0% found this document useful (0 votes)
67 views15 pages

Nme Unit-3

Uploaded by

Aruru Tejaswi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
67 views15 pages

Nme Unit-3

Uploaded by

Aruru Tejaswi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 15
oa NTs _ oe : ” Tntor polddioy Me ha Me a the process a Computing ye PO fol Some vedluves ay a lich Wes blu om trtowal) ic cabled | interpolation + Dy , $eds raptor, we tntioduce eobtal raw cablil tt Sawer , hoceward dtHerences and central differences of a function N= F(x) Pou - Gy ; Fouwand difprrences : tet Ve-t(w) be the functional nelationthip blw 2 Variables X EY ene ts the independent Vortable x and Vis te dependent vontdlble.’ tek x takes Hee Value Ber Rutay <8 | Kn andy gels toutes’ Hat!) Value Vo, ¥,7 yy” wy otw: wh Gh) - Hoo —_O i Here, bts Ae Teubaad’ Ueperence!’ cpesitiey pak x2 % in eang i vy POL) & $00) = Fimothy tems) p's VA Me = Eoug)th, SYo= Hu)- +L) ~. Y= 4buy ®Y0 = Wir de We POR KEK Mvegn@! ” 5 & ton) = fut n)— FO)” yo OY = Bap ry vs Posies sys, = be KAYE Teas 9 cathy Poke OGW Napa a (ntotig OS) Crwand Lheronce table : x Y fay a | ) | aby aty x ; Par i -| e Yee. Ayo er | AE 4 BO 10 aty 7 gis 6 aN 7 ». a 7 ah | s Me DY Pep, | z fee | Rectan lipprence gt ae él ! . fi i. 4= FOS be Hew Functional rdaktonsiip blu & Vamabley Sere th a. Wndapenduntii G24 i RY. hee x bs Tndependunt Voxtabcle and Y 6 indent Vostcusle « i ty! balers tte Volise mor Au Mar cond ¥ tales ste Nabue Yo, ry Ya 1 TE SEIN) i ah) ‘o. ' SHAE TEC AGE Symbol OF Baclevonsidl ayo ape af pub aaa NS BeV/O! > ya cit arty) = ey) EMD A ge jon a7 Tae Qi Yo. ; ie vp A lind fa Rh a Nar Me ORE a eae fasiy tiene’ A eyo) «Oe Fe noe Yan Yn sl me 273-=) eo tfference table OQ as h of yutyeyt ele” AY Oy tery! Bty fe Xo. 1" geet \ va MY wa vy you = of 4 ae ee ee Soy Se /3, (i ai x P % Ie yy v ei Gye WN OY, ag Tp (x) = 4+5K-7 féima table 1 Wand di ” taking x= WO lS, U/S hou Hak tre ee axe omstant J Cs» Jase feats Ts ! [ety [-3 A = Bs aT hes] ee Frwond difterence table . i dy PMA BIAS i at ae Ac Fall 6 ' ‘ if i ° . 2 24 A 0 f ee, ua OAS VAP Cage 4 * the soe table gives Set q Vals Ux, and the Goneypencking value dp Yo #4) x 10 IF as |30 |35. Qrsi Re ee 25:34, teible” Heal. oon coum 20 2247 q oies Gaom forworkd — difference Here Vohlius) a AH) f 20107, O2fU5) jist #(15) : Fonwad Aifferunce table.) .), ; fa) Lag ag” Ie, . 4 Booth tie 4 to | (Site = St ROMS soi Wily Is Bers ly ‘otac S "0-610 0°04 [OBS ! ogee etl.o50 -o0°ol 120 ais 2252 0708 0704 1139 og 0703 0 265° . ZO 2y-65 pud y vs B5 25°84 ad fs) =e 0201, AftUo) = St ( OY £0) = ~0°580 Bt eulsd= oO OF > DB the interval of diferoncing yy uty prove tok ‘A Te Ot G42) (at3)] = te (AEN IC2) OOS) oop oy we kmow trot 5). ettn) = $Obh)= FOO fia) 2 @ (acr2yi(a3) 12 4 Ate) —7® A= + (t+ - lee (= KUATD Heatly = Ket (442), OFS, Jt Substtuling <4! &@ ™ eqn ® B [a (ar (ate) (ut) J = (KEV HD) OD) (aty) - x (att) Cat 2) OLS) = CO) (Kt2) (xt3) [Rte x] a Freire 2) 430) 2 Averog “operate he 4 di et the Ha voage cpoator ow dein ey is ECs, he J , | wan lard ‘Shifting apercitior Yeh Saget 4 ar The shifting pbs HEN. is ¢ ‘defined py: theg prvation ‘ry ‘= ac) tess Sous tei the HE te, ey cathe He functtonatt value Yn repr 4 he next higher Vole. Aotia peg vs ql eens P ae fre 4 “| Pee tide he Ein RE ayy eg Seek a e = Yous SS yay fe ae : ; ‘ nie? Yas (or ha i ie B ssloncnse OM wes thee aga" = (Oy we hove} OY a oro vs}j Ha Laveadge! gfe Bo nh oo HTB, ay EW Ey Patt tg Ble tie = Yo [e-1] , i Om 4Tef] 6+ Tet] oy Feat > Relottonrtalp bles blo ee 4 jee BE = Teme ee] Ph AQ) 2g ee know +tak, ' \ ie Jtyn = 1 Cais 1b Yn EU ney = rn] a cme | Tc ot f pa 2 [eM Mn - +P Gn] a ror t Naoktons Fetwand ‘nterpallation founuloy: 1354 Fn = Yor a Og uney Sat YEWOD rg, : u ‘ Ae i ( ahha . 4 VLUDWery Hy? hee &! 2 Meg Oe YOR Pd) Cr pay Pro F here, Wis the Common dR [ference Newtons back wand Snterpotation fimulo’: f= Yast ayy 4 ver or Ju tutta) x ta Ze ae et PE wont Sf AME? Aida tR Some cetie sue Br ae VW) Wha L DS yn ee ye tee COG Hep ai Oe | he common di pence! the population of a fear (in, tte decimal Senses wes gen below: timole tu population fh Hee yer IAS Yeoa LX) ISA AOL ane lap WJ “Pa Pt is populoatig(v) 4e 66 08 93 to} sinte, Ate = 1995 - Ues,.Stankeng . oF table: $0, We COU) | Abe newkors srrvoand water polatten formula i Foye Yot 9 BYot Ul 6G tVWA)W2) 24 lay lee US, Sp t PLOW) a i) N-F-p +able <~ “4 aL By 2 ee ; - , ES wv a at (aq) 4g aa d (401 6L Uipocis) @ i ¥ 7 fe) - 2 Ary & By ee, j ») (Lda) ge) yo "38 aE | a2) 34 ) c a4 1931 10) % + ee ©. ke ; =)0%ffh eps Mh hh ie 6 $U895) = 464 O-t; (24) +O) (5) + o ¢(OU-1) a 7) APRS) 8 y I + Ov (OmG—U) (O-Y-2) LO-Y-3) \ sane 4 4 APE PAF A 2 BH 658 vol folly log? ie Fewotns eaexeaond, (Ud Fy? tbe, boo ieg Since xe 1425 tes” : ah 4 use rectors loaceurand _ fnterpolabion total val > i lott) ge oUt) LF Fo= Ynt a Son) ae v Ant =f art cae OLA YB) Saye x ae same able’! ' a Ph ¢ Peay OF Us $025- (93) 2 HOG )) yee (aaa wy KPA ee ee (241 Ge we 1 Mt} 12 Jeg? tau » Ql =3 ink ¢ W243 me 1431 lol cy) Ww ¢: Haye loy4 C0) (9) (0-6) (-o. $ OB Coed) co 0:6) (—o» a 4 BIE ce) nt ea) + 606) Core!) t | : Ho j Coetsy = Wl - &Sto.qg_ 01056 +05 104 oy = 16. 83T- Ty Ho =I » HHO, Moe 5, Hg=22, Mae ST tind HG. Tel? Given eta uh ig ‘ a. | sof s| BM) ae « i fae [1 [o 5 |aal sq Simce ak X= 05 ] 7 i uring, NOPD fmito, ne £00 = Yot Udyor veord Yo a vlorlu2) , Sh Ye 1 Weeds 3 L do) _ Ose oda ahi Rowe wet! 9 NED Table aye lsh ra na ms) eres AY og =~ 2 ed Nob ost ge )oGeank: b9,"A@} obo eoiAtG, 0 me 4 te ° eS a5 \e ; i 4 87 oe Ls Ts FOE at 0:5 (1) ies SY (0, eNusnory Ye 3h 0-5 (0-5-1) (0°S-2YO-5-4) tos) = a Sener (0) FR K=O 23)5 6 L0Q= ld 1S; Se find £03) sg, Newtons forword defference! pete! (O12s Given throaty R20. oilsig® oD BB) : a% V4) 1 1g 1s 6 & Using giSince f ok x 23 Using nh ET sfovmulla, Fad = Yor Vdyo+ vlw-t) Wyo 4 (VA) (0-2) ds & a ot Veo vs U= 3-0 : =< Dd WS) | ae i 5 YE Be ee Oe ot 5 \ " \ fe AY sinh: \ \ ts -u al Bee tO ages 2 ! > ‘ | A) | —2 eS By uiteg FT Formule Hays + WSU + ulu-) (OA) (U-2 Yo Yo Ps 8Yo OO 4 o(o-ytory Heuer. 3h (vs) 4 = : ~s, NED table ie eh 0 BON BO AAW eh ramad | oy | 3 z tl 3 | pape] By 2 “*O cw ) =i | ae 1S = Z find THE Grbic poltpnovntaf odd, falestew « folloutig yobs — Yojrl qr . {A= t, YEW hence our ovr 4 (4) : « © BY > Apply Newtons Onterpolotton formula compute tre value % VES Geven that V5 =2-936, NGF RK49, JT 2 2.646, (Ee 8.898. Correct upto 3 decimal le Y= fay Yee. a! 6 qo yk RAD BWYGY LEGG 2-828" Lagranges Interpolation t#mula An be 4ee? (ney Value oe v Yor dA wa lee Yor PM bas > alidh aw Not necenarly Equally’ § Yn be the Corresponding vou 9 NS etly) Te gaaeut Some mre pcm) (4%). EvoLuiet 50d) gfuen “Ye, Vee, 42, 336 ak AEh 4S respectively. giver lagrorges pirate -tetrnula « a Given feck,” Ne x \ a (S. Yetta) 168, ytaae 336-5 | ae k : «earn, Hea Vous Ao, Med | OMe RES Yh tates Hae! Voli “Mor Mer Ys) By using lagranges tntexpolakion fyimula “Enyce Oy) Ge) & rhe) Oo) yg) ALON Pei) ( 2 ) Yo* (ante) 2) Bo) OW) aa 0 ie to is) " 4 MOE oe (io- Is) Cle uaz) + ° YC I8) G- Duets) SMPs HL B84) Usey Use fuo)= 23) Hind te Unique polynomial, por) % degree 2, leo Sach thak = PLY =I playe 27) plu) = 64 Uring logranges tnterpolation. toxmula, Bee al Bes) Rene ie OI § NAAM. > 0.04 bu fotmetlo, by ey Legaaiges Ge ey : Foy 2 GW" Gey’ peers 5) eye) Cay) © Goi) (e742) a ot eA) Carts ) Cae, =P) wetenerw | (aay wept au) (EY (Ua) trol ) ES eoU KR BK! hy Reap 2a reer 4 tae dia’ —Zx-x143 Ad) B+ (-1) (39) Sings 2 WOK rE ext 4 ‘ i io ae Gat Rwets 1h g # x = XCAMH2 4-8 Spmeacres x KA Xt ae —————— > Sherr. Nek AIL gx text 6 Gauss forward tnterpolatton formula : P= Oe dor Vat MOP nee sotoucuny , Baty Y= 1) (¥-2) (Ufa 1 fee We x-%o : ee ee. h Gouss Backwand _Islerpolatin formula » Ge Fs Yor Vay + ty oy E YO-DUED 2 i as 2 Y(V-D(va(Vt) 4 — ait ya ty «I “4 lee UW= *X-%o 5 n ea 7 Find yey qven, derouk YlA) = AY ry (2H) HBS (48) = 35 » yee = 40 Using gauss forwork ditference dibs DI Qiven tok, | By uring — gaun foswond difierence towmnula - Ge HO= Yot UdYo = ony ot NOBLE Dg + VU-) (ODWWtY ge a | ae = 32.945 he ce cae Find #8) given Wak ‘data’ {(25)= 0.2107, (30) = eS 2027 , (35) = 0:3386, ALO) = EME Ghen taal, ey. eg ih Bq uring gauss Bitaads dite faim Y= 400 = Hot Ob qe + oH) he eb Z fat’ 4 3 | a) x K aor x oy ye a ‘1 25 omy 1 ey a a ee My, a ' 0-0830, 4A. Ho 39 6-202%y 0.0039) = oBS4 = ee 0.0854, 5 O3sse —'* od 0.0408 go, OU bom Ma ag) 2a Le woe 3g 5 = ‘i x ; 42 a) =o 3035 + (ods (010854) 40-4 )LO* © Petes) 21 bon BY “BER He Corue foet) | ah gat) = 0302+ to-4) (or 0320) + (04) 4H) (0-089) ype "Wis Gl igs Sh Pula tot Dy ae ak =OZlec: he Find $230) fim Here Follausing) toile: YMC GLE 0 ag “gg Me Yo 95 FOS 1-39 9.03 tar B46 by uring, Gauss Backward diHerehde! \yindla’ Given tak, Fy) * aie “ Is By uvtng gauss Rackwand. ditt forritile. ule mW oq ‘ q a> BC yA 7 8605 id he yw 4 4.03 fs yet Od ' yold-46- \ v+tt i Hy = Yor veg +t Oey 4 Uw EAD y PA | BI _ boy Say PLUFDLU-RLVALYY f a bss dl i oe Paty LWA) W-2)WW-32)UHY s “1 a Fe Ag Ve 236-23, { y a at ——t = FB og. . Od FLY) = N02 +f Co.2)(1-99) + COR ORD ous ye \ wh LOR G2RCP2-2) (e241) ic Ve we ) (6) + le ced © Gos {ca2h ~N(-0-2) Coa-s) 0a ty “Weary 20 5% 30 as) uo us... Gams forwand -) i : “T3S4 Bar vay 2e0 23) 204 yuank Bee) yh a> qe 6 Wd 7 ne. Wo-ZT i : 2 th zm Po “1 O84, : ( FLY) = Yo U4 Yo SRL FD £9 2-QUB (ay al =A =) ay, | LLY) (U-3y LUE) May 2602) aD 0- -4)tW41) oo Sh ey ee og a = petenotan stoi eo (0-6) 00-1) (o> etl) ol. Sa gar ee a CO} iy aq fr 4 + 6) bo, eee?) em ‘oa eee. a igs) * eo a | Stealing 's Leimudar ayy ie. bea 4 es x f Poe “AL Cee GE O08 1 ale eG ee a Reel] Bo | aA Tao, pessel’s Ftmula [Flot oy Ate OH, tL ay, +L lly, +aly,) ob Lage) rind 40e vale OF 100) ok a=0-0% tom eu follocg gable ueing | bessel's Fotmmuta. pA % ar ad) et P45 0) 91023 a F 0 “qxoottrs oO: a Ro en 009%F 4,090) 90001 005 Ol ooo as soy | 70-000 poor ontoae onal, < 20-000{ ~9-000] “44 (bos eR otnat | Quo east Ye, 14 foros OY, WNT Sth 4 | Given Mook t9. fend, es a : lestmate. FID, ok te eft ae by using betel er 20026 HH. |o. +g 5 [e oor = [0 Cool +o)+t ¢ o1paet) st 0/0001 +0) « s Laer ya. er] 7 or sg ‘5 Syumula : 3 oes : o28¢ orelbo 0-048, 4 O336 o-0NR be tag OTS, ogy TOATR |) 4 y Jeo . 18 gaygg VISE : ay, ite oh oa : 1-5 6¢0 Oren =yo wl atte wot 20 0 as i seb el ak lensar one id UBMs boye) 840) | = &8¢0 ex ley x Ol, gr g pe Wy * }

You might also like