per Brand\n')
print('6, Bar Graph for top 10 selling brands\n')
print(’7. Exit (Move to main menu)\n')
ch = int(input(‘Enter ae alif ch=
2 = df.groupby(state’)
x= dff'state'].unique()
y = g['price’].mean()
plt-xticks(rotation='vertical')
plt.xlabel('State')
plt.ylabel('Average Price’)
plt.title(‘Average price for each state’)
plt.grid(True)
plt.plot(x, y)
plt.show(,
if ch==2:
fig,ax= plt.subplots()
fig.set_size_inches(25,10)
states_n
pd.DataFrame(df|"state"].value_counts()).reset_index()
plt.xticks(rotation=45)
sns.barplot(data=states_n.head(10),x="index",y="state" ax=ax)
ax.set(xlabel'state’, ylabel='Count’ title="Top 10 selling
_
a aeplt.show()
wait = input(Press Any Key To Proceed’)
if ch==3:
fig,ax= plt.subplots()
fig.set_size_inches(15,5)
sns.scatterplot(data=df, x="mileage", y="price",
hue="title_status")
plt.show()
wait = input(Press Any Key To Proceed’)
if ch—=4:
brand_name = input(‘Please Enter the brand you want to
visualize: '
dfl = di[df.brand = brand_name]
df2 = dfl['model'].value_counts()
fig = df2.plot pie()
pit.show()
wait = input(Press Any Key To Proceed’)plt.figure(figsize=(10,6))
ax = sns.barplot(x="brand', y='price’, data=df)
ax.set_xticklabels(ax.get_xticklabels(), rotation=90,
ha="right",fontsize=8)
plt.title("Car manufacturer vs average price")
plt.xticks(rotation="'vertical’)
plt.show()
wait= input(‘Press Any Key To Proceed’)
fig,ax= plt.subplots()
fig.set_size_inches(15,5)
brand_of_car-
df. groupby(‘brand’)['mode!'].count().reset_index().sort_values('model',as
cending = False).head(10)
brand_of_car ~ brand_of_car.rename(columns =
{'model':‘count’})
ax = sns.barplot(x="brand", y="count", data=brand_of car)
plt.show()def export_menu():
dfl =pd.read_csv(csv_file_1)
df2 = pd.read_csv(csv_file 2)
df = preprocessing(dfl, df2)
while True:
print(\n\nEXPORT MENU ')
print('_'*100)
print()
print('l. CSV File\n')
print('2, Excel File\n')
print('3. Exit (Move to main menu)’)
ch = int(input(‘Enter your Choice :'))
if ch=
df-to_csv(‘project.csv’)
print(‘\n\nCheck your new file "project.csv" on the same path
where you run this application’)
wait = input(Press Any Key —ifch == 2:
df-to_excel('project.xlsx")
print("'n\nCheck your new file "project.csv" on the same path
where you run this application’)
wait = input(‘Press Any Key To Proceed’)
ifch ==
def main_menu()
introduction()
while True:
print(MAIN MENU ')
print(_*100)
print)
print('l. Read CSV File\n')
print('2. Data Analysis Menu\n’)
print'3. Graph Menu\n'yprint('4. Export Data\n')
print('S. Exit\n')
choice = int(input(Enter your choice :))
if choice==1:
print('Please choose which data do you want to diplay?\n')
 
     
   
     
 
    
     
print('l. dataset no.1 \n')
print('2. dataset no. 2\n')
print('3. Merged data’)
user_choice = int(input())
afl = pd.tead_esv(csv_file_1)
df2 = pd.tead_csv(csy_file 2)
df= preprocessing(dfl, df2)
  
if user_choice == 1:
print(dfl)
1 aelif user_choice
print(df2)
f
2:
   
    
 
 
1
  
 
   
   
   
 
      
 
   
   
 
    
  
   
  
   
elif user_choice == 3:
 
print(df)
else:
print(‘Invalid Choice, please choose a valid option ')
   
wait=input(Press Any Key To Proceed’)
if choice==2:
print('Data Analysis Menu’)
data_analysis_menu()
  
wait=input('Press any key to proceed’)
 
if choics
: graph()
wait=input('Press Any Key To Proceed’)
y-
weif choice:
export_menu()
wait=input('Press Any Key To Proceed’)
made_by()
main_menu()ss
©
pes
WZ
2
ee)
ee)
ed
)
oyA. dataset ro
lack
rea
silver
cage
Fore
jtecuziteskeo7res
Bnd gesbeb02227
Sededeggsjeseecis
af tfutetdete23745
Sacpcrec2g473592
anten7assiageesis
snten7ap5j1e84e88
‘snuen7aps3isesie
3nen79p331885263
3nien7apajleaast1
3 column
3500
zen
pois
zee
aes
aeis
2e18
ciean
a
mileageRead SV Falk
bata visualization menu(Grapne)
Exzort De
exit
ter your choice :2
ease choose nich gata do you want to diplay?
aatazet no
jerged date
price brand model year title_statvs nileage color
6302 toyota cruiser 2006 clean vehicle 274117 black
Fors se 2811 clean venice 190552. silver
dodge mpv 2018 clear vehicle 39550. silver
ford door 2614 clean vanicle aide blue
chevrolet 1500 2618 clean vehicle 5654 red
nissan versa 2819 clean vehicle red
nissan verea 2018 clean vehicle siver
nissen versa 2018 clean vehicle 31584 silver
nissan versa 2018 clean vensel black
nissan vera 2818 clear vehicle silver
eeru2ifeskeo7763 15934787 new jersey usa 28 days
Deraksgeatbvezz17 iss9s1z62 tennessee Usa aye
Bespdeggsjts4eai3 167655725 gecrgia uta 2 days 1
Lcfunetsefe2s745 167755855 virginia usa 22 hours J
Bacpcrecdjgi73901 167768268 florida. usa 32 hours
snien7apskiesesi9 167722715 caliternia Use days
Snlcn7ap5j1884088 167762225 florida usa 21. hours,
Snlen7apsjleadis1 167762226 © flerida usa 21. hours,
Sraen?epajieaz63 167762227 use 2 days
Bnlen7apaji684311 167762221 usa 22 hours
rows x 42 columns]Read CSV File
Data analysis Menu
Data visualization menu(Gra
Export Data
Enter your choice
Data analysis Menu
Analysis MENU
iWiole DataFrane
columns
Botton Rows
Show Specific Colunn
Add a New Record
Add a New Colum
elete a Colum
belete « Recore
Update a Record
ar Brands Report
Available Colors Report
Data Sumary
Exit (ove te main menu)Data Anelysis wENU
 
 
 
   
  
 
 
i.” $ROW Whole DataFrane
 
   
2. show columns
 
Show Top Rows
 
 
 
 
 
4. Show Botton Rens
 
 
  
Show Speci#ic column
 
 
 
©. Add @ New Recore
 
 
 
 
Add a New Column
  
Delete 2 Column
   
 
 
8. Delete » Record
 
 
  
Update 2 Record
 
Car Brands Report
   
    
 
Available Colore Report
Date Summary
 
  
Exit (Move te main menu)
 
   
  
‘er your choee:2
Price brand mode year title_status mileage color \
® 630 toyota cruiser 2008 clean vehicle 274117 black
   
 
               
            
          
      
 
     
     
  
     
   
      
 
 
  
 
 
> awe end “8 deus ean vanisie esse atic
2 88 dodgenpy ete clean venicde ‘aeese TEST
asec “Fore doar. zeis. clean voricne use
+ irre enewoiet seo dete cleat J a
7666 nissan versa. 2619. clean vehicie asda) fad
i suse nlocen verse ane clean vericie ess. sunt
200 nisson versa gee clean vehicle sieas faiety
200 niccan verse gels clean venicie) sa80) “aRctL
sme risten Wares 2618 Clem vehicle sisi etineh
a ee
2 jrezvantaonoe77es asease7s7 new gersey "SEL ag Semtttion
+ Bndkagctbobezza7 tesasizes "Vemessee usa ga
aespccegrieaienid se7essrat “"grergie wen SS
Lesfutetdafeas745. 167759055 vieginie ues. a2 harte
 
;
p: Becpcrec2}g473991 167763265 Florida usa 22 houre
Srdcn7apsK188e519 167722735 california saa days leh
 
Bracn7aps31684085 167762225 florida usa_21 houre left
; Snden7apsjise4is1 167762225 Florida ea 21 hours left
| Sndcn?ap3i2885263 16762227 florida usa 2 days left
 
 
458 anden?ap4j
 
3
 
367762228 florida usa 21 hours left
Po
 
rows x 12 columns)Show Bottom Rove
pecitic column
Delete a Colum
Available colors
Data Surnary
nit (Move to main renu)
lot’, ‘state’,ate Anaiysis MENU
 
Show Whole DataFrane
Borton Rows
Specific coluen
2 New Column
Delete # Celunn
Delete 2 Record
Update 2 Record
car Srends Report
Available colors Report
Data Sumary
Exit (Nove to main menu)
your chodea:3
Total reve you
brane
soyota
model
2008
2eis
re1a
clean vehicle
clean vehicle
door
1508
cccge
fore
cheveclet
jteruinFssk007763,
3Fndk3grabebe2217
Scaodegesje34csa3
Btfuterdefe23745,
Sacperecajga73991,
359848797
166951262
ae7ess728
167753855
167763266
new jersey
tennessee
black
silver
mileage
ani?
39590
eas
1e days left
8 daye left
2 days left
22 houre left
22 hours left
COi)” Show tinele DeteFrene
 
Show Columns
Show Top Rows
Show Botton Rows
Specific Column
Add 2 New Record
Delete 2 Column
Delete a Record
Update @ recore
Car Brands Report
available Colors Resort
Date sunmary
Exit (Nove to me
ter your cheice:4
© Total rows you want ta show :6
price brand model year title status mileage color
9260 nissan versa 2el8 clean Vericle 33627 lack
7808 jersa 2015 clean vericle 23608 red
208 erse 2018 clean 34853 sitver
8200 eres 2018 clear le 32884 silver
2208 versa 2818 clean vericle 32557 black
S220 versa 2018 clean venicie 34371. silver
vin lot state country condition
Bnten7aposleea76® 267762224 florica use 21 hours lefe
Snten7apski8sosis 16772275 california usa. days ete
Snlen7apSjlessese 167762225 flor: usa 21 hours left
en7az9j1884161 167762226 usa 21 hours left
3ndcn7ap3}1883265 167762227 use 2 gays
Bnhen7ap4ii896321 367762228 Usa 21 hours leftcoluan
ster node! nane
mileage of the ear
30239990
She car condtion
. ford
asage
cheveolet
nitean
dedpacgesgesaeais
Seeperecagga7s981
izer clean veniete
clean
clean
georgia
sos
Floride
florsas
floridscoluone
seifie Colunn
Delete a column
Delete # Record
Update a Record
car Brande Report
Aadlable Colors Report
‘ter your choice:
price brand rodel year
262 fone te 2012
5350 dodge mv 2018
25000 foré door 2014
27708 cheveolet 1508 2818
7880 niscan versa 3al8
200 nissan versa i018
208 nissan verse 2018,
9200 nissan versa 2018 clean
Seesuinfasheer763 159348787 new Sertey
amneksgesebee2227 165951262 tennessee
Sefodegesstoies23 167655728 guorsia
yerhudetdefe2s745 167753858 virgina
agcperec2sga7seei 167768268 Florida
snacnTapscissesie 167722735 catlfornia
Snien7apssisesess 167762125 florida
Snienapesiessis1 167762225 lerids 21 hours
Sntcn?ap3}3863263 167762227 florida 2 day
Snlenvapaiiess3i1 167762328 florida 21 hours
a |specific Colum
Add a New Coluen
Car Brands Report
Available Colere Report
Date Summary
Bat (Hove to mein ne
Enter the Index Number that You want to delete :2658
nosed status mileage color
toyota cruiser 2808 clean vehicle 274117 slack
tore se 2011 clean vehicle 190552. silver
decge nav 2018 clean vehicie 39590
35e00 ford doar 201 clean vendcle E4148
27708 chevrolet 3580 2018 clean vehicle ces4
7520 nissan 218 clean vehicle 23608
9200 hase Beis clean venicle 3455)
5280 ieee 2018 clean vehicle 31556
sie nissan 2018 clean vehicle 33557
2¥raksgesbobe22i7 156851262 tenn days left
tpdegesse3sosis 187688728 aye lett
Afthdetsete23748 167953885 22 heure left
Decpcrecajga7sea1 167763266 7 22 hours Leet
 
Sntentapejusss76e 167762034 21 hours
Soden?apsjleesees 167762225 florida des 21 hoses,
Snlen7ap3j1683263 167762227 florids sa 2 ays
CJ7 dw Naw Con
 
| betete Colum
 
ord
| 38 apsace a ecard
 
  
 
 
 
 
    
    
(Wve to main menu)
 
 
 
 
£302 toyota cruiser 2608
L288 ford ne 20d
25003 fora 200
+ 27788 cheveetet 186
nissan versa, 2e18
rissan versa. 2eis
nissan versa 2eie
risen versa 2018
s1¢ssiea7763. 359538797
: 7 366551262
3 re76s8728
Lethinetsate2s745 167753855,
+ Secperecosga7aeen 167748268
snden7ap9i1690319 167722715,
    
Snter7asojleseze)
57 snten7as3688263
 
  
 
 
 
 
 
‘georgia
irginia
eaikfornia
‘florida
Herida
slerias
 
 
 
35582
65s
cena
42 days
6 days
 
 
 
 
‘tion
ier
as
 
ete
lettSpecific column
Ad New Column
Oelese 4 Column
ar Brands Report
Avadiable Colors Repo
allable bracce : ['toyot
jaguar’ ‘acura!
sssan' ‘land* ‘razeract)
Enter the brand you vane
5200 id
21500 kia
seep
peterbiie
dodge
eagilae
yuri
sincoln*
a)
3000 ida door ©
1380 sorento "I
chryster
hearelene
3818
33360
15500
21508
toor
kragnea7so5376203
kendspaas5i 7206581
Snyphdasengaszecs
id}n300357012877
shypgeasingi21263
367801757
367601773,
67803828
cele
condition
lee
rere
leftshow Top
  
cific Col
 
Add & New Record
  
 
Delete Colum
 
ete a Record
Undate  Recors
2h. Car Brands Report
 
 
 
4. Exit (Nove te main nenv)
your choice:12
['black* "silver’ “biue’ ‘rea
‘toreador red" 'o
  
 
         
             
     
     
      
         
     
gray’ ‘orange’ ‘arena’ ‘no_coler
    
blue pearicos
iple yellow tri
“shadow black
   
y red metallic tinted
"competition ors oft
metallic! "ingot elven metal
     
   
ruby red
kona blue metallic
      
 
    
Tord wnite’ ‘Lightning blue t silver*
ni fe metallic’ ‘guard’ ‘tuxedo black metallic’ ‘tan’
uper black” “cayenne res” ‘norningely blue’ “pearl white’
      
 
"¢ color you want :dark
price brand model year title,
25 dodge door 2007 salvage
       
160528 dark
 
2b3kas3g67856500 167416803 minnesota usaBotton Row
Specific column
Add a New Recora
Ade @ New Column
Delete a Colum
Upcate a Recora
Brands Report
Available Colors Report
Date Summary
Exit (Move to main menu)
ter your choice:13
price year nileage tet
2456.p00002 2456.980000 2.a5c0000003 2.456e0ere3
28036.258552 2016.932185 S.c1i1dze+04 1 67es48e-e5
119s2.176e85 2.957497 5 .a604aseteg 2.028861e+05,
25.082029 1973000000 9 eo0ccdesee 1 se5asee-08
30502.e¢0000 2026.ee000 2.12767Seves 1.6762730-06
37050.ec00e2 20i8.eee202 5 seceSeeros 1.674526-08
25800.ec00ee 2019.800000 6 eeSe7Se40s 1.6778016-08,
84362.0¢00¢0 220.e00200 1.017936e+05 1.678055e+08
any key to continueRead csv File
Data Analysis
Data visualiz
 
Export bata
exit
Enter your choice
 
 
Tine Graph For Average Price For Each State
Bar Chart showing Top 10 states Selling Cars
Scatter Plot Between Mileage and Price
Pie Chant for Brands
far Graph 4
 
verage Price Per Brand
Bar Graph for top 10 selling brands
xit (Nove to wain wenu)
Enter your choice:iAverage Price Per Brand
    
eeeLine Graph For Average Price For Each State
    
  
2. Bar Chart Showing Top 10 States Selling cars
3. Scatter Plot Between fileage and Price
    
  
4. Pie chart for Brands
 
  
Ber Graph for Average Price Per Brand
Bar Graph for too 16 selling brands
 
    
 
Frit (Move to main menu)
 
ter your choice:a
Please Enter the brand you want to visualize
 
 
 
bor
Press Any Key To Praceed[| J
MeData visualization menu(Graphs)
1. Ulne Graph For Average Price For Each State”
2. Gar Chart Showing Top 16 States Selling Cars
Scatter Plot Between Mileage and Price
Pie Chart for Brands
Bar Graph for Average Price Per Brand
Bar Graph for top 10 selling brands
Exit (Hove to main menu)
Enter your cheice:s
ht | i. | J) il
Press Any Key To Proceedeas csv File
Date analysis Menu
Data visualization menu(Graph
Export pata
Bait
Entes your choice
ExpoRT menu
(SV File
2. fxcel File
Bxit (Nove to main menu)
nter your Choice 1
Check your neu file “project.csv" on the sane path where you run this application
Press Any Key To Proceed|]_ =
exPORT MENU
 
a. csv File
fxcel File
3. Exit (Hove to main menu)
Enter your chotce 2
Grech Your new file “project.x1sx" on the sane path where you run this application
Press any Key To ProceedMAIN MENU
Read CSV Fite
Data Analysis Menu
Data visualization nenu(craphs)
Export bata
eat
Enter your choice :5
UsedCars Project made by + ATHUL Tow MATHEW
Roll No 6/ GR No + 1szt
School Name ndian School. Tori
session 2021-22
Thanks for evaluating my Project.
Press any Key to continue, ....[[——————_—_—___
aE+ Class 12 Information Practices textbook (by: Sumita Arora)
> Class 11 Information Practices textbook (by: Sumita arora)
*& Kaggle.com (For data collection)
> hups:/towardsdatascience.com/a-beginners-guide-to-data-
isualization-with-python-49f1d257¢781 (Visualization Article)
4 Python for Data Analysis, by Wes McKinney (Book)
Other than the above-mentioned books and websites, the suggestions
and supervision of my teacher and my class experience also helped me
to develop this software project.