DP1 Mock – Analysis and Approaches
Mathematics: Standard Level
90 minutes
                                         Candidate Name: ____________________________________
INSTRUCTIONS TO CANDIDATES
            Write your session number in the boxes above.
            Do not open this examination paper until instructed to do so.
            You are permitted access to any calculator for this paper.
            Unless otherwise stated in the question, all numerical answers should be given exactly
             or correct to three significant figures.
            A clean copy of the formula booklet is required for this paper.
            Section A: Write your answers on the question paper
            Section B: Write your answers on the separate lined paper
            The maximum mark for this examination paper is [80 marks].
Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Where an answer is incorrect, some marks may be given for
a correct method, provided this is shown by written working. You are therefore advised to show all
working.
Academic Honesty Honour Pledge:
I affirm that this work is entirely my own and that I have not used any dishonest means to answer
this examination, nor have I received or given any unauthorised help on this exam.
Signed: ………………………………………………
*Parent signature: ……………………………………
*Where a parent is available to sign
Section A
Question 1 [4 marks]
The function 𝑔 is defined by 𝑔(𝑥) = e   , where 𝑥 ∈ ℝ.
Find 𝑔′(−1).                                             [4 marks]
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ……………………………………………………………………………….
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ………………………………………………………………………………
 ……………………………………………………………….………………
 ………………………………………………………………………………
 …….…………………………………………………………………………
 ……………………………………………………………………….………
 ………………………………………………………………………………
 …………….…………………………………………………………………
 ……………………………………………………………………….………
 ………………………………………………………………………………
 …………….…………………………………………………………………
Question 2 [Maximum 6]
In an arithmetic sequence, 𝑢 = 5 and 𝑢 = 11.
   a) Find the common difference.              [2 marks]
   b) Find the first term.                     [2 marks]
   c) Find the sum of the first 20 terms.      [2 marks]
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ……………………………………………………………………………….
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ………………………………………………………………………………
 ……………………………………………………………….………………
 ………………………………………………………………………………
 …….…………………………………………………………………………
 ……………………………………………………………………….………
 ………………………………………………………………………………
 …………….…………………………………………………………………
 ………………………………………………………………………………
Question 3 [Maximum 5]
The following diagram shows triangle ABC, with AB = 6 and AC = 8.
   a) Given that cos 𝐴 = find the value of sin 𝐴.                   [3 marks]
   b) Find the area of triangle ABC.                                [2 marks]
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ……………………………………………………………………………….
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ………………………………………………………………………………
 ……………………………………………………………….………………
 ………………………………………………………………………………
 …….…………………………………………………………………………
 ……………………………………………………………………….………
 ………………………………………………………………………………
 …………….………………………………………………………………
Question 4 [Maximum 5]
  a) Show that (2𝑛 − 1) + (2𝑛 + 1) = 8𝑛 + 2, where 𝑛 ∈ ℤ.                        [2 marks]
  b) Hence, or otherwise, prove that the sum of the squares of any two consecutive odd integers
     is even.                                                                     [3 marks]
………………………………………………………………………………
…………………………………………………….…………………………
………………………………………………………………………………
………………………….……………………………………………………
……………………………………………………………………………….
………………………………………………………………………………
…………………………………………………….…………………………
………………………………………………………………………………
………………………….……………………………………………………
………………………………………………………………………………
……………………………………………………………….………………
………………………………………………………………………………
…….…………………………………………………………………………
……………………………………………………………………….………
………………………………………………………………………………
…………….…………………………………………………………………
………………………………………………………………………………
………………………………………………………………………………
….……………………………………………………………………………
……………………….………………………………………………………
Question 5 [Maximum 6]
Let 𝑓(𝑥) = −𝑥 + 4𝑥 + 5 and 𝑔(𝑥) = −𝑓(𝑥) + 𝑘.
Find the values of 𝑘 so that 𝑔(𝑥) = 0 has no real roots.   [6 marks]
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ……………………………………………………………………………….
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ………………………………………………………………………………
 ……………………………………………………………….………………
 ………………………………………………………………………………
 …….…………………………………………………………………………
 ………………………………………………………………………………
 ………………………………………………………………………….……
 ………………………………………………………………………………
 ……………….………………………………………………………………
 ……………………………………………………………………………….
Question 6 [Maximum 5]
Consider the function 𝑓(𝑥) = 𝑒    − 0.5, for −2 ≤ 𝑥 ≤ 2.
   a) Find the values of 𝑥 for which 𝑓(𝑥) = 0.             [2 marks]
   b) Sketch the graph of 𝑓 on the following grid.         [3 marks]
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ……………………………………………………………………………….
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
Question 7 [Maximum 6]
The following diagram shows part of a circle with centre O and radius 4 cm.
Chord AB has a length of 5 cm and AÔB = θ.
   a) Find the value of θ, giving your answer in radians.                     [3 marks]
   b) Find the area of the shaded region.                                     [3 marks]
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 ……………………………………………………………………………….
 ………………………………………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
 …………………………………………………….…………………………
 ………………………………………………………………………………
 ………………………….……………………………………………………
Section B
Question 8 [Maximum 14]
The following diagram shows the graph of 𝑦 = −1 − √𝑥 + 3 for 𝑥 ≥ −3.
   a) Describe a sequence of transformations that transforms the graph of 𝑦 = √𝑥 for 𝑥 ≥
      0 to the graph of 𝑦 = −1 − √𝑥 + 3 for 𝑥 ≥ −3.                               [3 marks]
A function 𝑓 is defined by 𝑓(𝑥) = −1 − √𝑥 + 3 for 𝑥 ≥ −3.
   b) State the range of 𝑓.                                                         [1 mark]
   c) Find an expression for 𝑓   (𝑥), stating its domain.                           [5 marks]
   d) Find the coordinates of the point(s) where the graphs of 𝑦 = 𝑓(𝑥) and 𝑦 = 𝑓    (𝑥) intersect.
                                                                                    [5 marks]
Question 9 [15 marks]
Consider the function 𝑓(𝑥) = 𝑎 where 𝑥, 𝑎 ∈ ℝ and 𝑥 > 0, 𝑎 > 1.
The graph of 𝑓 contains the point    ,4 .
   a) Show that 𝑎 = 8.                                                     [2 marks]
   b) Write down an expression for 𝑓        (𝑥).                           [1 mark]
   c) Find the value of 𝑓    √32 .                                         [3 marks]
Consider the arithmetic sequence log 27 , log 𝑝 , log 𝑞 , log 125 , where 𝑝 > 1 and 𝑞 > 1.
   d) Show that 27, 𝑝, 𝑞 and 125 are four consecutive terms in a geometric sequence.
                                                                           [4 marks]
   e) Find the value of 𝑝 and the value of 𝑞.                              [5 marks]
Question 10 [Maximum 14]
Let 𝑓(𝑥) = 𝑚𝑥 − 2𝑚𝑥, where 𝑥 ∈ ℝ and 𝑚 ∈ ℝ. The line 𝑦 = 𝑚𝑥 − 9 meets the graph of 𝑓 at
exactly one point.
   a) Show that 𝑚 = 4.                                                             [6 marks]
The function 𝑓 can be expressed in the form 𝑓(𝑥) = 4(𝑥 − 𝑝)(𝑥 − 𝑞), where 𝑝, 𝑞 ∈ ℝ.
   b) Find the value of 𝑝 and the value of 𝑞.                                      [2 marks]
The function 𝑓 can also be expressed in the form 𝑓(𝑥) = 4(𝑥 − ℎ) + 𝑘, where ℎ, 𝑘 ∈ ℝ.
   c) Find the value of ℎ and the value of 𝑘.                                      [3 marks]
   d) Hence find the values of 𝑥 where the graph of 𝑓 is both negative and increasing.
                                                                                    [3 marks]