0% found this document useful (0 votes)
91 views15 pages

Aptitude Formulas

The document contains formulas and concepts related to number systems, series, progressions, factorization, simplification, percentages, ratios, proportions, time and work problems, pipes and cisterns, mensuration of area and volume, and other aptitude topics. Formulas are provided for calculating sums, interests, ratios, areas, volumes, and solving word problems involving these concepts. Examples and explanations are included for various mathematical concepts.

Uploaded by

yantrika2019
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
91 views15 pages

Aptitude Formulas

The document contains formulas and concepts related to number systems, series, progressions, factorization, simplification, percentages, ratios, proportions, time and work problems, pipes and cisterns, mensuration of area and volume, and other aptitude topics. Formulas are provided for calculating sums, interests, ratios, areas, volumes, and solving word problems involving these concepts. Examples and explanations are included for various mathematical concepts.

Uploaded by

yantrika2019
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

S.

Danesh Kumar
Tnpsc - Aptitude

APTITUDE FORMULAS
NUMBER SYSTEM
Integers :

Z = {….,-3, -2, -1, 0, 1, 2, 3,….}

Natural Numbers : ( Positive integers)

N = {1, 2, 3, …..}

Whole Numbers : ( Non-negative integers )

W = {0, 1, 2, 3,…..}

I Every natural number is a whole number.

II 0 is a whole number which is not a natural number.

Negative integers : {-1, -2, -3,….}

Non-positive integers : { 0, -1, -2 ,-3, …..}

Even number : {2,4,6,…..}

Odd number : {1,3,5,….}

Prime number :

If it has exactly two factors , namely itself and 1.

Co-primes :

Two natural number A and B are said to be co-primes if their HCF is 1.

Ex: (2,3) , (7,9)


S. Danesh Kumar
Tnpsc - Aptitude

Fibonacci sequence :

F1 = F2 = 1 and Fn = Fn-1 + Fn-2 >, n = 3, 4, …..


Fibonacci sequence = 1, 1, 2, 3, 5, 8, 13, 21, 34,…..

Special Series

1. Sum of first n natural numbers :

1 + 2 + 3 + 4 + …… + n =

2. Sum of first n natural odd numbers :

1 + 3 + 5 + ……. upto n terms = n2

1 + 3 + 5 + …….. + l = [ if last number ‘l’ given]

3. Sum of first n natural even numbers :

2 + 4 + 6 +…….. upto n terms = n2 + n

4. Sum of first n natural square numbers :

12 + 22 + 32 + ………. + n2 =

12 - 22 + 32 - 42 ……. upto n terms

If n is even number then ;>

If n is odd number then ;>

5. Sum of first n natural cube numbers :

13 + 23 + 33 + ………. + n =
S. Danesh Kumar
Tnpsc - Aptitude

A.P

Terms;

tn = a + (n-1) d = L

sum:

Sn = [2a + (n - 1) d];

Sn = (a + L)

G.P

Terms:

tn = arn-1 = L

sum:

Sn =

na , r=1

Infinity

-1 < r < 1;>

a + ar + ar2 +……. =
S. Danesh Kumar
Tnpsc - Aptitude

Simplification

1. (a + b)2 = a2 + 2ab + b2
2. (a - b)2 = a2 - 2ab + b2
3. (a + b)2 = (a - b)2 +4ab
4. (a-b)2 = (a+b)2 - 4ab
5. a2 - b2 = (a +b) (a - b)
6. (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
7. (a + b)3 = a3 + b3 +3ab (a + b)
8. (a - b)3 = a3 - b3 - 3ab (a - b)
9. a3 + b3 = (a + b) (a2 - ab + b2)
10. a3 - b3 = (a - b) (a2 + ab + b2)
11. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
If a + b + c = 0, then a3 + b3 + c3 = 3abc
12. xm x xn = xm + n

13.

14.

15.
16. (xy)m = xm ym

17.

18.

VBODMAS
V - Bar v.fh :
B - Bracket (milg;Gf;Fwp ) v.fh : [ ] { } ( )
O - Orders v.fh : powers, square root etc..,
D - Division - tFj;jy;
M - Multiplication - ngUf;fy; A - Addition - $l;ly; S - Subtraction - fopj;jy;
S. Danesh Kumar
Tnpsc - Aptitude

L.C.M & H.C.F

1) L.C.M X H.C.F = product of numbers.

2) Ratio of numbers X H.C.F = numbers

3) = H.C.F

4) L.C.M =

5) H.C.F =

PERCENTAGE

1) % or % = x 100

2) % & % = I1 + I2 +

3) % & % = D1 + D2 -

4) % & % = I-D-

5) same (%) =

6) after = present x

7) before = present x

8) n( A U B ) = n(A) + n (B) - n (AnB)

9) error% = x 100
S. Danesh Kumar
Tnpsc - Aptitude

RATIO & PROPORTION

1) a : b :: c : d => ( bx c) x (axd)

2) fourth proportion = a : b :: c : d

3) third proportion = a : b :: b : c

4) mean proportion ( a,b) =

5) compounded proportion (a:b),(c:d),(e:f) = ( ace : bdf )

6) duplicate ratio (a:b) =

7) sub duplicate ratio(a:b) =

8) triplicate ratio (a:b) =

9) sub triplicate ratio (a:b) =

PROFIT OR LOSS

1) profit(P) = selling price(S.P) - cost price(C.P) ; loss(L) = cost price(C.P) - selling price(S.P)

2) P% = X 100 ; L% = X 100

3) S.P = C.P ; S.P = C.P

4) market price ( M.P) = C.P

5) C.P of (x) article = S.P of (y) article

i) P% = x 100

ii) L% = x 100
S. Danesh Kumar
Tnpsc - Aptitude

SIMPLE INTEREST & COMPOUND INTEREST

S.I ( simple interest)

S.I =

P = principal

N = no of years

R = rate of interest (%)

Amount (A) = S.I + P

C.I ( compound interest)

P =A

C.I = A - P

S.I & C.I

1year = 0 ( same)

2years P = diference x

3years P=

INSTALLMENT

S.I => Pn +

C.I => present worth =

RECURRING OR CUMMULTIVE DEPOSIT

Amount maturity = total money deposit + interest

Total money deposit = monthly deposit + n ( in months)

I=
S. Danesh Kumar
Tnpsc - Aptitude

TIME & WORK

1) A = given , B = given, total ( A&B) = ?

Total =

2) Total (A&B) = given, A= given, B= ?

Total =

3) A = given, B = given, C = given, Total = ?

4) A&B = given, B&C = given, C&A = given ; Total = ?

Total = 2 x Answer

5) M1 X D1 = M2 X D2

6) M1 X D1 X H1 = M2 X D2 X H2

7)

8)

PIPES AND CISTERN

1) A = fill, B = fill, Total = ?

TOTAL =

2) A = fill, B = empty, Total = ?

TOTAL =

3) A= fill, B = fill, C = fill, Total = ?

4) A = fill, B = fill, C = empty, Total = ?

=
S. Danesh Kumar
Tnpsc - Aptitude

MENSURATION - AREA

SQUARE rJuk;

1. Area gug;gsT = a2

2. Perimeter Rw;wsT = 4a

3. Diagonal d given then Area %iytpl;lk; d vdpy; mjd; gug;gsT =

4. Diagonal %iytpl;lk;

RECTANGLE nrt;tfk; :

1. Area gug;gsT = l b

2. Perimeter Rw;wsT = 2(l + b)

3. Diagonal %iytpl;lk;

RHOMBUS rha;rJuk; :

1. Area gug;gsT

2. Perimeter Rw;wsT = 4a

PARALLOGRAM ,izfuk;

1. Area gug;gsT = b × h ( base x height ) (mbg;gf;fk; × cauk;)

2. Perimeter Rw;wsT = 2(a + b)

CIRCLE tl;lk;

1. Area (gug;gsT) = πr2

2. Perimeter (Rw;wsT) = 2πr

3. Diameter = 2r
S. Danesh Kumar
Tnpsc - Aptitude

SEMI CIRCLE miutl;lk;

1. Area (gug;gsT) =

2. Perimeter (Rw;wsT) = (π+2) r or

QUADRANT fhy;tl;lk;

1. Area (gug;gsT) =

2. Perimeter (Rw;wsT) = r

SECTOR

1. Length of Arc (l) tl;lf;Nfhzj;jpd; tpy;ypd; ePsk; = π

2. Area of a sector (tl;lf; Nfhzj;jpd; gug;gsT) = π

3. Perimeter of a sector (tl;lf;Nfhzj;jpd; Rw;wsT) = l + 2r

EQUILATERAL TRIANGLE

1. Area (gug;gsT) =

2. Perimeter (Rw;wsT) = 3a

3. Height cauk; =

4. Radius of circumcircle =

SCALAR TRIANGLE

1. Area (gug;gsT) =

2. Perimeter (Rw;wsT) = a + b + c

3. Semi perimeter = 4. Radius of incircle =


S. Danesh Kumar
Tnpsc - Aptitude

ISOSCELES TRIANGLE

1. Area (gug;gsT) = or

2. Perimeter (Rw;wsT) = 2a + b or 2a + 2

3. Height cauk; = or

RIGHT ANGLED TRIANGLE

1. Area (gug;gsT) = ( base x height )

2. Perimeter (Rw;wsT) = AB + BC + CA or Base + Height + Hypotenus

3. Largest side < Sum of other two sides

TRIANGLE WITH VERTICES:

(x1,y1), (x2,y2),(x3,y3)

Area=

TRAPEZIUM rhptfk;

1. Area (gug;gsT) = Height x sum of parallel sides or

= cauk; × (,izg; gf;fq;fspd; $Ljy;)

2. Perimeter (Rw;wsT) = AB + BC + CD + DA or a + b + c + d

QUADILATERAL ehw;fuk;

1. Area (gug;gsT) = d x ( h1 + h2)

2. Perimeter (Rw;wsT) = AB + BC + CD + DA

Area of 4 walls of a room = 2 ( l + b ) h


S. Danesh Kumar
Tnpsc - Aptitude

Length of canvas =

MENSURATION - VOLUME

CUBE fdr;rJuk; :

1. VOLUME fd msT = a3

2. L.S.A gf;fg; gug;G = 4a2

3. T.S.A nkhj;jg; gug;G = 6a2

4. Diagonal %iytpl;lk;

CUBOID fdr; nrt;tfk;

1. VOLUME fd msT = l × b × h

2. L.S.A gf;fg; gug;G = 2 (l + b)h

3. T.S.A nkhj;jg; gug;G = 2 (lb + bh + hl)

4. Diagonal %iytpl;lk; (d)

SPHERE Nfhsk;

1. VOLUME fd msT = π

2. C.S.A tisg;gug;G = 4πr2

HOLLOW SPHERE cs;sPlw;w Nfhsk;

1. VOLUME fd msT = π

2. Area -motor cyclist circus = 4πr2

HEMISPHERE miuf;Nfhsk;

1. VOLUME fd msT = π

2. C.S.A gf;fg; gug;G = 2πr2

3. T.S.A nkhj;jg; gug;G = 3πr2


S. Danesh Kumar
Tnpsc - Aptitude

HOLLOW HEMISPHERE cs;sPlw;w miuf;Nfhsk;

1. VOLUME fd msT = π

2. C.S.A gf;fg; gug;G = 2π(R2 + r2)

3. T.S.A nkhj;jg; gug;G = π(3R2 + r2)

CONE $k;G

1. VOLUME fd msT = πr2h

2. C.S.A gf;fg; gug;G = πrl

3. T.S.A nkhj;jg; gug;G = πr(l + r)

4. Slant height (l ) =

5. Base Area = πr2

CYLINDER cUis

1. VOLUME fd msT = πr2h

2. C.S.A gf;fg; gug;G = 2πrh

3. T.S.A nkhj;jg; gug;G = 2πr(h + r)

4. Base Area = πr2

HOLLOW CYLINDER cs;sPlw;w cUis

1. VOLUME fd msT = πh (R+r) (R-r)

2. C.S.A gf;fg; gug;G = 2π (R+r) (R+r-h)

3. T.S.A nkhj;jg; gug;G = 2πh (R+r)

FRUSTUM $kgpd; ,ilf;fz;lk

1. VOLUME fd msT = π

2. C.S.A gf;fg; gug;G =

3. T.S.A nkhj;jg; gug;G = π π π

4. L =
S. Danesh Kumar
Tnpsc - Aptitude

SECTOR CONVERTED INTO A CONE

1. CSA of a cone = Area of the sector

Πrl = π

2. Length of the sector = Base circumference of the cone


Volume of water flows out through a pipe = Cross section area x speed x time

No. of new solids obtained by recasting =

CUBE PAINTED

0 side painted =

1 side painted = 6

2 side painted = 12

3 side painted = 8( always)

4 side painted = 0

STATISTICS

RANGE

Range = L - S

Co efficient of Range =

Variance =

S.D =

S.D of natural number =

Co efficient of variance =

Mode = 3Median - 2Mean


S. Danesh Kumar
Tnpsc - Aptitude

TIME, SPEED, DISTANCE:

1. Distance = Speed x Time D=SxT m (or) Km

2. Speed = S= (or)

3. Time = T= s (or) hr

4. to = …….. x

5. to = …….x

6. Average Speed = ; if Distance is same

7. Speed = a : b , then Time = b : a (or) :

UNITS CONVERSION:

1. 1 m = 10 dm

2. 1 m = 100 cm

3. 1 cm = 10 mm

4. 1 Km = 1000 m

5. 1 Hectare = 10,000

6. 1 Litre = 1000

7. 1 Kg = 1000 g

8. 1 hr = 3600 s

9. 1 day = 1440 minutes

10. 1 Rs = 100 Paise

You might also like