Maths 30 Jan 23 Morning
Maths 30 Jan 23 Morning
SECTION - A
61. A straight line cuts off the intercepts OA = a and OB = b on the positive directions of x-axis and y
π
axis respectively. If the perpendicular from origin O to this line makes an angle of 6 with positive
98
direction of y-axis and the area of △ OAB is 3
√3, then a2 − b2 is equal to:
392 196
(1) (2) (3) 98 (4) 196
3 3
Sol. 1
In AOB
OB b
tan
6 OA a
1 b
3 a
a 3b
1 98
area of triangle OAB ab 3
2 3
3b2 98
2 3
98
b2 2
3
196
b
3
a 196
62. The minimum number of elements that must be added to the relation R={(a, b), (b, c)} on the set
{a, b, c} so that is becomes symmetric and transitive is :
(1) 3 (2) 4 (3) 5 (4) 7
Sol. 4
R {(a,b),(b,c)}
For symmetric relation (b, a), (c, b) must be added in R
For transitive relation (a, c), (a, a), (b, b), (c, c), (c, a) must be added in R
So, minimum number of element = 7
63. If an unbiased die, marked with −2, −1,0,1,2,3 on its faces, is thrown five times, then the probability
that the product of the outcomes is positive, is :
881 27 440 521
(1) 2592 (2) 288 (3) 2592 (4) 2592
Sol. 4
Unbiased die. Marked with –2, –1, 0, 1, 2, 3
Product of outcomes is positive if
All time get positive number, 3 time positive and 2 time negative, 1 time positive and 4 time negative.
5 3 2 4
P (Product of the outcomes is positive) = 5 C5 3 5 C3 3 2 5 C1 3 2
6 6 6 6 6
All positive 3positive, 2 negative 1positive, 4 negative
35 10 33 22 5 3 24
=
65 65 65
1563 521
=
65 2592
64. If a⃗, ⃗b, c are three non-zero vectors and n̂ is a unit vector perpendicular to c such that a⃗ = αb
⃗ − n̂, (α ≠
0) and ⃗b ⋅ c = 12, then |c × (a⃗ × ⃗b)| is equal to :
(1) 9 (2) 15 (3) 6 (4) 12
Sol. 4
a b n,
ˆ b.c 12
c (a b) (c.b)a (c.a)b
c (a b) 12a (c.a)b ….(1)
a b n
c.a c.b c.n
c (a b) 12
65. Among the statements :
(S1) ((p ∨ q) ⇒ r) ⇔ (p ⇒ r)
(S2) ((p ∨ q) ⇒ r) ⇔ ((p ⇒ r)V(q ⇒ r))
(1) only (S2) is a tautology (2) only (S1) is a tautology
(3) neither ( S1) nor (S2) is a tautology (4) both (S1) and (S2) are tautologies
Sol. 3
S1 : (p q) r (p r)
(p q) r
p q r ~ pr (p q) r (p r)
(~ p ~ q) r
T T T T T T
T T F F F T
T F T T T T
T F F F F T
F T T T T T
F F F T T T
F T F F T F
F F T T T T
S1 is not a tautology
S2 = (p q) r (p r) (q r)
p q r (p q) r (p r) (q r) (p q) r (p r) (q r)
T T T T T T
T T F F F T
T F T T T T
T F F F T F
F T T T T T
F F F T T T
F T F F T F
F F T T T T
S2 is not a tautology
So, neither S1 nor S2 is a tautology.
66. If P(h, k) be a point on the parabola x = 4y 2 , which is nearest to the point Q(0,33), then the distance
of P from the directrix of the parabola y 2 = 4(x + y) is equal to :
(1) 2 (2) 6 (3) 8 (4) 4
Sol. 2
Equation of normal of the parabola x 4y 2
t 2 2t
At a point P , is
16 16
2t 1 3
y tx t
16 16
Normal pass through Q(0,33) then
t t3
33
8 16
t 3 2t 528 0
(t 8)(t 2 8 166) 0
t 8
Point P is (4, 1)
Given parabola is y 2 4(x y)
y 2 4y 4x
(y 2) 2 4(x 1)
directrix is x + 1 = – 1
x 2
Distance of P(4, 1) from the directrix x = –2 is 6.
67. Let y = x + 2,4y = 3x + 6 and 3y = 4x + 1 be three tangent lines to the circle (x − h)2 + (y −
k)2 = r 2 .
Then h + k is equal to :
(1) 5(1 + √2) (2) 5√2 (3) 6 (4) 5
Sol. 4
−2
69. If an = 4n2 −16n+15, then a1 + a2 + ⋯ … + a25 is equal to:
52 49 50 51
(1) 147 (2) 138 (3) 141 (4) 144
Sol. 3
2
given that a n
4n 16n 15
2
25
2
a1 a 2 a 3 ....a 25
n 1 (2n 3)(2n 5)
25
(2n 5) (2n 3)
n 1 (2n 3)(2n 5)
25
1 1
n 1 2n 3 (2n 5)
1 1
1 3
1 1
1 1
1 1
3 1
1 1
47 45
1 1
47 3
3 47 50
141 141
1 1 1
70. If tan15∘ + tan75∘ + tan105∘ + tan195∘ = 2a, then the value of (a + a) is :
3
(1) 2 (2) 4 − 2√3 (3) 5 − 2 √3 (4) 4
Sol. 4
1 1
tan15º tan195º 2a
tan 75º tan105º
1 1
tan15º tan15º 2a
cot15º cot15º
tan15º tan15º tan15º tan15º 2a
2tan15º 2a
a tan15º
1 1
a tan15º
a tan15º
tan15º cot15º
2 3 2 3
1
a 4
a
, is 1
, where
71. If the solution of the equation log cos x cotx 4 logsin x tan x 1, x 0, sin
2 2
(t 2) 2 0
t 2
logcos x sin x 2
sin x = cos2 x
sin x = 1 – sin2x
sin2 x + sin x – 1 = 0
sin x 1 1 4
2
sin x 1 5 , 1 5
x 0, then
1 5
not possible
2 2 2 2
1 5
x sin 1
2
1, 5 then
4
k 3
For k = 3
4x + 5y = 7
7x + 8y = 10
has unique solution and solution is (–2, 3).
Hence solution is unique and satisfying x + y = 1
73. The line l1 passes through the point (2,6,2) and is perpendicular to the plane 2x + y − 2z = 10.
x+1 y+4 z
Then the shortest distance between the line l1 and the line = = 2 is :
2 −3
13 19
(1) (2) (3) 7 (4) 9
3 3
Sol. 9
x 2 y6 z2
equation of l1 is
2 1 2
x 1 y 4 z
Let l2 is
2 3 2
Point on l1 is a = (2, 6, 2), direction p 2,1, 2
i j k
p q 2 1 2 i(4) j(8) k(8)
2 3 2
m n
74. Let A = ( p q) , d = |A| ≠ 0 and |A − d(AdjA)| = 0. Then
(1) 1 + d2 = m2 + q2 (2) 1 + d2 = (m + q)2
(3) (1 + d)2 = m2 + q2 (4) (1 + d)2 = (m + q)2
Sol. 4
m n
A= , d =|A| = mq – np
p q
m n q –n
A – d(Adj. A) = – d
p q –p m
m – dq n + dn
=
p + pd q – dm
|A – d(Adj A)| = (m – dq)(q – dm) – (n + dn)(p + pd) = 0
mq – m2d – dq2 + d2qm = np(1+d)2
(mq – m2d – dq2 + d2qm) = (mq – d)(1 + d)2
mq – m2d – dq2 + d2qm = mq + mqd2 + 2mqd – d (1 + d)2
d(1+d) 2 = m2d + dq2 + 2mqd
(1+d) 2 = (m+q) 2
3(e−1) 2 3
75. If [t] denotes the greatest integer ≤ t, then the value of ∫1 x 2 e[x]+[x ] dx is :
e
(1) e8 − 1 (2) e7 − 1 (3) e8 − e (4) e9 − e
Sol. 3
2
3(e – 1) 2
x e
2 [x]+[x 3 ]
dx
e 1
x e
2 [x]+[x 3 ]
Let I = dx
1
x e
2 1+[x 3 ]
I= dx dx
1
I = e x e dx
3
2 [x ]
1
3
Let x = t
3x2 dx = dt
8
e [t]
I = e dt
31
e
2 3 4 8
I = e dt + e 2
dt + e 3
dt + ..... + e 7dt
3 1 2 3 7
e
I = e + e2 + e3 + ..... + e7
3
e e(e7 – 1)
I=
3 e –1
2
3(e – 1) 3(e – 1) e 2 (e 7 – 1)
2 [x]+[x 3 ]
Therefore x e dx =
e 1 e 3 e –1
2
3(e – 1) 2 [x]+[x3 ]
e 1 x e dx = e8 – e
76. ̂ make angles α, β, γ with the positive directions of the co-ordinate axes OX, OY, OZ
Let a unit vector OP
π
̂ is perpendicular to the plane through points (1,2,3), (2,3,4) and
respectively, where β ∈ (0, 2 ). If OP
(1,5,7), then which one of the following is true ?
π π π π
(1) α ∈ (0, 2 ) and γ ∈ (0, 2 ) (2) α ∈ (0, 2 ) and γ ∈ ( 2 , π)
π π π π
(3) α ∈ (2 , π) and γ ∈ (2 , π) (4) α ∈ ( 2 , π) and γ ∈ (0, 2 )
Sol. 3
OP makes angle , , with positive directions of the co-ordinate axes then cos2 + cos2 + cos2
= 1.
Point on planes are a(1, 2, 3), b(2, 3, 4) and c(1, 5, 7).
ab = <1, 1, 1>
ac = <0,3, 4>
ˆi ˆj ˆ
k
normal vector of plane = 1 1 1
0 3 4
= ˆi(1) – ˆj(4) + ˆ
k(3)
= <1, –4, 3>
1 4 3
direction cosine of normal is = , ,
26 26 26
1 4 3
then direction cosine of op is , ,
26 26 26
π
β 0,
2
π π
Hence , and ,
2 2
t tan t
– sec t
dt
=e
– t sin t dt
=e
= e– t cost sint
= et cost t–sint
tan –1 x 3 x3
–
I.F. = e 1+x
6
1+x 6
Solution is
x 3 – tan –1 x 3 tan –1 x 3 – x 3
tan x
–1 3
x3
–
y e 1+x = 2x e
6
1+x 6 1+x 6 1+x 6
·e dx
tan x – x
–1 3 3
y e 1+x = 2x dx = x2 + c
6
above eq. is passing through (0, 0) then c = 0
x 3 – tan –1 x 3
y = x2 e 1+x
6
Put x = 1 then
π
1–
4 4– π
y(1) = e 2
= e4 2
4 – π
y(1) = exp
4 2
1 15
79. If the coefficient of x15 in the expansion of (ax 3 + ) is equal to the coefficient of x −15 in the
bx1/3
1 15
expansion of (ax1/3 − bx3 ) , where a and b are positive real numbers, then for each such ordered pair
(a, b) :
(1) ab = 3 (2) ab = 1 (3) a = b (4) a = 3b
Sol. 2
15
3 1
ax + 1/3
bx
r
15 3 15–r 1
general term is Tr+1 = Cr (ax ) 1/3
bx
15 – r
r
Tr+1 = 15Cr a r x45 – 3r –
b 3
r
For coefficient of x15 45 – 3r – = 15
3
10r
30 =
3
r=9
Coefficient of x is = C9 a b–9
15 15 6
… (1)
15
1
general term of ax1/3 – is
bx 3
r
–1
Tr+1 = 15Cr (ax1/3)15–r 3
bx
15 – r
For coefficient of x–15 – 3r = –15
3
15 – r – 9r = – 45
60 = 10 r
r=6
Coefficient of x–15 is = 15C6 a9 b–b … (2)
both coefficient are equal then
15
C9 a6 b–9 = 15C6 a9 b–6
a6 b–ؘ9 = a9 b–6
a3 b3 = 1
ab = 1
80. Suppose f: ℝ → (0, ∞) be a differentiable function such that 5f(x + y) = f(x) ⋅ f(y), ∀x, y ∈ ℝ. If
f(3) = 320, then ∑5n=0 f(n) is equal to :
(1) 6875 (2) 6525 (3) 6825 (4) 6575
Sol. 3
f : ℝ (0, )
5 f(x+y) = f(x) · f(y)
Put x = 3, y = 0 then
5 f(3) = f(3) f(0)
f(0) = 5
Put x = 1, y = 1 then 5 f(2) = f2(1)
Put x = 1, y = 2 then 5 f(3) = f (1) f(2)
3
5 × 320 = f (1) = f(1) = 20
5
f(2) = 80
Put x = 2, y = 2 then 5 f(4) = f(2) f(2)
80 × 80
f(4) = =1280
5
Put x = 2, y = 3 then 5 f(5) = f(2) · f(2)
80 × 320
f(5) = = 5120
5
5
Section B
1+iz‾ 12
81. Let z = 1 + i and z1 = 1 . Then arg(z1 ) is equal to
z‾(1−z)+ π
z
Sol. 9
z = 1 + i, z = 1 – i, i z =1+i
z1 = 1 + iz
1
z(1 – z) +
z
i+z
z1 =
1
z – zz) +
z
i+2
z1 =
1–i
1–i– 2+
2
i+2
z1 =
1 3i
– –
2 2
z1 = –2(i + 2) × (1 – 3i)
(1 + 3i) (1 – 3i)
–2(5 – 5i)
z1 =
10
z1 = –1+i
1 3
arg. (z1) = – tan–1 = =
1 4 4
12 3
arg (z1) = × =9
4
82. If λ1 < λ2 are two values of λ such that the angle between the planes P1 : r ⋅ (3î − 5ĵ + k̂) = 7 and
2√6
P2 : r ⋅ (λî + ĵ − 3k̂) = 9 is sin−1 ( ), then the square of the length of perpendicular from the point
5
(38λ1 , 10λ2 , 2) to the plane P1 is
Sol. 315s
Plane P1 : r .(3 î – 5ˆj + k̂ ) = 7
P2 : r. i j 3k 9
angle between plane is same as angle between their normal.
angle between normal then
3, –5,1 · λ,1, –3
Cos =
9 + 25 + 1 2 + 1 + 9
3 – 5 – 3
Cos = … (1)
35 2 + 10
= sin–1 2 6 then
5
sin = 2 6
5
1
cos =
5
from equation (1)
3 – 8 1
=
35 + 10 5
2
(3 – 8) 2 1
=
35( 2 + 10) 25
5 (3 – 8)2 = 7 ( + 10)
5 (9 – 48+64) = 7 + 70
38 – 240 + 250 = 0
19 – 120 + 125 = 0
25
= 5,
19
25
= , 2 = 5
19
Point (38, 10 , 2) (50, 50, 2)
distance of (50, 50, 2) from plane P1 is
3 × 50 – 5 × 50 + 2 – 7
d=
9 + 25 + 1
150 – 250 + 2 – 7
d=
35
105
d=
35
d = 3 35
d2 = 315
83. Let α be the area of the larger region bounded by the curve y 2 = 8x and the lines y = x and x = 2,
which lies in the first quadrant. Then the value of 3α is equal to
Sol. 22
8
8
2
= 2 2·2 x 3/ 2 – x
3 2
= 4 2 [8 × 2 2 –2 2 ] – 30
3
28 × 4
= – 30
3
112
= – 30
3
22
=
3
3 = 22
n3 ((2n)!)+(2n−1)(n!) b 1
84. Let ∑∞
n=0 = ae + e + c , where a, b, c ∈ ℤ and e = ∑∞ 2
n=0 n! Then a − b + c is
(n!)((2n)!)
equal to
Sol. 26
n 3 ((2n)!) + (2n – 1)n!
Let
n 0 (n!)((2n)!)
n 3 (2n)! (2n – 1)n!
=
n0 n!(2n)!
+
n!(2n)!
= S1 + S2
n 3 (2n)! n3 n2
Let S1 =
n0 n!(2n)!
= =
n0 n!
(n – 1)!
n1
n2 – 1 + 1
=
n1 (n – 1)!
(n + 1) 1
= + (n – 1)!
n2 (n – 2)! n1
(n 2) 3 1
n 2 (n 2)! n 1 (n 1)!
1 1 1
3
n 3 (n 3)! n 2 (n 2)! n 1 (n 1)!
S1 e 3e e 5e
(2n 1)n!
S2
n 0 n!(2n)!
2n 1
n 0 (2n)!
1 1
n 1 (2n 1)! n 0 (2n)!
= 1 1 1 1 1 ....
1! 2! 3! 4!
= – e–1
1 b
S1 S2 5e ae c
e e
Compare both side
a = 5, b = –1, c = 0
a2 – b + c = 25 + 1 + 0 = 26
85. If the equation of the plane passing through the point (1,1,2) and perpendicular to the line x − 3y +
2z − 1 = 0 = 4x − y + z is Ax + By + Cz = 1, then 140(C − B + A) is equal to
Sol. 15
give line is x – 3y + 2z – 1 = 0 = 4x – y + z
i j k
Direction of line a 1 3 2 = i(1) j(7) k(11)
4 1 1
a 1, 7, 11
Line is r to the plane then direction of line is parallel to normal of plane.
n 1, 7, 11
Equation of plane is
1(x 1) 7(y 1) 11(z 2) 0
x 7y 11z 1 7 22 0
x 7y 11z 28
1 7 11
x y z 1
28 28 28
1 7 11
A , B ,C
28 28 28
11 7 1
140(C B A) 140
28 28 28
140 3
= 15
28
86. Number of 4-digit numbers (the repeation of digits is allowed) which are made using the digits 1, 2, 3
and 5 , and are divisible by 15 , is equal to
Sol. 21
5
Last digit must be 5 and sum of digits is divisible by 3 for divisible by 15
Remaining 3 digits Arrange
(1, 1, 2) 3!
3
2
(1, 3, 3) 3!
3
2
(1, 5, 1) 3!
3
2
(2, 2, 3) 3!
3
2
(2, 3, 5) 3! = 6
(3, 5, 5) 3!
3
2
Total numbers = 21
3x+2 −3
87. Let f 1 (x) = 2x+3 , x ∈ 𝐑 − { 2 }
For n ≥ 2, define f n (x) = f 1 of f n−1 (x)
ax+b
If f 5 (x) = bx+a , gcd(a, b) = 1, then a + b is equal to
Sol. 3125
f1(x) = 3x 2 , x R 3
2x 3 2
3x 2
f 2 (x) f 1 0 f 1 (x) f 1
2x 3
3x 2)
3 2
2x 3)
3x 2
2 3
2x 3
9x 6 4x 6
6x 4 6x 9
13x 12
f 2 (x)
12x 13
f 3 (x) f 1 o f 2 (x)
13x 12
f1
12x 13
13x 12
3 2
12x 13
13x 12
2 3
12x 13
39x 36 24x 26
26x 24 36x 39
63x 62
f 3 (x)
62x 63
63x 62
f 4 (x) f 1
62x 63
63x 62
3 2
62x 63
63x 62
2 2
62x 63
313x 312
f 4 (x)
312x 313
313x 312
f 5 (x) f 1
312x 313
313x 312
3 2
312x 313
313x 312
2 3
312x 313
1563x 1562
f 5 (x)
1562x 1563
a 1563,b 1562
a b 3125
88. The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted
and a and b are respectively mean and variance of remaining 6 observation, then a + 3b − 5 is equal
to
Sol. 37
7
x
i 1
i
Mean of 7 observations =
7
7
x
i 1
i 7 8 56
x i2
Variance = (x) 2
n
x i2 7(16 64) 560
If 14 is removed then
7
x i 14
Mean = a i 1
6a 56 14
6
a 7
7
x 2
i (14)2
Variance = b i 1
49
6
6b = 560 – 196 – 294
6b = 70
3b = 35
a + 3b – 5 = 7 + 35 – 5 = 37
89. Let S = {1,2,3,4,5,6}. Then the number of one-one functions f: S → P(S), where P(S) denote the
power set of S, such that f(n) ⊂ f(m) where n < m is
Sol. 3240
Case – I
f(6) = S i.e. 1 option
f(5) = any 5 element subset A of S i.e. 6 C5 6 options
f(4) = any 4 element subset B of A i.e. 5 C 4 5 options
f(3) = any 3 element subset C of B i.e. 4 C3 4 options
f(2) = any 2 element subset D of C i.e. 3 C 2 3 options
f(1) = any 1 element subset E of D or empty subset i.e. 3 options
Total function = 6×5×4×3×2×3=1080
Case – II
f(6) = S
f(5) = any 4 element subset A of S i.e. 6 C 4 15 options
f(4) = any 3 element subset B of A i.e. 4 C3 4 options
f(3) = any 2 element subset C of B i.e. 3 C 2 2 options
f(2) = any 1 element subset D of C i.e. 2 C1 2 options
f(1) = empty subset i.e. 1 options
Total function = 15×4×3×2×1=360
Case – III
f(6) = S
f(5) = any 5 element subset A of S i.e. 6 C5 6 options
f(4) = any 3 element subset B of A i.e. 5 C3 10 options
f(3) = any 2 element subset C of B i.e. 3 C 2 3 options
f(2) = any 1 element subset D of C i.e. 2 C1 2 options
f(1) = empty subset i.e. 1 options
Total function = 6×10×3×2×1=360
Case – IV
f(6) = S
f(5) = any 5 element subset A of S i.e. 6 C5 6 options
f(4) = any 4 element subset B of A i.e. 5 C 4 5 options
f(3) = any 2 element subset C of B i.e. 4 C 2 6 options
f(2) = any 1 element subset D of C i.e. 2 C1 2 options
f(1) = empty subset i.e. 1 options
Total function = 6×5×6×2×1=360
Case – V
f(6) = S
f(5) = any 5 element subset A of S i.e. 6 C5 6 options
f(4) = any 4 element subset B of A i.e. 5 C 4 5 options
f(3) = any 3 element subset C of B i.e. 4 C3 4 options
f(2) = any 1 element subset D of C i.e. 3 C1 3 options
f(1) = empty subset i.e. 1 options
Total function = 6×5×4×3×1=360
Case – VI
f(6) = any 5 element subset A of S i.e. 6 C5 6 options
f(5) = any 4 element subset B of A i.e. 5 C 4 5 options
f(4) = any 3 element subset C of B i.e. 4 C3 4 options
f(3) = any 2 element subset D of C i.e. 3 C 2 3 options
f(2) = any 1 element subset E of D i.e. 2 C1 2 options
f(1) = empty subset i.e. 1 options
Total function = 6×5×4×3×2×1=720
48 x t3
90. lim ∫0 dt is equal to
x 0 x4 t6 +1
Sol. 12
0
x
48 t 3
lim
x 0 x 4
0
6
form
t 1 0
Using L Hopital Rule
x3
48
lim x6 1
x 0 4x 3
48
lim
x 0 4(x 6 1)
48
4
= 12