0% found this document useful (0 votes)
44 views25 pages

Maths 30 Jan 23 Morning

Uploaded by

Lakshya Jain
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
44 views25 pages

Maths 30 Jan 23 Morning

Uploaded by

Lakshya Jain
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 25

MATHS | 30th Jan 2023 _ Shift-1

SECTION - A
61. A straight line cuts off the intercepts OA = a and OB = b on the positive directions of x-axis and y
π
axis respectively. If the perpendicular from origin O to this line makes an angle of 6 with positive
98
direction of y-axis and the area of △ OAB is 3
√3, then a2 − b2 is equal to:
392 196
(1) (2) (3) 98 (4) 196
3 3
Sol. 1

In AOB
 OB b
tan  
6 OA a
1 b
 
3 a

 a  3b

1 98
area of triangle OAB   ab   3
2 3
3b2 98
 
2 3
98
 b2  2
3
196
 b
3

a  196

196 588  196


a 2  b 2  196  
3 3
392
 a 2  b2 
3

62. The minimum number of elements that must be added to the relation R={(a, b), (b, c)} on the set
{a, b, c} so that is becomes symmetric and transitive is :
(1) 3 (2) 4 (3) 5 (4) 7
Sol. 4
R  {(a,b),(b,c)}
For symmetric relation (b, a), (c, b) must be added in R
For transitive relation (a, c), (a, a), (b, b), (c, c), (c, a) must be added in R
So, minimum number of element = 7

63. If an unbiased die, marked with −2, −1,0,1,2,3 on its faces, is thrown five times, then the probability
that the product of the outcomes is positive, is :
881 27 440 521
(1) 2592 (2) 288 (3) 2592 (4) 2592
Sol. 4
Unbiased die. Marked with –2, –1, 0, 1, 2, 3
Product of outcomes is positive if
All time get positive number, 3 time positive and 2 time negative, 1 time positive and 4 time negative.
5 3 2 4
P (Product of the outcomes is positive) = 5 C5  3   5 C3  3   2   5 C1  3  2
 
6   6 6     6 6   
All positive 3positive, 2 negative 1positive, 4 negative

35 10  33  22 5  3  24
=  
65 65 65
1563 521
= 
65 2592

64. If a⃗, ⃗b, c are three non-zero vectors and n̂ is a unit vector perpendicular to c such that a⃗ = αb
⃗ − n̂, (α ≠
0) and ⃗b ⋅ c = 12, then |c × (a⃗ × ⃗b)| is equal to :
(1) 9 (2) 15 (3) 6 (4) 12
Sol. 4
a  b  n,
ˆ b.c  12

c  (a  b)  (c.b)a  (c.a)b
c  (a  b)  12a  (c.a)b ….(1)

a  b  n
c.a  c.b  c.n

c.a  12 ….(2)


Equation (2) put in equation (1)
c  (a  b)  12a  12b
c  (a  b)  12 a   b  a  b  n then | a  b |  1
 

 c  (a  b)  12
65. Among the statements :
(S1) ((p ∨ q) ⇒ r) ⇔ (p ⇒ r)
(S2) ((p ∨ q) ⇒ r) ⇔ ((p ⇒ r)V(q ⇒ r))
(1) only (S2) is a tautology (2) only (S1) is a tautology
(3) neither ( S1) nor (S2) is a tautology (4) both (S1) and (S2) are tautologies
Sol. 3
S1 :  (p  q)  r   (p  r)
(p q)  r
p q r ~ pr  (p  q)  r   (p  r)
(~ p  ~ q)  r
T T T T T T
T T F F F T
T F T T T T
T F F F F T
F T T T T T
F F F T T T
F T F F T F
F F T T T T
S1 is not a tautology
S2 =  (p  q)  r    (p  r)  (q  r) 
p q r (p  q)  r (p  r)  (q  r)  (p  q)  r    (p  r)  (q  r) 
T T T T T T
T T F F F T
T F T T T T
T F F F T F
F T T T T T
F F F T T T
F T F F T F
F F T T T T
S2 is not a tautology
So, neither S1 nor S2 is a tautology.

66. If P(h, k) be a point on the parabola x = 4y 2 , which is nearest to the point Q(0,33), then the distance
of P from the directrix of the parabola y 2 = 4(x + y) is equal to :
(1) 2 (2) 6 (3) 8 (4) 4
Sol. 2
Equation of normal of the parabola x  4y 2
 t 2 2t 
At a point P  ,  is
 16 16 
2t 1 3
y  tx   t
16 16
Normal pass through Q(0,33) then
t t3
33  
8 16
 t 3  2t  528  0
 (t  8)(t 2  8  166)  0

 t 8
Point P is (4, 1)
Given parabola is y 2  4(x  y)
y 2  4y  4x
(y  2) 2  4(x  1)
directrix is x + 1 = – 1
x  2
Distance of P(4, 1) from the directrix x = –2 is 6.

67. Let y = x + 2,4y = 3x + 6 and 3y = 4x + 1 be three tangent lines to the circle (x − h)2 + (y −
k)2 = r 2 .
Then h + k is equal to :
(1) 5(1 + √2) (2) 5√2 (3) 6 (4) 5
Sol. 4

In centre of triangle is (h, k)


 5(2)  2  7 2  5  5 3  (7 2)  0  5  7  5 
  , 
 557 2 557 2 
 14 2  15 21 2  35 
  , 
 10  7 2 10  7 2 
14 2  15 21 2  35
So, h  k  
10  7 2 10  7 2
35 2  50 5(7 2  10)
hk   5
7 2  10 7 2  10
 hk 5
68. The number of points on the curve y = 54x 5 − 135x 4 − 70x 3 + 180x 2 + 210x at which the normal
lines are parallel to x + 90y + 2 = 0 is :
(1) 4 (2) 2 (3) 0 (4) 3
Sol. 1
Given curve is y  54x 5  135x 4  70x 3  180x 2  210x
dy
 270x 4  540x 3  210x 2  360x  210
dx
Normal is parallel to x + 90y + 2 = 0
Then tangent is  r to x + 90 y + 2 = 0
Then (270x 4  540x 3  210x 2  360x  210)  1   1
 90 
270x  540x  210x  360x 120  0
4 3 2

 9x4 18x3  7x 2  12x  4  0


 (x 1)(x  2)(3x  1)(3x  2)  0
1 2
 x  1, 2,  , 
3 3
Number of points are 4

−2
69. If an = 4n2 −16n+15, then a1 + a2 + ⋯ … + a25 is equal to:
52 49 50 51
(1) 147 (2) 138 (3) 141 (4) 144
Sol. 3
2
given that a n 
4n  16n  15
2

25
2
a1  a 2  a 3  ....a 25  
n 1 (2n  3)(2n  5)
25
(2n  5)  (2n  3)

n 1 (2n  3)(2n  5)

25
 1 1 
   
n 1  2n  3 (2n  5) 
1 1
 
1 3
1 1
 
1 1
1 1
 
3 1

1 1

47 45
1 1
 
47 3
3  47 50
 
141 141
1 1 1
70. If tan⁡15∘ + tan⁡75∘ + tan⁡105∘ + tan⁡195∘ = 2a, then the value of (a + a) is :
3
(1) 2 (2) 4 − 2√3 (3) 5 − 2 √3 (4) 4
Sol. 4
1 1
tan15º    tan195º  2a
tan 75º tan105º
1 1
 tan15º    tan15º  2a
cot15º cot15º
 tan15º  tan15º  tan15º  tan15º  2a
 2tan15º  2a
 a  tan15º
1 1
a  tan15º 
a tan15º
 tan15º  cot15º
2 3 2 3

1
a  4
a

   , is 1
, where 
71. If the solution of the equation log cos x cotx 4 logsin x tan x 1, x  0,  sin
 2 2

and  are integers, then  +  is equal to :


(1) 5 (2) 6 (3) 4 (4) 3
Sol. 3
 
log cos x cot x  4logsin x tan x  1, x   0, 
 2
cos x sin x
 log cos x  4logsin x 1
sin x cos x
1  logcos x sin x  4  4logsin x cos x  1
 4  logcos x sin x  4logsin x cos x
Let logcos x sin x  t
4
4  t 
t
 t 2  4t  4  0

 (t  2) 2  0
t  2
 logcos x sin x  2

 sin x = cos2 x
 sin x = 1 – sin2x
 sin2 x + sin x – 1 = 0
 sin x  1  1  4
2

 sin x  1  5 , 1  5  
x   0,  then
1  5
not possible
2 2  2 2

 1  5 
 x  sin 1  
 2 
  1,   5 then

   4

72. Let the system of linear equations


x + y + kz = 2
2x + 3y − z = 1
3x + 4y + 2z = k
have infinitely many solutions. Then the system
(k + 1)x + (2k − 1)y = 7
(2k + 1)x + (k + 5)y = 10
has:
(1) infinitely many solutions (2) unique solution satisfying x − y = 1
(3) unique solution satisfying x + y = 1 (4) no solution
Sol. 3
x + y + kz = 2
2x + 3y – z = 1
3x + 4y + 2z = k
Have Infinitely many solution then
1 1 k
2 3 1  0
3 4 2
1(10)  1(7)  k(8  9)  0
 10 – 7 – k = 0

 k 3
For k = 3
4x + 5y = 7
7x + 8y = 10
has unique solution and solution is (–2, 3).
Hence solution is unique and satisfying x + y = 1
73. The line l1 passes through the point (2,6,2) and is perpendicular to the plane 2x + y − 2z = 10.
x+1 y+4 z
Then the shortest distance between the line l1 and the line = = 2 is :
2 −3
13 19
(1) (2) (3) 7 (4) 9
3 3
Sol. 9
x 2 y6 z2
equation of l1 is  
2 1 2
x 1 y  4 z
Let l2 is  
2 3 2
Point on l1 is a = (2, 6, 2), direction p  2,1, 2 

Point on l2 is b = (–1, –4, 0) direction q  2, –3,2 


(a  b).(p  q)
Shortest distance between l1 and l2 =
| pq |

i j k
p  q  2 1 2  i(4)  j(8)  k(8)
2 3 2

3,10, 2 · 4, 8, 8



16  64  64
12  80  16

144
108
=
12
=9
Shortest distance between the lines is 9.

m n
74. Let A = ( p q) , d = |A| ≠ 0 and |A − d(AdjA)| = 0. Then
(1) 1 + d2 = m2 + q2 (2) 1 + d2 = (m + q)2
(3) (1 + d)2 = m2 + q2 (4) (1 + d)2 = (m + q)2
Sol. 4
m n 
A=   , d =|A| = mq – np
 p q
m n  q –n 
A – d(Adj. A) =   – d 
 p q  –p m 
 m – dq n + dn 
=  
 p + pd q – dm 
|A – d(Adj A)| = (m – dq)(q – dm) – (n + dn)(p + pd) = 0
 mq – m2d – dq2 + d2qm = np(1+d)2
 (mq – m2d – dq2 + d2qm) = (mq – d)(1 + d)2
 mq – m2d – dq2 + d2qm = mq + mqd2 + 2mqd – d (1 + d)2
 d(1+d) 2 = m2d + dq2 + 2mqd
(1+d) 2 = (m+q) 2

3(e−1) 2 3
75. If [t] denotes the greatest integer ≤ t, then the value of ∫1 x 2 e[x]+[x ] dx is :
e
(1) e8 − 1 (2) e7 − 1 (3) e8 − e (4) e9 − e
Sol. 3
2
3(e – 1) 2
x e
2 [x]+[x 3 ]
dx
e 1

x e
2 [x]+[x 3 ]
Let I = dx
1

x e
2 1+[x 3 ]
I= dx dx
1

I = e  x e dx
3
2 [x ]

1
3
Let x = t
3x2 dx = dt
8
e [t]
I =  e dt
31
e 
2 3 4 8
I =  e dt +  e 2
dt +  e 3
dt + ..... +  e 7dt 
3 1 2 3 7 
e
I = e + e2 + e3 + ..... + e7 
3
e  e(e7 – 1) 
 I=  
3 e –1 
2
3(e – 1) 3(e – 1) e 2 (e 7 – 1)

2 [x]+[x 3 ]
Therefore x e dx = 
e 1 e 3 e –1
2
3(e – 1) 2 [x]+[x3 ]

e 1 x e dx = e8 – e

76. ̂ make angles α, β, γ with the positive directions of the co-ordinate axes OX, OY, OZ
Let a unit vector OP
π
̂ is perpendicular to the plane through points (1,2,3), (2,3,4) and
respectively, where β ∈ (0, 2 ). If OP
(1,5,7), then which one of the following is true ?
π π π π
(1) α ∈ (0, 2 ) and γ ∈ (0, 2 ) (2) α ∈ (0, 2 ) and γ ∈ ( 2 , π)
π π π π
(3) α ∈ (2 , π) and γ ∈ (2 , π) (4) α ∈ ( 2 , π) and γ ∈ (0, 2 )
Sol. 3
 OP makes angle , ,  with positive directions of the co-ordinate axes then cos2  + cos2  + cos2
= 1.
Point on planes are a(1, 2, 3), b(2, 3, 4) and c(1, 5, 7).
 ab = <1, 1, 1>

ac = <0,3, 4>
ˆi ˆj ˆ
k
 
normal vector of plane = 1 1 1
0 3 4
 

= ˆi(1) – ˆj(4) + ˆ
k(3)
= <1, –4, 3>
1 4 3
direction cosine of normal is =  , ,
26 26 26
1 4 3
then direction cosine of op is  , ,
26 26 26
  π 
 β   0,  
  2 

π  π 
Hence    ,   and    ,  
2  2 

77. The coefficient of x 301 in (1 + x)500 + x(1 + x)499 + x 2 (1 + x)498 + ⋯ … . . x 500 is :


(1) ⁡500 C300 (2) ⁡501 C200 (3) ⁡501 C302 (4) ⁡500 C301
Sol. 2
x0(1+x)500 + x(1+ x)499 + x2(1+x)498 + … + x500
 x 501 
  – 1
 1 + x  
= (1+x)500
x
–1
1+ x
(1 + x)500 (x 501 – (1 + x)501 )
=
 –1 
(1 + x)501  
x + x
= (1+x)501 – x501
Coefficient of x301 in above expression is 501C301 or 501C200.
78. Let the solution curve y = y(x) of the differential equation
dy 3x5 tan−1 (x3 ) x3 −tan−1 ⁡x3
− 3 y = 2x⁡exp⁡{ } pass through the origin. Then y(1) is equal to :
dx (1+x6 )2 √(1+x6 )

4+π 1−π π−4 4−π


(1) exp⁡( 4√2 ) (2) exp⁡( 4√2 ) (3) exp⁡( 4√2 ) (4) exp⁡( 4√2 )
Sol. 4
 dy  3x 5 tan –1 (x 3 )  x 3 – tan –1x 3 
 dx  – y = 2x exp  
  (1 + x 6 )3/2  (1 + x 6 ) 
 
above equation is linear differential equation.
–3x5 tan –1 (x3 )
 (1+x 6 )3/ 2
dx
I.F. = e
3x 2 ·x 3 tan –1 (x3 )
–  (1+x 6 )3/ 2
dx
=e
Let tan–1(x3) = t then
3x 2 ·dx
= dt
1 + x6
t tan t
–  dt
=e 1+tan 2 t

t tan t
–  sec t
dt
=e

– t sin t dt
=e
= e– t cost sint
= et cost t–sint
tan –1 x 3 x3

I.F. = e 1+x
6
1+x 6

Solution is
 x 3 – tan –1 x 3  tan –1 x 3 – x 3
 tan x 
–1 3
x3  
–  
y  e 1+x  =  2x e
6
1+x 6  1+x 6  1+x 6
·e dx
 
 
 tan x – x 
–1 3 3

y  e 1+x =  2x dx = x2 + c
6

 
 
above eq. is passing through (0, 0) then c = 0
x 3 – tan –1 x 3

y = x2 e 1+x
6

Put x = 1 then
π
1–
4 4– π

y(1) = e 2
= e4 2

4 – π
y(1) = exp  
 4 2 
1 15
79. If the coefficient of x15 in the expansion of (ax 3 + ) is equal to the coefficient of x −15 in the
bx1/3
1 15
expansion of (ax1/3 − bx3 ) , where a and b are positive real numbers, then for each such ordered pair
(a, b) :
(1) ab = 3 (2) ab = 1 (3) a = b (4) a = 3b
Sol. 2
15
 3 1 
 ax + 1/3 
 bx 
r
15 3 15–r  1 
general term is Tr+1 = Cr (ax )  1/3 
 bx 
15 – r
r
Tr+1 = 15Cr a r x45 – 3r –
b 3
r
For coefficient of x15 45 – 3r – = 15
3
10r
30 =
3
r=9
Coefficient of x is = C9 a b–9
15 15 6
… (1)
15
 1 
 general term of  ax1/3 –  is
 bx 3 
r
 –1 
Tr+1 = 15Cr (ax1/3)15–r  3 
 bx 
15 – r
For coefficient of x–15  – 3r = –15
3
 15 – r – 9r = – 45
60 = 10 r
r=6
Coefficient of x–15 is = 15C6 a9 b–b … (2)
 both coefficient are equal then
15
C9 a6 b–9 = 15C6 a9 b–6
a6 b‫–ؘ‬9 = a9 b–6
a3 b3 = 1
ab = 1

80. Suppose f: ℝ → (0, ∞) be a differentiable function such that 5f(x + y) = f(x) ⋅ f(y), ∀x, y ∈ ℝ. If
f(3) = 320, then ∑5n=0 f(n) is equal to :
(1) 6875 (2) 6525 (3) 6825 (4) 6575
Sol. 3
f : ℝ (0, )
5 f(x+y) = f(x) · f(y)
Put x = 3, y = 0 then
5 f(3) = f(3) f(0)
f(0) = 5
Put x = 1, y = 1 then 5 f(2) = f2(1)
Put x = 1, y = 2 then 5 f(3) = f (1) f(2)
3
5 × 320 = f (1) = f(1) = 20
5
f(2) = 80
Put x = 2, y = 2 then 5 f(4) = f(2) f(2)
80 × 80
f(4) = =1280
5
Put x = 2, y = 3 then 5 f(5) = f(2) · f(2)
80 × 320
f(5) = = 5120
5
5

 F(n) = f(0) + f(1) + …. + f(5)


n =0

= 5 + 20 + 80 + 320 + 1280 + 5120


= 5(1 + 22 + 24 + 26 + 28 + 210)
= 6825

Section B
1+iz‾ 12
81. Let z = 1 + i and z1 = 1 . Then arg⁡(z1 ) is equal to
z‾(1−z)+ π
z

Sol. 9
z = 1 + i, z = 1 – i, i z =1+i

z1 = 1 + iz
1
z(1 – z) +
z
i+z
z1 =
1
z – zz) +
z
i+2
z1 =
1–i
1–i– 2+
2
i+2
z1 =
1 3i
– –
2 2
z1 = –2(i + 2) × (1 – 3i)
(1 + 3i) (1 – 3i)
–2(5 – 5i)
z1 =
10
z1 = –1+i
1  3
arg. (z1) =  – tan–1   =   =
1 4 4
12 3
 arg (z1) = × =9
 4

82. If λ1 < λ2 are two values of λ such that the angle between the planes P1 : r ⋅ (3î − 5ĵ + k̂) = 7 and
2√6
P2 : r ⋅ (λî + ĵ − 3k̂) = 9 is sin−1 ⁡( ), then the square of the length of perpendicular from the point
5
(38λ1 , 10λ2 , 2) to the plane P1 is
Sol. 315s
Plane P1 : r .(3 î – 5ˆj + k̂ ) = 7
P2 : r. i  j  3k   9
angle between plane is same as angle between their normal.
angle between normal  then
3, –5,1 · λ,1, –3
Cos  =
9 + 25 + 1  2 + 1 + 9
3 – 5 – 3
Cos  = … (1)
35  2 + 10
 
  = sin–1  2 6  then
 
 5 

sin  = 2 6
5
1
cos  =
5
from equation (1)
3 – 8 1
=
35  + 10 5
2

(3 – 8) 2 1
 =
35( 2 + 10) 25
5 (3 – 8)2 = 7 ( + 10)
5 (9 – 48+64) = 7 + 70
38 – 240 + 250 = 0
19 – 120 + 125 = 0
25
  = 5,
19
25
= , 2 = 5
19
Point (38, 10 , 2)  (50, 50, 2)
distance of (50, 50, 2) from plane P1 is
3 × 50 – 5 × 50 + 2 – 7
d=
9 + 25 + 1
150 – 250 + 2 – 7
d=
35
105
d=
35

d = 3 35
d2 = 315

83. Let α be the area of the larger region bounded by the curve y 2 = 8x and the lines y = x and x = 2,
which lies in the first quadrant. Then the value of 3α is equal to
Sol. 22
8

area () =  (2 2 x – x)dx


2

8
 2

=  2 2·2 x 3/ 2 – x 
 3 2 

= 4 2 [8 × 2 2 –2 2 ] – 30
3
28 × 4
= – 30
3
112
= – 30
3
22
=
3
3 = 22
n3 ((2n)!)+(2n−1)(n!) b 1
84. Let ∑∞
n=0 = ae + e + c , where a, b, c ∈ ℤ and e = ∑∞ 2
n=0 n! Then a − b + c is
(n!)((2n)!)
equal to
Sol. 26

n 3 ((2n)!) + (2n – 1)n!
Let 
n 0 (n!)((2n)!)

n 3 (2n)! (2n – 1)n!
= 
n0 n!(2n)!
+
n!(2n)!
= S1 + S2
  
n 3 (2n)! n3 n2
Let S1 = 
n0 n!(2n)!
=  =
n0 n!
 (n – 1)!
n1


n2 – 1 + 1
= 
n1 (n – 1)!

 
(n + 1) 1
= +  (n – 1)!
n2 (n – 2)! n1


(n  2)  3  1
 
n 2 (n  2)! n 1 (n  1)!
  
1 1 1
  3 
n 3 (n  3)! n  2 (n  2)! n 1 (n  1)!

S1  e  3e  e  5e

(2n  1)n!
S2  
n  0 n!(2n)!


2n  1

n  0 (2n)!

 
1 1
 
n 1 (2n  1)! n  0 (2n)!

=  1  1  1  ....   1  1  1  .....


 1! 3! 5!   2! 4! 
1 1 1 1 1
= 1       ....
1! 2! 3! 4! 5!

=  1  1  1  1  1  .... 
 1! 2! 3! 4! 
= – e–1
1 b
S1  S2  5e   ae   c
e e
Compare both side
a = 5, b = –1, c = 0
a2 – b + c = 25 + 1 + 0 = 26
85. If the equation of the plane passing through the point (1,1,2) and perpendicular to the line x − 3y +
2z − 1 = 0 = 4x − y + z is Ax + By + Cz = 1, then 140(C − B + A) is equal to
Sol. 15
give line is x – 3y + 2z – 1 = 0 = 4x – y + z
i j k
Direction of line a  1 3 2 = i(1)  j(7)  k(11)
4 1 1

 a   1, 7, 11 
Line is  r to the plane then direction of line is parallel to normal of plane.
n   1, 7, 11 
Equation of plane is
1(x  1)  7(y  1)  11(z  2)  0
x  7y  11z  1  7  22  0
 x  7y  11z  28
1 7 11
  x y  z 1
28 28 28
1 7 11
A   , B  ,C 
28 28 28
 11 7 1 
140(C  B  A)  140    
 28 28 28 
140  3
 = 15
28

86. Number of 4-digit numbers (the repeation of digits is allowed) which are made using the digits 1, 2, 3
and 5 , and are divisible by 15 , is equal to
Sol. 21
5
Last digit must be 5 and sum of digits is divisible by 3 for divisible by 15
Remaining 3 digits Arrange
(1, 1, 2) 3!
3
2
(1, 3, 3) 3!
3
2
(1, 5, 1) 3!
3
2
(2, 2, 3) 3!
3
2
(2, 3, 5) 3! = 6
(3, 5, 5) 3!
3
2

Total numbers = 21
3x+2 −3
87. Let f 1 (x) = 2x+3 , x ∈ 𝐑 − { 2 }
For n ≥ 2, define f n (x) = f 1 of f n−1 (x)
ax+b
If f 5 (x) = bx+a , gcd⁡(a, b) = 1, then a + b is equal to
Sol. 3125
f1(x) = 3x  2 , x  R   3 
2x  3  2
 3x  2 
f 2 (x)  f 1 0 f 1 (x)  f 1  
 2x  3 
 3x  2) 
3 2
 2x  3) 

 3x  2 
2 3
 2x  3 
9x  6  4x  6

6x  4  6x  9
13x  12
f 2 (x) 
12x  13
f 3 (x)  f 1 o f 2 (x)

 13x  12 
 f1  
 12x  13 

 13x  12 
3 2
 12x  13 

 13x  12 
2 3
 12x  13 
39x  36  24x  26

26x  24  36x  39
63x  62
f 3 (x) 
62x  63
 63x  62 
f 4 (x)  f 1  
 62x  63 

 63x  62 
3 2
 62x  63 

 63x 62 
2  2
 62x 63 
313x  312
f 4 (x) 
312x  313
 313x  312 
f 5 (x)  f 1  
 312x  313 
 313x  312 
3 2
 312x  313 

 313x  312 
2 3
 312x  313 
1563x  1562
f 5 (x) 
1562x  1563
a  1563,b  1562

a  b  3125

88. The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted
and a and b are respectively mean and variance of remaining 6 observation, then a + 3b − 5 is equal
to
Sol. 37
7

x
i 1
i
Mean of 7 observations =
7
7
 x
i 1
i  7  8  56

x i2
Variance =  (x) 2
n
x i2  7(16  64)  560

If 14 is removed then
7

x i  14
Mean = a  i 1
 6a  56  14
6
a 7
7

x 2
i  (14)2
Variance = b  i 1
 49
6
 6b = 560 – 196 – 294
 6b = 70
 3b = 35
 a + 3b – 5 = 7 + 35 – 5 = 37

89. Let S = {1,2,3,4,5,6}. Then the number of one-one functions f: S → P(S), where P(S) denote the
power set of S, such that f(n) ⊂ f(m) where n < m is
Sol. 3240
Case – I
f(6) = S i.e. 1 option
f(5) = any 5 element subset A of S i.e. 6 C5  6 options
f(4) = any 4 element subset B of A i.e. 5 C 4  5 options
f(3) = any 3 element subset C of B i.e. 4 C3  4 options
f(2) = any 2 element subset D of C i.e. 3 C 2  3 options
f(1) = any 1 element subset E of D or empty subset i.e. 3 options
Total function = 6×5×4×3×2×3=1080
Case – II
f(6) = S
f(5) = any 4 element subset A of S i.e. 6 C 4  15 options
f(4) = any 3 element subset B of A i.e. 4 C3  4 options
f(3) = any 2 element subset C of B i.e. 3 C 2  2 options
f(2) = any 1 element subset D of C i.e. 2 C1  2 options
f(1) = empty subset i.e. 1 options
Total function = 15×4×3×2×1=360
Case – III
f(6) = S
f(5) = any 5 element subset A of S i.e. 6 C5  6 options
f(4) = any 3 element subset B of A i.e. 5 C3  10 options
f(3) = any 2 element subset C of B i.e. 3 C 2  3 options
f(2) = any 1 element subset D of C i.e. 2 C1  2 options
f(1) = empty subset i.e. 1 options
Total function = 6×10×3×2×1=360
Case – IV
f(6) = S
f(5) = any 5 element subset A of S i.e. 6 C5  6 options
f(4) = any 4 element subset B of A i.e. 5 C 4  5 options
f(3) = any 2 element subset C of B i.e. 4 C 2  6 options
f(2) = any 1 element subset D of C i.e. 2 C1  2 options
f(1) = empty subset i.e. 1 options
Total function = 6×5×6×2×1=360
Case – V
f(6) = S
f(5) = any 5 element subset A of S i.e. 6 C5  6 options
f(4) = any 4 element subset B of A i.e. 5 C 4  5 options
f(3) = any 3 element subset C of B i.e. 4 C3  4 options
f(2) = any 1 element subset D of C i.e. 3 C1  3 options
f(1) = empty subset i.e. 1 options
Total function = 6×5×4×3×1=360
Case – VI
f(6) = any 5 element subset A of S i.e. 6 C5  6 options
f(5) = any 4 element subset B of A i.e. 5 C 4  5 options
f(4) = any 3 element subset C of B i.e. 4 C3  4 options
f(3) = any 2 element subset D of C i.e. 3 C 2  3 options
f(2) = any 1 element subset E of D i.e. 2 C1  2 options
f(1) = empty subset i.e. 1 options
Total function = 6×5×4×3×2×1=720

Total number of such functions = 1080 + (4× 360) +720 = 3240

48 x t3
90. lim ∫0 dt is equal to
x 0 x4 t6 +1

Sol. 12
0
x
48 t 3
lim
x 0 x 4 
0
6
   form
t 1  0 
Using L Hopital Rule
x3
48 
 lim x6  1
x 0 4x 3
48
 lim
x 0 4(x 6  1)
48

4
= 12

You might also like