0% found this document useful (0 votes)
16 views4 pages

1 Solucoes

This document discusses matrices and linear algebra concepts including operations with matrices, properties of matrix addition and multiplication, inverses, transposes, and diagonal matrices. Key topics covered include finding sums, products, powers, and inverses of matrices as well as properties of symmetric, anti-symmetric, and diagonal matrices.

Uploaded by

Melissa Couto
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
16 views4 pages

1 Solucoes

This document discusses matrices and linear algebra concepts including operations with matrices, properties of matrix addition and multiplication, inverses, transposes, and diagonal matrices. Key topics covered include finding sums, products, powers, and inverses of matrices as well as properties of symmetric, anti-symmetric, and diagonal matrices.

Uploaded by

Melissa Couto
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

LEIC

Álgebra Linear e Geometria Analı́tica - 2020/21 - SV

1 - Soluções - Matrizes. Operações com matrizes.


       
2 3 1 −1 3 2 −1 1 −1  
3 4
1.1 A = 3 4, B = −1 1 , A + B = 2 5, AB T =  −1 1 −1 e B A =T .
−3 −4
4 5 1 −1 5 4 −1 1 −1
 
    51 1  
3 1 5 1 5 20 100
1.2 B + A = , AC = 3 , 5A · 4C = 20AC =
, CA = 0 1
  ,
0 2 3 0 7 0 140
60 2
 
      1 4 7
1 40 2 6 3 27
( AC )2 = , ( AC ) B = = A(CB), BD = , D T D = [66], DD T = 4 16 28 ,
0 49 0 7 0 4
7 28 49
 
−8 −32 −56
T
ED = 3  12 21  .
1 4 7

1.3 (a) ( AA T )12 = −21, ( AC )21 = 0, B22


2 = 3 e (C T C ) = 6
11
 
3 1  
T T T T 7 −7
(b) A + C = −3 3 = ( A + C ) , ( ABC ) =
  = C T BT AT
71 −71
3 −5
   
0 0 2 2
1.4 AB = 6= BA = .
0 0 −2 −2
1 1
1.5 a = − e b = − .
2 2



 a + 3c = a + b (
          
b + 3d = 3a + b
1 3 a b a b 1 3 a + 3c b + 3d a + b 3a + b b = 3c
1.6 = ⇔ = ⇔ ⇒ .
1 1 c d c d 1 1 a+c b+d c + d 3c + d 
 a+c = c+d d=a


b + d = 3c + d
 
a 3c
Logo B = , a, c ∈ R.
c a
    
0 3 −1 0
1.7 (a) AB = =
0 1 0 0
         
0 3 1 1 9 12 0 3 2 5 9 12
(b) AC = = AD = =
0 1 3 4 3 4 0 1 3 4 3 4

1.8 a = 2 e b = 3

1.9

1

  
−4 −5 −4 0
(a) X = ( BA)T −C = (= AT BT − C )
1 7 (b) X = − B T − AC T =  0 13 
1 −5
 
−3 0 −1
1.10 (a) X = −2A − B = −2 −7 0 
3 −6 −4
 
−5 9 1
(b) X = BA − AB = −4
 0 −2
−8 3 5
 
−4 0 7/2
1 2 1
(c) X = ( A B − A2 ) = A2 ( B − I ) =  9 0 0 
2 2
27/2 0 −9/2

1.11 (a) Proposição falsa.


(b) Proposição verdadeira.
(c) Proposição falsa.
(d) Proposição falsa.
(e) Proposição verdadeira.
(f) Proposição verdadeira.

1.12 (a) ( A + A T )T = A T + ( A T )T = A T + A = A + A T logo A + A T é simétrica.


(b) ( A − A T )T = A T − ( A T )T = A T − A = −( A − A T ) logo A − A T é anti-simétrica.

1.13 Seja A do tipo m × n.

(a) A matriz A T é do tipo n × m. Assim AA T é do tipo m × m e A T A é do tipo n × n logo são ambas


quadradas.
(b) ( AA T )T = ( A T )T A T = AA T logo AA T é simétrica;
( AT A)T = ( AT )( AT )T = AT A logo AT A é simétrica;
       
1 2 1 3 1 4 1 n
2
1.14 (a) A = AA = 3 2
,A =A A= 4
,A =A A= 3 n
, ..., A = , n ∈ N,
0 1 0 1 0 1 0 1
 
1 0
n
(b) A = ,n ∈ N
0 (−1)n
 
1/2 1/2
n
(c) A = ,n ∈ N
1/2 1/2
(d) A2 = AA = I2 , A3 = A2 A = I2 A = A, A4 = A3 A = AA = I2 , . . . , An = A se n ı́mpar, An = I se n par.

1.15 (a) D k é a matriz diagonal com entradas principais d1k , d2k , . . . , dkn :
 k  k 
d1 0 ··· 0 d1 0 ··· 0
 0 d2 0 ··· 0  0 dk 0 ··· 0
   2 
k
 .. .. ..   .. .. .. 
D =
. 0 . . =. 0
  . . 
 .. .. .. ..   .. .. .. .. 
. . . . . . . .
0 0 ··· 0 dn 0 0 ··· 0 dkn

2
(b) D é invertı́vel sse todas as entradas principais são não nulas e, nesse caso,
 −1 
d1 0 ··· 0
 0 d −1 0 · · · 0 
 2 
 . .. .. 
−1
D = .  . 0 . . 
 .. .. .. .. 
 . . . . 
0 0 ··· −
0 dn 1
     
1 0 −1 0 0 0
1.16 (a) A= eB= são invertı́veis e A + B = não é invertı́vel;
0 1 0 −1 0 0
     
1 0 1 0 0 0
(b) A+B = é invertı́vel e nem A = nem B = são invertı́veis.
0 −1 0 0 0 −1
 
  1 1 2  
1 2 0  1 3 8
1.17 (a) X= 0 1 3 =
1 4 1 5 7 15
4 2 1
 
3 2 4
(b) X = A−1 ( A + 2I3 ) = I3 + 2A−1 = 0 3 6
8 4 3
   
c d e f    
b a c c b a
1.18 (a) P1 A = a b , P2 A = c d , BP1 =
    e BP2 = ;
e d f f e d
e f a b
(b) i. P1 A é a matriz que se obtém de A através da troca das linhas 1 e 2
P2 A é a matriz que se obtém de A através da troca das linhas 1 e 3;
ii. BP1 é a matriz que se obtém de B através da troca das colunas 1 e 2
BP2 é a matriz que se obtém de A através da troca das colunas 1 e 3.
    
0 1 0 0 1 0 1 0 0
(c) i. P1 P1 = 1 0 0 1 0 0 = 0 1 0 ⇒ P1−1 = P1
0 0 1 0 0 1 0 0 1
    
0 0 1 0 0 1 1 0 0
P2 P2 = 0 1 0 0 1 0 = 0 1 0 ⇒ P2−1 = P2
1 0 0 1 0 0 0 0 1
ii. P1T = P1 = P1−1 e P2T = P2 = P2−1 .
1.19 (a) B−1
(b) CD −1
1.20 Sejam A e B matrizes tais que AB = BA (matrizes permutáveis)
B−1 A−1 = ( AB)−1 = ( BA)−1 = A−1 B−1
logo A−1 e B−1 também são permutáveis.
1.21 Seja A tal que A3 + 2A − In = On ⇔ A3 + 2A = In .
A( A2 + 2In ) = A3 + 2A = In
logo A−1 = A2 + 2In .
1.22 Sejam A e B matrizes ortogonais (A−1 = A T e B−1 = B T )
A T ( B − In )T B + A−1 B = A T ⇔ A T ( B T − In ) B + A T B = A T ⇔ A T ( B T B − B) + A T B = A T ⇔
A T ( In − B) + A T B = A T ⇔ A T − A T B + A T B = A T ⇔ A T

3
 
1 − k −k
1.23 Ak =
k 1+k
    
1 − k −k 1 − m −m 1 − m − k + km − km −m + km − k − km
Ak Am = = =
k 1+k m 1+m k − km + m + km −km + 1 + m + k + km
(a)  
1 − (k + m) −(k + m)
= = Ak+m
k+m 1 + (k + m)
    
1 − k −k 1+k k 1 0
(b) Ak A−k = = ⇒ A− 1
k = A−k
k 1+k −k 1 − k 0 1

You might also like