0 ratings0% found this document useful (0 votes) 35 views11 pagesChapter 5
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
DERIVATIVES OF |
EXPONENTIAL & '
TRIGONOMETRIC
FUNCTIONSmcvau Name:
5.1 Derivati Expon ions, y:
~>) RECALL: Exponential Functions: forction func}on
‘The exponential function isdefinedas: y=" > whereb>Obe1
cee
The x-axis (y = 0) is a horizontal asymptote. or'
Poet
Asspecial kind of exponential function uses “e” as the base, often referred to as Euler's number. This
number shows up various times in mathematical calculations. The number ¢ is defined by:
j=2_ 2+ 4/423
lim { at
e
Just as exponential functions have logarithmic functions as their inverse, the function y=e" has
y=Inx as its inverse. ‘This function is called the natural logarithm function.
Inverse CF g-c™ iD ye Ink
y
seeeeThe det
ive of the exponential function f|x|=e" is flvi=e"_
gi=eh) GD
a fixie! f'(x)
Using the chain rule: 4=¢ *
Example: Differentiate:
@HOMEFUN: Pg. 232 # 2ef, 3df, 4c, 7, 11¢, 13Name: =
.2 The Derivati he ral mnential Function, y=b"
‘The derivative of an exponential function f|x|=b" is f'\x|=In\b)b"
Example 1: Differentiate.
a) fix|=3* b) fixi=x?2"
Using the chain rule for f|x|=b"™":
fixi=g'(x)b?* nb
Example
a) fi
Differentiate.
b) gix=8""
Example 3: Find the equation of the tangent line to the graph of f/x)/=2x"(2") at
© HOMEFUN: Pg. 240 #1- 3,5, 7abMcvau Name:
er: i ion, y=b*
~The derivative of an exponential function f|x|=b* Gin=nioe>
Example 1: _ Differentiate.
a) fix|=3" b) fixi=x?2" ©) gixi=(4*+x*?
$00) = Inale) P10) 22"4 X* Ine(2a)_-gD=% Crex<
(aac eax?)
Using the chain rule for f| x|= 6?" aan
(raceiawne) ce POd= Coo gos
Example 2; Differentiate.
a) fixina" b) gix|=8"""
Pry ny C47*"’) (2) go= tne godoaied
= o(q>") (ind) = 20-8 ng,
Example 3: Find the equation of the tangent line to the graph of f|x|=2x°(2") at x=1.
_ eca> 2003 2")
- aay 22 (224
#0) = Gx? (2x7) +2x2(19 (2) (sx?)
= Gna(248) 6x5 (In2) (23)
cr = Gxt) [+17 (in2)]
CD Let (indy)
pY.= Om (x-X)
Y-H™ 2p. 32 K-22 ,
G= 26,42 xy -{6%.—_O {Ke ea oF He aeangrere VE -
© HOMEFUN: Pg, 240 # 1- 3,5, 7abcvau 4 o* Name:
5.3 Optimization Problems Involving Exponential Functions
RECALL: The steps for solving an optimization problem from Unit 3:
1, Read the question carefully and draw a diagram, if appropriate.
2. Determine the equation which is to be maximized or minimized. Substitute into the equation
to ensure that there is only 1 variable, then take the derivative.
3. Find the max/min value by setting the derivative equal to zero.
4. Write a concluding statement.
Example 1: ‘number, N, of bacteria in a culture at ime, t is
$000[30.r62 Find the largest number of bacteria inthe culture during the
interval 0<¢<50, where tis measured in hours.
N\
N(D= 000+ 1000be
N'()* Zecee Ys + 20004 7%
Fr
G@)
G+ 2woee = -leote
@=\o0e *B (e-t)
o= (10-4)
£226
Noe T4, 715 —— 1 He rex H OP Wnctei rer
NCQ) = QD Seo ine eottore WM beta
NEG= 6B, 1%
© HOMEFUN: Pg. 245 # 4a,5,6Mcvau Name:
5.4 The Derivatives of y=sinx and _y=cosx
Derivative rules for sine and cosine functions:
flxissinx > f\x}=cosx flx\=cosx > f|x)=-sinx
g|x\=sinf (x) > glx)=é g\x\=cosf(x)g'[xl=¢
Example 1: Differentiate.
a) flx/=x°sinx b) fixl=e“cosx
Pi) 2x? (@24) 132 Sax. PIL) =-€ “Bin x + coon (“De ™
=At(KeaeX + SSI») =-e*( singe eo>5)
©) gxissinx® 4) f[x/=cosle") ~
ginzws 0) FD = Caine (€**) )(e* (29)
= 2x woo ~? F>2x€** (sine*')
°) nle=cs(] 9 fide
n= Coo (x4) pC) = CXSiN x — Crcenx
Ole tee Gee) De
h (= 255 =) =_€* (one ws)
: sn
8) fixi=sin(e*) h) fix}=cosé
#1L9- > exe") $00) kn (510 X)] Cos x
=e*eppe*
i) flx)=cos*x
F(X)=(Co> x) 4
$1) 24 (eo)? Csinx)
= -4 omar Cod 2X
© HOMEFUN: Pg. 256 # 1, 2, 3ce, 4b, 5, 6, 11, 12cvau Name:
5.5 The Derivative of y=tanx
Derivative Rule for Tangent functions:
fix|=tanx > f'|x\=sec’x
f[x\=tan g(x) > fix\=sec*g(x)* g'(x)
Example 1: Differentiate.
a) fixi=x’tanx
b) flx)=tanyx741
Fn) xt kann +x? Sce*x
er(xy- vec Ke 1 A 1) He x)
0) 2 Cece)
Nxt et
Example 2: Determine the equation for the tangent line of the function y=tan -|@ = 90S number /natoral
Ly 22.718
LE eOd=v*, Kne PU) b* 1b
We PA)=0" *Inb+ g@)
lim b&-{ = 1nb
hao n
loner diPProntiakiog @
function hor \Oselve> aN
ExpMEMal FLoction, Use
(ued, Sunn, ChPR, product
A Crain (WED Wren
necese tu
opkontirg= acrerMINiNg, Varues
_ lop jndependenr vewiaie , So
Hot the wowe> ¢f te.
FUNTION MEAeD We sstuanon
(EN LG MO CK MaxIITEA
DERIVATIVES - EXPONENTIAL _*
NC FUNCTIONS
|
# Jednnique? Weed to. epromnmee
aN Exponenticd Fanenon mockel
ace phe same Ob Hee used
fo Opremice PAYPOMI AL
faxonat functions. -
1 underatand — auanie>, —
O varieine For Gvannry.
2, delermine domain
3, algonWamn Foc ExONE
VOWED “> MO 4 MN. GN dst
4, Step D Veoulk For anower.
5. canes
SSDS
* A029 - Gos x @ AIGA. -s0
ax ax
+ yz ain 9H), then BF = aps MP
+ y= 00 600, ton BE = an FLVEO
“laren ciPPreNAKING G FeNction
wai Ponctione , vse Chain es
gam, CNA, Quotrent when necledt
= ddan X) . sect x
ax ©
* Fe Gran POD) = sec* POD* FOO,
“Hig dentties Can be Weck to
corte 4 EXpteoaon ce an
@piuilenr Exp drPrenvate.
somonine? new Foo a
(camer to wore1 pe seem
2 an
7 5 2 (xa) ak
+ 2 De WS
4. yo pkang 2-9
Be -a9ee%"-~-X) A (7%)
ee /
SCae Hn qth
=4Lnd (3)4 =
unxt
ae eee
Po dg. syrya 2 2x-ln 2
ox ey
Be 3- Bink?
Se
~ \=2 nx
Bet
2 rt inxt
But
=te2x eoo e*
G gnjre™-%
D (nj) = e%
£*%2 OD
no nin
7 4 Sx (on
A a dx Corx TEsN
@xew -m
=O ay M EL 2 ron
B. Fly\~ =
~ x
) | x12%eIne- 2%
PW oe
ROS. ling- 2% =®
KLIN) ew
KinZ=4
X= Far
Ble Ye tan *
c
dy > 2 tan(e”) se (ASE
= rehtan(e%) (2%)
10. Pln)=e2* 9
D erm)
ae
Le ™* rteMCV4U
UNIT 5: DERIVATIVES OF EXPONENTIAL AND.
TRIGONOMETRIC FUNCTIONS
DAY TOPIC SECTION HOMEWORK
| Derivatives of Exponential 51 | Pa 282 # 2ef, 3df, 4c, 7, Ie,
Functions, y=e" 13
The Derivative of the
2. | General Exponential 5.2 | Pg. 240#1-3,5, 7ab
Function, y=b*
Optimization Problems
3. | Involving Exponential 53 | Pg, 245 #40,5,6
Functions
The Derivatives of y=sinx Pg, 256 # 1, 2, 3ce, 4b, 5, 6, 11,
4 }e 54
| * | and y=cosx 12
5 | The Derivative of y=tanx 55 fe Be coe Oe oe
| 6
Pg, 263 - 265 # 1-23
REVIEW Pg, 266 #1-9
7
8 | UNIT TEST #5