Surds
Surds are just expressions with a “𝑛𝑡ℎ root” sign.
Properties of Surds: (For 𝑎, 𝑏 ≥ 0)
      √𝑎𝑏 = √𝑎√𝑏
           𝑎       √𝑎
    √ =                           𝑛
                                  ( √𝑎)𝑛 = 𝑎
      𝑏            √𝑏
    (√𝑎)2 = 𝑎 where 𝑎 ≥ 0
    𝑏√𝑎 = √𝑏 2 √𝑎 = √𝑏 2 × 𝑎
Simplification of Surds:
Surds with bigger numbers can be simplified by extracting out a perfect square.
Example:
   -   √147 = √49 × 3 = √49 × √3 = 7√3
   -   √32 = √16 × 2 = √16 × √2 = 4√2
Rationalization of Denominator:
When the denominator contains just square roots, we could get rid of the square roots by
multiplying the top and bottom by surds:
1−√3       1−√3          √2       √2(1−√3)         √2−√6
       =             ×        =               =
 √2            √2        √2        √2×√2             2
                              Multiply by 1 (does not change the value of an expression)
When the denominator contains multiple surds/constant and surd terms, we multiply the top
and bottom by the conjugate of the denominator:
                                                                  Conjugate of “1 − √3” = 1 + √3
  2+√3              2+√3           2√3+3√2
               =              ×                    Multiply by
                                                                  Conjugate of “√5 − √3” = √5 + √3
2√3−3√2            2√3−3√2         2√3+3√2         Conjugate of
                                                   “2√3 − 3√2”    Conjugate of “2√5 + 3√3” = 2√5 − 3√3”
                    2 + √3             2√3 + 3√2
               =                  ×
                   2√3 − 3√2           2√3 + 3√2
                    (2 + √3)(2√3 + 3√2)                       Multiplication of surd conjugates is done using
               =
                   (2√3 + 3√2)(2√3 − 3√2)                     the algebra formula: (𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏 2 :
                   4√3 + 6√2 + 6 + 3√6                        (2√3 + 3√2)(2√3 − 3√2) = (2√3)2 − (3√2)2
               =
                              −6                                                           = (4)(3) − (9)(2)
                                                                                           = −6
Rationalization of More Complicated Denominator:
            2                            2
                   =
          (3−√2)2       32 −(2)(3)(√2)+(√2)2                                              Expand out the denominator
                           2                 11 + 6√2
                    =                    ×                        Multiply the top & bottom by the conjugate
                        11 − 6√2             11 + 6√2
                           2                 11 + 6√2             We can multiply the top and bottom by
                    =                    ×
                        11 − 6√2             11 + 6√2             (3 + √2)2
                         2(11+6√2)                      22+12√2                     22+12√2
                    =                        2   =                              =
                         112 −(6√2)                   121−(62 )(√2)2                   49
      Alternatively:
                                                 2                          2                                            2
      2             2           (3+√2)                        2(3+√2)                        2[32 +2(3)(√2)+(√2) ]
             =             ×                     2   =                              2   =                            2
 (3−√2)2         (3−√2)2        (3+√2)                    (3−√2)2 (3+√2)                         [(3−√2)(3+√2)]
Multiply by the conjugate of                                                                       2                           2
                                     2
                                                                  (3 − √2)2 (3 + √2) = [(3 − √2)(3 + √2)]
(3 − √2)2 : Which is “(3 + √2) ”
                                                                   Using the law of indices
                  2(11+6√2)                  22+12√2
             =                 2 2
                                     =
                                                     49
                 [32 −(√2) ]
            √3
                          Conjugate of “(1 + √2) − √3” is: (1 + √2) + √3
          1+√2−√3
Multiply top & bottom by the conjugate of the denominator gives:
  √3               √3      1+√2+√3                                √3(1+√2+√3)
             =           ×                                =
1+√2−√3          1+√2−√3   1+√2+√3                             (1+√2−√3)(1+√2+√3)
                                                                 Use (𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏 2
                                                                                         2
                                                              √3 + √2√3 + (√3)                     √3 + √6 + 3
                                                          =             2                2   =
                                                              (1 + √2) − (√3)                    (1 + 2√2 + 2) − 3
                                                              √3 + √6 + 3               √3 + √6 + 3        √2        Multiply by
                                                          =                     =                      ×             √2 (NO need
                                                                  2√2                        2√2           √2
             Rationalize the denominator                                                                             to multiply by
                                                              √2(√3 + √6 + 3) √6 + √12 + 3√2                         2√2)
                                                          =                  =
                                                                   2(2)             4
                                                              √6 + 2√3 + 3√2
                                                          =
                                                                    4
                                                                  2    3√54                 15         14
Example 1: Find the value of 𝑘 when:                                   (               −          −          ) = k√3
                                                                  √2           4           √150       √294
Solution:
2       3√54                 15               14
     (              −             −                    ) = k√3
√2          4            √150             √294                                         Simplify the surds √54, √150, √294
2       3√9×6                    15                    14
     (                  −                     −             ) = k√3
√2              4            √25×6                √49×6
2       9√6             15            14
     (              −         −               ) = k√3
√2          4           5√6           7 √6                                 Rationalize the denominators
2       9√6             15√6           14√6
     (              −             −                ) = k√3
√2          4           5(6)              7(6)
2       9√6             3√6           2 √6
     (              −         −               ) = k√3
√2          4            6                6
                                                                   Simplify the like terms within the
2       17√6                                                       brackets
     (              ) = k√3
√2          12
2       17√3√2
     (                  ) = k√3
√2              6
17√3                                              17
            = 𝑘√3 ⟹ 𝑘 =
    3                                              3
Example 2:
           2   2                              2                            2
Express (     )                   −                    + (1 − √3)              in the form of 𝑎 + 𝑏√3.
         √3+2                             3−√3
Solution:
        2       2            2                                2            Simplify the Surd form
(           ) −                       + (1 − √3)
 √3+2                    3−√3
                4                 2               3+√3                             2
=                   2   −                 ×                 + (1 − √3)
        (√3+2)               3−√3                 3+√3
                              2
                4(√3−2)                           2(3+√3)
=                   2                 2   −                  + (1 − 2√3 + 3)
        (√3+2) (√3−2)                              9−3
       4(3−2√3+4)             3+√3
=                        −             + (1 − 2√3 + 3)
    [(√3+2)(√3−2)]2               3
    4(7−2√3)                  √3                                                 √3
=            −        (1 +       )    + 4 − 2√3 = 28 − 8√3 − 1 −                      + 4 − 2√3
     (3−4)2                   3                                                  3
                        √3
= 31 − 10√3 −
                        3
            31√3                                    31
= 31 −             ⟹ 𝑎 = 31, 𝑏 = −
             3                                      3
Example 3:
                      2+√3                                                              2          2
                                                                                 2+√3         2−√3
By first expressing          in the form of 𝑎 + √𝑏. Find the exact value of (          ) +   (2+ 3)
                      2−√3                                                       2−√3           √
Solution:
                                            2
2+√3        2+√3       2+√3       (2+√3)            7+4√3
       =           ×          =                 =                = 7 + 4√3
2−√3        2−√3       2+√3           4−3                1
      2       2                             2
 2+√3    2−√3                                                1
(    ) +(    )          = (7 + 4√3) +                                2
 2−√3    2+√3                                       (7+4√3)
                                                                     1
                        = (49 + 56√3 + 48) +
                                                     49 + 56√3 + 48
                                                     1
                        = (97 + 56√3) +
                                                97 + 56√3
                                                    1                97 + 56√3
                        = (97 + 56√3) +                          ×
                                         97 + 56√3 97 + 56√3
                                          97 + 56√3
                        = (97 + 56√3) + 2
                                         97 − 562 (3)
                                        73 − 40√3
                        = (73 + 40√3) +
                                             1
                        = (73 + 40√3) + (73 − 40√3)
                        = 146
                                        If any one of 𝑎, 𝑏, 𝑑 and 𝑒 are NOT rational numbers,
                                        then the “equality of surds” cannot be applied!
     Equality of Surds:
     If rational numbers 𝑎, 𝑏, 𝑑, 𝑒 are such that:
                        𝑎 + 𝑏√𝑐 = 𝑑 + 𝑒√𝑐, then: 𝑎 = 𝑑 and 𝑏 = 𝑒
     This rule is used in finding unknown constants by comparison of non-surd and surd form
     respectively on both sides.
     Example 1:
     Given that (2 + √3)(3 − 𝑏√3) = 𝑎 + 7√3, find the value of 𝑎 and 𝑏.
     Solution:                                                                    Collate all the non-surds and
                                                                                  surd terms
     𝐿. 𝐻. 𝑆 = (2 + √3)(3 − 𝑏√3) = 6 − 2𝑏√3 + 3√3 − 𝑏(√3)(√3)
                                     = (6 − 3𝑏) + √3(3 − 2𝑏)
                                             𝑎               7√3
     By comparison (equality of surds) with 𝑅. 𝐻. 𝑆:
                                    6 − 3𝑏 = 𝑎 --- (1)
                                    3 − 2𝑏 = 7 --- (2)
     Solving for 𝑏 (from equation (2)) gives: 𝑏 = −2
     Substitute 𝑏 = −2 into equation (1) ⟹ 𝑎 = 6 − 3(−2) = 12
     Example 2:
                                             2+√10
     Find the value of 𝑝 and 𝑞 for which:                = 𝑝√2 + 𝑞√5
                                            2√5+3√2
                                                                   When there is no unknowns for the
     Solution:                                                     fraction term, FASTEST way is to
                                                                   rationalize the denominator
     We will rationalize the denominator on the 𝐿. 𝐻. 𝑆:
                    2+√10           2+√10            2√5−3√2       (2+√10)(2√5−3√2)
     𝐿. 𝐻. 𝑆 =                =               ×                =            2         2
                  2√5+3√2          2√5+3√2           2√5−3√2        (2√5) −(3√2)
                  4√5 − 6√20 + 2√50 − 3√20 4√5 − 6(√4)(√5) + 2(√25)(√2) − 3(√4)(√5)
              =                           =
                          20 − 18                              2
                                            4√5−12√5+10√2−6√5               8√5+10√2
Simplify the surds (√20 and √50)       =                                =                 = 4√5 + 5√2
                                                         2                        2
                                                                                                𝑞√5 + 𝑝√2
Comparing with 𝑅. 𝐻. 𝑆 ⟹ 𝑞 = 4 and 𝑝 = 5
Example 3:
     6+4√3
If           = 1 − √3, where 𝑎 and 𝑏 are rational numbers, find the value of 𝑎 and 𝑏.
     𝑎+𝑏√3
                     When there is unknown at the denominator, multiple the
                     denominator to the other side.
Solution:
6+4√3
        = 1 − √3
𝑎+𝑏√3                                      Multiply the denominator over
6 + 4√3 = (1 − √3)(𝑎 + 𝑏√3)
Expand out the 𝑅. 𝐻. 𝑆:
𝑅. 𝐻. 𝑆 = (1 − √3)(𝑎 + 𝑏√3) = a + b√3 − √3𝑎 − 𝑏(√3)(√3)
                                     = (𝑎 − 3𝑏) + √3(𝑏 − 𝑎)
Thus, by comparison:                        6          4√3
𝑎 − 3𝑏 = 6 --- (1)             Solving simultaneously gives: 𝑎 = −9, 𝑏 = −5
𝑏 − 𝑎 = 4 ---(2)
Example 4:
                        Square both sides to get rid of the square root containing the unknown
                           9
If √𝑝   + 𝑞√7 =                 , where 𝑝 and 𝑞 are rational numbers, find the values of 𝑝 and 𝑞.
                       4−√7
Solution:
                       9                                9       2
√𝑝 + 𝑞 √7 =                    ⟹ 𝑝 + 𝑞 √7 = (                )
                     4−√7                            4−√7            Rationalize the denominator since the
                                                                     denominator has no unknown
                                                       81             (4+√7)2
                                   𝑝 + 𝑞 √7 =                    ×
                                                    (4−√7)2          (4+√7)2
                                                     81             (4+√7)2
                                 𝑝 + 𝑞 √7 =                     ×
                                                  (4−√7)2           (4+√7)2
                                                            2
                                                81(4+√7)            81(16+8√7+7)
                               𝑝 + 𝑞 √7 =                       =                     = 23 + 8√7
                                                 [16−7]2                 81
By comparison, 𝑝 = 23 and 𝑞 = 8
Finding unknown in an Equation involving surds:
Squaring an equation in the process of solving for an unknown sometimes introduces
“unwanted” roots (a.k.a “extraneous roots”) ⟹ must check the solution after solving.
Knowing when to square both sides in a “surd equation” is                Consider the “simple” equation:
important
(Squaring at the wrong time makes the question                           𝑥 − 1 = 2 (𝑥 = 3)
 unnecessarily complicated)
                                                                         If we square both sides of the
                                                                         equation:
Example 1:
                                                                                    (𝑥 − 1)2 = 4
Solve the equation: √3𝑥 + 4 − 4 = 1
                                                                         Now we take the square roots on
                               Isolate the numbers and the surd          both sides again:
                               term and the constants when there is
                                                                         𝑥 − 1 = ±2 ⟹ 𝑥 = 3 or 𝑥 = −1
                               only 1 surd
Solution:                                                                𝑥 = −1 is an “extraneous” root
√3𝑥 + 4 − 4 = 1
                        Isolate the surd on the 𝐿. 𝐻. 𝑆
√3𝑥 + 4 = 5
                       Square both sides to get rid of the square root
3𝑥 + 4 = 25
3𝑥 = 21 ⟹ 𝑥 = 7 (No extraneous roots)
Example 2:
                                                    𝑥
Solve the equation: 2√𝑥 − 1 − 𝑥 + 1 =
                                                     2
Solution:
                           𝑥
2 √𝑥 − 1 − 𝑥 + 1 =
                           2
                                    Isolate the surd on the 𝐿. 𝐻. 𝑆
                 3𝑥
2 √𝑥 − 1 =            −1
                 2
             2        3𝑥        2                         9𝑥 2
[2√𝑥 − 1] = ( 2 − 1) ⟹ 4(𝑥 − 1) =                          4
                                                                 − 3𝑥 + 1
16(𝑥 − 1) = 9𝑥 2 − 12𝑥 + 4 ⟹ 9𝑥 2 − 28𝑥 + 20 = 0
                                        (9𝑥 − 10)(𝑥 − 2) = 0
            9
∴𝑥=             or 𝑥 = 2
           10
       9
𝑥=          is not a solution since √𝑥 − 1 will not be defined (we cant square root a negative
    10
number)
Substitute 𝑥 = 2 into the original equation:
𝐿. 𝐻. 𝑆 = 2√2 − 1 − 2 + 1 = 1
            2
                                      𝑥 = 2 is a solution
𝑅. 𝐻. 𝑆 = 2 = 1
Example 3:
                                                    Bring one of the surd to the side of
Solve the equation: 1 = √𝑥 + 2 − √3 − 𝑥.            the constant before squaring
Solution:
1 = √𝑥 + 2 − √3 − 𝑥
                             Bring the Surd form to the other side
√𝑥 + 2 = 1 + √3 − 𝑥
                                   Square both sides
(√𝑥 + 2)2 = [1 + √3 − 𝑥 ] 2
𝑥 + 2 = 1 + 2√3 − 𝑥 + 3 − 𝑥
2𝑥 − 2 = 2√3 − 𝑥
                             Square both sides again to get rid of square roots
           2
(2𝑥 − 2) = 4(3 − 𝑥)
4𝑥 2 − 8𝑥 + 4 = 12 − 4𝑥
4𝑥 2 − 4𝑥 − 8 = 0 ⟹ 𝑥2 − 𝑥 − 2 = 0
(𝑥 − 2)(𝑥 + 1) = 0
𝑥 = 2 or 𝑥 = −1
Check your solution since there are multiple solutions:
Substitute 𝑥 = 2 into the original equation:
𝑅. 𝐻. 𝑆 = √2 + 2 − √3 − 2 = 2 − 1 = 𝐿. 𝐻. 𝑆 ⟹ 𝑥 = 2 is a solution
Substitute 𝑥 = −1 into the original equation:
𝑅. 𝐻. 𝑆 = √2 + (−1) − √3 − (−1) = 1 − 2 = −1 ≠ 𝐿. 𝐻. 𝑆 ⟹ 𝑥 = −1 is NOT a
solution
Example 4:
Without using a calculator, find the values of the integers 𝑎 and 𝑏 for which the solution of
                                    𝑎+√𝑏                                         𝑎+√𝑏
the equation 𝑥√24 = 𝑥√2 + √6 is           .       [Why do we not substitute 𝑥 = 11 into the
                                      11
                                                  equation? We will end up with an equation
Solution:                                         which we cannot apply “equality of surds”]
         𝑎+√𝑏
Since 𝑥 = 11 is a solution to the equation, we shall make 𝑥 the subject first and then
compare with the solution:
                                                        Rationalize the denominator
                                            √6
𝑥√24 = 𝑥√2 + √6 ⟹ 𝑥 =
                                          √24−√2
        √6     √24+√2                 √6(√24+√2)
𝑥=           ×                   =
      √24−√2   √24+√2                    24−2
      √6(2√6+√2)              2(6)+√6√2         12+√3√2√2        12+2√3        6+√3
𝑥=                        =               =                  =            =
          22                     22                22              22           11
            6+√3          𝑎+√𝑏
Compare            with          gives: 𝑎 = 6, 𝑏 = 3
             11            11
Problems involving surds:
Example 1:
A cuboid has a square base of side (√3 + 1) m and the height and volume of the cuboid
respectively are 𝑥 𝑚 and (𝑥√48 + √12) 𝑚3 respectively . Find 𝑥, leaving your answer in the
form of 𝑎 + 𝑏√3, where 𝑎 and 𝑏 are integers.
Solution:
Volume of cuboid = (Area of square base)(Height of Cuboid)
𝑥√48 + √12 = 𝑥(√3 + 1)2                Find 𝑥
𝑥√48 + √12 = 𝑥(3 + 2√3 + 1)
𝑥(√48 − 2√3 − 4) = −√12
            √12                        √12                  √12
𝑥=−                       = −                         =−
         √48−2√3−4                  4√3−2√3−4              2√3−4
          √12    2√3+4                      √12(2√3+4)               2√3(2√3+4)         12+8√3
𝑥=−            ×                =−                            =−      (4)(3)−16
                                                                                  = −
         2√3−4   2√3+4                    (2√3−4)(2√3+4)                                  −4
∴ 𝑥 = 3 + 2√3
Example 2: (More Challenging)
If 𝑛 is a positive integer, show that:
                                             1
                                                      = √𝑛 + 1 − √𝑛
                                    √𝑛 + √𝑛 + 1
                                1                 1              1                 1
Hence, find the value of                  +              +             +⋯+               .
                            √25+√26           √26+√27        √27+√28          √99+√100
Solution:
                1           √𝑛−√𝑛+1
𝐿. 𝐻. 𝑆 =               =                 = −(√𝑛 − √𝑛 + 1) = √𝑛 + 1 − √𝑛 = 𝑅. 𝐻. 𝑆
            √𝑛+√𝑛+1         𝑛−(𝑛+1)
    1               1                 1                      1
            +               +                    + ⋯+
√25+√26         √26+√27         √27+√28                  √99+√100
  𝑛 = 25         𝑛 = 26             𝑛 = 27                 𝑛 = 99
= (√26 − √25) + (√27 − √26) + (√28 − √27) + ⋯ + (√100 − √99)
= √26 − √25
+√27 − √26
+√28 − √27              = √100 − √25
    ..
     .
+√100 − √99
∴ Solution = 10 − 5 = 5