Solutions
Solutions
CHEMISTRY
31) 2 32) 3 33) 4 34) 4 35) 2
36) 3 37) 1 38) 4 39) 1 40) 2
41) 2 42) 4 43) 1 44) 1 45) 4
46) 1 47) 2 48) 4 49) 2 50) 3
51) 6 52) 2 53) 3 54) 20 55) 3
56) 4 57) 356 58) 4 59) 2 60) 5
MATHEMATICS
61) 2 62) 3 63) 3 64) 1 65) 3
66) 1 67) 3 68) 2 69) 4 70) 1
71) 1 72) 4 73) 4 74) 2 75) 2
76) 1 77) 1 78) 4 79) 2 80) 3
81) 1 82) 167 83) 84 84) 5 85) 7
86) 2 87) 17 88) 7 89) 27 90) 7
SOLUTIONS
PHYSICS
1. 60 . Solid angle subtended by BCD is
2 1 cos
Solid angle subtended by ABDE is
ABCDE BCD 2
q q
Hence, flux through ABDE is
0 4 4 0
2. 4T
The pressure due to surface tension
R
2
The pressure due to electrostatic forces
2 0
Just before the bubble bursts.
4T 2 8T
or R 20
R 2 0
3. hc
K 0 i
4hc
and K ' 0 ii
3
4hc hc
From Eq/s i & ii , we get K ' K
3
hc
K ' K
3
hc K
But from Eq. i K 0 K ' K 0
3 3
4K 0 4K
K ' K Or K '
3 3 3
4. D
y9 position of 9th bright fringe 9
d
1 D 3 D
y 2 position of 2nd dark fringe = 2
2 d 2 d
D 3 3
y9 y 2 7.5 mm 9 7.5 10
d 2
2 0.5 10
3
7.5 103 2
15 100 10
2
75 5 1044 50 108 m
o
5000A
15
5. Since there is no parallax, it means that both images (By plane mirror and convex
mirror) coinciding each other.
1 g 1
Now, 1 g Or 1 g sin ic
sin ic 1 sin i c
3
1.5 sin60 1.5 1.5 0.8666 1.299 1.3
2
9. XL XC ;
R
2 2
Z
R 10, X L L 2000 5 103 10
1 1
XC 10 i.e Z 10
C 2000 50 106
V 20
Maximum current i 0 0 2A
Z 10
2
Hence i rms 1.4A And Vrms 4 1.41 5.64V
2
10. To free electron from the metal surface minimum energy required is equal to the work
function of that metal. So Assertion A, is correct
h W0 K.E max If h W0 K.E max 0
Hence reason R, is correct, But R is not the correct explanation of A.
11. Rate of decay of current between t 5 ms to 6 ms
di 5
slope of the line BC 3
5 103 A / s
dt 1 10
di
Hence induced emf L 4.6 5 103 23 103 V
dt
12. b b
I Iv b
Induced emf Bvdx 0 vdx induced emf, E 0 ln
0 a
2x 2 a
E2
power dissipated
R
2
E2 0 Iv b 1
Also, power F.V F F ln
vR 2 a vR
13. X X C X L and average power in ac circuit can be zero.
14.
5 25 10 2 35 35
Now, Vx Vy , Ceq F
5 25 10 2 6 6
17. When energy on both is same, means energy on capacitor is half of its maximum
q 2 1 Q2 Q Q 1
energy. q Q cos t cos t
2C 2 2C 2 2 2
t t LC
4 4 4
18. r1 A1
1/3
3 27
1/3
27 27
r A
1/3
A 125
r2 A 2 5 A 125 A
Number of nuclei in atom X A 52 125 52 73 .
19. For lens u 30cm,f 20cm, hence by using
1 1 1 1 1 1
v 60cm
f v u 20 v 30
The final image will coincide the object, if light ray falls normally on convex mirror
as shown. From figure, it could be seen clearly that separation between lens and
mirror is 60 – 10 = 50 cm.
5
Vx VP 3 7.5V i
2
5
Vx VQ 2 5V ii
2
On solving i & ii VP VQ 2.5volt; VQ VP .
21. Using dV E.dr
V
V E. r cos E
r cos
20 10 10 102
E 200V / m
10 102 cos120 10 10 sin 30 1 / 2
22. 2
Number of atoms in 2 kg fuel 6.02 1026 5.12 1024
235
Fission rate = number of atoms fissioned in one second
5.12 1024
1.975 1018 s 1
30 24 60 60
Each fission gives 185 MeV. Hence, energy obtained in one second,
E 185 1.975 1018 MeV s 1 142 1.975 1018 1.6 1019 106 J s 1 44.87MW
23.
2 4 1012 4
Fnet 2 F31 cos 2 0.46N
40 0.5
2
5
24. Total range is doubled, i.e., 4Ig
Now shunt required is
CHEMISTRY
31. Conceptual
32. t1/2 1 a 2 n 1 ; 120 4 102 n 1 ;n 2
t a 240 8 102
1/2 2 1
33. Assertion is false but Reason is true. The enthalpy of chemisorption is of the order
of 40 400kJmol1 while for physical adsorption it is of the order of
20 40 kJmol1 .
34. 3 2d 2 4.52 0
For bcc, d a or a 5.219 A 522 pm
2 3 1.732
zM 2 39
0.91g / cm3 910kg m 3
a N A 10 30
522 6.023 10 10
3 3 23 30
RT Zn
2
E cell E 0
cell n
nF Cu 2
Zn 2
Greater the factor
, less is the EMF
Cu
2
Hence E1 E 2
36. As colloidal particles move towards anode so these particles are negatively charged
and coagulated by cations of electrolyte.
According to Hardy Schulze rule,
Coagulation power charge of ion
Order of coagulation power is Al3 Ba 2 Na
37. Oxide in which central atom has higher charge and more electronegativity is more
acidic, i.e.
N 2O5 N 2O 4 P2O5 As 2O3
38. 2Ag 2O s 4Ag s O2 g
2Pb3O4 s 6PbO s O2 g
2PbO 2 s 2PbO s O 2 g
39. Metal halides with higher oxidation state are more covalent than the one in lower
oxidation state.
40. XeF4 is planar
41. Conceptual
42. Conceptual
Sec: Sr.Super60_NUCLEUS&STERLING_BT Page 8
SRI CHAITANYA IIT ACADEMY, INDIA 03‐01‐23_ Sr.S60_NUCLEUS&STERLING_BT _ Jee‐Main_GTM‐01_KEY &SOL’S
43. Conceptual
44. Alkyl iodides are often prepared by the reaction of alkyl chlorides/bromides with
NaI in dry acetone. This reaction is known as Finkelstein reaction.
R X NaI R I NaX
X Cl,Br
NaCl or NaBr thus formed is precipitated in dry acetone.
It facilitates the forward reaction according to lechatelier’s principle. The synthesis
of alkyl fluorides is best accomplished by heating an alkyl chloride/ bromide in the
presence of a metallic fluoride such as AgF, Hg 2 F2 ,CoF2 orSbF3 . The reaction is
termed as Swarts reaction.
H 3C Br AgF H 3C F AgBr
45. Conceptual
46. OH
3 2 1
H3C COOH
6 4
5 CH3
47. i) Gives Propanoic acid
ii) Methyl isocyanide on hydrolysis give methyl amine
48. For the preparation of Me3CNH 2 , the required alkylhalide is Me3CX which will
react with potassium phthalmide, a strong base, to form alkene rather than
substituted product. For preparing C6 H 5 NH 2 ,C6 H 5Cl will be starting halide in
which Cl is non-reactive.
49. Nylon-66 is an example of first synthetic fibres produced from the simple
molecules. It is prepared by condensation polymerization of adipic acid and
hexamethylene diamine.
50. Conceptual
51. Convulsion is caused by deficiency of vitamin B6
52. i) 5Fe 2 MnO 4 8H Mn 2 4H 2O 5Fe3
The isomers Cu NH3 2 Cl2 Pt NH3 2 Cl2 does not exist due to both parts being
neutral
57. From Raoult’s law
P P w M 121.8 120.2 15 78
P m W 121.8 m 250
15 78 21.8
Or m 356.2
250 1.6
58. 2, 3, 5, 8
59. COCH3
C6H6
CH3COOH + PCl5 CH3COCl
Anh.AlCl3
(A)
Friedle Craft
reaction
OH OMgBr
H + MgBrC2H5
C2H5 C CH3 C2H5 C CH3
Ether
hydrolysis
(C)
60. Conceptual
MATHEMATICS
61. x x x x
f x x e f x t dt x e
2 t 2 x t
f t dt x e .e f t dt x e
2 x t 2 x
e f t dt
t
0 0 0 0
x
f 1 x 2x e x .e x f x e x e t f t dt 2x f x f x x 2
0
3
x x3
f x x c f 0 0 f x x
2 2
3 3
f 3 9 9 18
62.
tan sin x 1
1 2
c
2
tan 1 sin x 1 cos x
Let, I dx
3 2sin x 1 sin 2 x
Substituting, 1 sin x t cos dx dt
tan 1 t
2
tan 1 t dt
tan 1 t dt
I c
2 t 1 2 t 1 1 t2
2
2
tan sin x 1
1 2
I c
2
63.
2x 3 ydy 1 y2 x 2 y2 y2 1 dx 0
2y dy y2 1 1
1 y 2 2 dx 1 y 2 x x 3
y2
Put u.
1 y2
2y dy du
Then
2
1 y 2 dx dx
1
du u 1 dx
3 Integrating factor e x eln x x
dx x x
1
Solution is u.x 2 dx c x 2 y 2 cx 1 1 y 2
x
64. 2n 3 1
tn .
n n 1 3n
Therefore,
2n 3 1 2 n 1 1 1 2 1 1
tn . n .
n n 1 3 n n 1 3 n n n 1 3n
n
2 n 1 n 1 2 1 1 1
n n n 1 3 n n n 1 3n
n
3 1 1 1 1 1 1
tn . n . n 1 .
n n 1 3 n 3 n 1 3n
1 1
Sn t n 1 . n
n 1 n 1 3
65. The equation of a straight line which is at a unit distance from the origin is
x cos ysin 1 1
Differentiating w.r.t. x
dy
cos sin 0 2
dx
On eliminating from (1) and (2), we get
dy
cos ec y x 1
dx
dy
y x cos ec 3
dx
dy
Also, slope cot {using (2)}
dx
2
dy
cos ec 1 cot 1 4
2
dx
xdy
2
dy 2
From (3) and (4), we have y 1
dx dx
66. Since x 2 y 2 4y 5 0
Centre is C1 0, 2 and Radius r1 4 5 3
Let C2 h,k be the centre of the smaller circle and its radius r2 .
Since, C1C 2 4 h 2 k 2 3 r2 4 r2 1
2
But k r2 1
Hence, using equation (1), we have
4 h 2 1 2 16 h 2 9
2
h 7
Since, h > 0
2
y 1 2
2
Hence, required circle is x 7
67. a 2 x 2 ax 1 is positive for all real values of x.
1
Area a 2 x 2 ax 1 dx
0
2
a a 1
3 2
1 2a 2 3a 6
6
1 2 3 a 18
2 a a 6
6 2 16 16
1 39
2
3 3
2 a , which is minimum for a
6 4 8 4
ba
68. 16
b
2 2 a x adx 4 b b xdx
3 a ba
8 16 a b
ab a b ab 1
3 3 2
69.
1 x2 1
2
e x 2x x 3 1
e 2 2x
2 3 x 2
2
3 x2 3 x 2
dx 1
2
e x 2x x 3
2
ex
Hence, 3 x 2
2 3 x2
c
70. The point (–2k, k + 1) is the interior point of the circle and parabola
So 2k k 1 4 0
2 2
4k 2 k 2 2k 1 4 0 5k 2 2k 3 0
k 1 k
3 3
0 k 1, 1
5 5
Now, k 1 4 2k 0
2
k 2 2k 1 8k 0 k 2 10k 1 0
k 5 2 6, 5 2 6 2
So from (1) & (2) k 1, 5 2 6
71. Total formed numbers that begin with a odd digit 5C1. 8 P4 5 8 7 6 5
Total formed numbers that end with a odd digit = 5C1. 8 P4 5 8 7 6 5
Total formed number that begin with an odd digit and also end with an odd digit
5C 2 .2!. 7 P3 5. 4 7 6 5
Thus total formed numbers that begin with an odd digit or end with an odd digits is
equal to
5.7.6.60
Total formed numbers 9 P5 9.8.76.5
Sec: Sr.Super60_NUCLEUS&STERLING_BT Page 13
SRI CHAITANYA IIT ACADEMY, INDIA 03‐01‐23_ Sr.S60_NUCLEUS&STERLING_BT _ Jee‐Main_GTM‐01_KEY &SOL’S
5
Thus, required probability
6
72. If z1 be the new complex number then z1 z 2 2 2
z1 z1 i3 /2 3 3
Also e z1 z.2 cos isin 2 1 i 0 i 2i 2 2 1 i
z z 2 2
73. See figure, the given equation is written as
3
4 , when x 1
arg z 1 i
, when x 1
4
O C
P
Co-ordinates of point P and Q are 4 5cos ,3 5sin and 4 5cos ,3 5sin
= (4 – 3, 3 + 4) and (4 + 3, 3 – 4)
(1, 7) and (7, –1)
75. Let, t 211x
2 11x 3
2
211x.22 211x .2 1
22
t3
4t 2t 2 1
4
t 3 8t 2 16t 4 0
Cubic it t has roots t1 , t 2 , t 3
i.e. t1t 2 t 3 4 211x1.211x 2 .211x3 4
Sec: Sr.Super60_NUCLEUS&STERLING_BT Page 14
SRI CHAITANYA IIT ACADEMY, INDIA 03‐01‐23_ Sr.S60_NUCLEUS&STERLING_BT _ Jee‐Main_GTM‐01_KEY &SOL’S
11 x1 x 2 x 3
2 22
2
11 x1 x 2 x 3 2 x1 x 2 x 3
11
76. Let, a = number of red balls.
b = number of blue balls,
p1 = probability of drawing two red balls
a
C a a 1
ab 2
C2 a b a b 1
C2 b b 1 b
p 2 probability of drawing two blue balls
ab
C2 a b a b 1
p3 probability of drawing one red and one blue ball
a
C1. b C1 2ab
ab
C2 a b a b 1
Given that p1 5p 2 & p3 6p 2
a a 1 5b b 1 and 2ab = 6b (b – 1)
a 6,b 3 Total number of balls = 9
77.
P c
A P A A B
c
P A B c
A B c
P A B
c
1 P A B
4 3
P A P A B 7 28 13
1 P A B 25 25
28
78. Let n consecutive odd integers are
2m + 1, 2m + 3, 2m + 5, ……, 2m + 2n – 1
Given that,
452 212 2m 1 2m 3 2m 5 ....... 2m 2n 1
2mn 1 3 5..... 2n 1 2mn n 2 m 2 2mn n 2 m 2
452 212 m n m 2
2
m n 45&m 21
n 24&m 21
Hence, the numbers are
43, 45, ……, 89
79. We have
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S , , , , , , , , ,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
, , , , ,
1 1 1 1 1 1 1 1 1 1 1 1
n S 16
Sec: Sr.Super60_NUCLEUS&STERLING_BT Page 15
SRI CHAITANYA IIT ACADEMY, INDIA 03‐01‐23_ Sr.S60_NUCLEUS&STERLING_BT _ Jee‐Main_GTM‐01_KEY &SOL’S
Now, number of favorable cases are given by ( 0 , that is either 2or 2 )
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E , , , , , , ,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n E 8 1
Hence probability that the system of equations has a unique solution
n S 16 2
80. Number of ways 9C5 - no.of ways in which she selects 5 from only of two
categories.
9C5 3. 6C5 126 18 108
Alternatively: Number of ways 1 1 3 or 2 2 1 i.e.,
3. 3C1. 3C1. 3C3 3. 3C2 . 3C2 . 3C1 27 81 108 .
81. Let x u 6 ,dx 6u 5du
dx 6u 5du u3
x 3 x u 3 u 2 u 1 du
6
1
6 u 2 u 1 du
u 1
2u 3 3u 2 6u 6ln u 1 e
2 x 3 x 6 x 6ln
3 6 6
x 1 e
a 2,b 3,c 6,d 6 a b c d 1 a b c d 1
82. x 1
x16 x 6
f t dt t .f t dt a 1
2
0 x
8 3
1
1 1 11
For x = 1, f t dt 0 a a
0
8 3 24
Diff. both sides of (1) w. r. t. x we get;
f x 0 x 2f x 2x15 2x 5
1 1
x15 x 5 11 11
2
1 x 2
dx
24
a 2 x13 x11 x 9 x 7 x 5 dx
24
a
0 0
1 1 1 1 1 11 167
2 aa
14 12 10 8 6 24 840
83. Any point on hyperbola xy = 1 (t, 1/t)
Now image of (t, 1/t) by the mirror y = 2x is
x t y 1/ t 2t 1 / t
2
2 1 5
4 3
5x 3t and 5y 4t
t t
Now eliminating t from above two equations we get,
12x 2 12y 2 7xy 25 0
bc 7 12 84
Sec: Sr.Super60_NUCLEUS&STERLING_BT Page 16
SRI CHAITANYA IIT ACADEMY, INDIA 03‐01‐23_ Sr.S60_NUCLEUS&STERLING_BT _ Jee‐Main_GTM‐01_KEY &SOL’S
84.
r 4n
1 .1
lim
n n
2
r/n 3 r 4
r 1
n
4
1
dx
2
0 x 3 x 4
Put, 3 x 4 t
3 1 2
dx dt dx dt
2 x x 3
When x = 0 then t = 4
When x = 4 then t = 10
10 10
2 1 2 1 2 1 1 1
2 dt
34t 3 t4 3 10 4 10
85. 3
4 p
Req.Area x 2 4x 3 dx Pq7
3 q
1
86. 200 C0 C1 ...... n Cn 400
n n
200 2n 400
n 8
8 r r
Tr 1 8C r 4
x 3 a 4 x5
Tr 1 8Cr a r x 2r 6
For this term to be independent of x,
2r 6 0 r 3
T4 8C3a 3 448 56a 3 a 3 8
a2
87. 1 x n r0 Cr x r
n
x 1 x r 0 Cr x r 1
n n
r 1 C 2
2n 3 n 2 . n 1 2n 2 2n 2 n 2 5n 4
n 2 n 1
r 0 r
CHEMISTRY
31) 4 32) 1 33) 2 34) 1 35) 2
36) 3 37) 4 38) 1 39) 1 40) 3
41) 2 42) 3 43) 4 44) 2 45) 2
46) 3 47) 3 48) 3 49) 1 50) 1
51) 5 52) 1 53) 2 54) 8 55) 1
56) 5 57) 9 58) 3 59) 7 60) 5
MATHEMATICS
61) 1 62) 4 63) 2 64) 1 65) 4
66) 1 67) 2 68) 1 69) 3 70) 2
71) 2 72) 2 73) 2 74) 3 75) 4
76) 2 77) 2 78) 3 79) 3 80) 2
81) 3 82) 5 83) 15 84) 2 85) 5
86) 1 87) 13 88) 7 89) 7 90) 31
SOLUTIONS
PHYSICS
1. During Collision Kinetic Energy Is Not Conserved.
2. F 2 Agx
a net 2 x
m m
2
T
3. Work done by the friction on block is 216J
Therefore the work done by the motor is 2 216 J 432 J
4. Conceptual
5. In cae (i) work done by friction is zero, while in case (ii) it is non-zero as it will
forward slip (may be for some time) on BC.
6. du
F
dr r2
3 b2
Eccenricity e 1
a2 5
so, SO = 3m, SA= 2m, SC = 8m
UA 20 J ,U c 5 J
2
rAmV A rc mVc 2V A 8Vc
1 2 1
mv A 20 mvc2 5
2 2
Solving we get V A 4m / s
7. x2
W 2 e kT
x2
As exponents are dimensionless, so, should be dimensionless.
kT
kT ML2T 2
2 2 MT 2
x L
From the dimensional homogeneity, 2 should have dimension of work.
2 2
2 2 2 ML T
2
ML T M 0 LT 0
MT 2
8. vu 1
Using equation, a and S ut at 2
t 2
1 45 675
Distance travelled by car in 15 sec 152 m
2 15 2
Distance travelled by scooter in 15 seconds 30 15 450
distance speed time
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 05‐01‐23_ Sr.Super60_NUCLEUS & ALL_BT_ Jee‐Main_GTM‐02_KEY &SOL’S
Difference between distance travelled by car and scooter in 15 sec, 450-337.5 = 112.5m
Let car catches scooter in time t;
675
45 t 15 30t 337.5 45t 675 30t 15t 337.5
2
t 22.5sec
9. a a
From figure, r G iˆ kˆ
2 2
a a a a a ˆ ˆ
a
2
a
r H ˆj kˆ r H r G ˆj kˆ iˆ kˆ
2 2 2 2 2 2
j i
10.
Net acceleration
dv
dt
a g v2
Let time t required to rise to its zenith (v = 0) so,
0 t
dv
g v2 dt for H max,v 0
v0 0
1
t tan
g 0
v
g
11.
dy
y 4Cx 2 tan 8Cx
dx
At P, tan 8Ca
For steady circular motion
g tan
m 2a cos mg sin
a
g 8aC
2 2 gC
a
12. Ax
Given : Gravitational field, EG ,V 0
2 2 3/2
(x a )
Vx x x
Ax
dV E G .d x Vx V
2 2 3/2
dx
V (x a )
A A
Vx 0
( x 2 a 2 )1/2 ( x 2 a 2 )1/2
p 1 2 1 P
V 2 V 2
2 2 2
16. The thermal resistance is given by
x 4x x 2 x 3x
KA 2 KA KA KA KA
Amount of heat flow per second,
dQ T (T2 T1) KA 1 A(T2 T1) K 1
f
dt 3x 3x 3 x 3
KA
17. Equation of the BC is given by two point straight line equation
P P0 3P0 P0 2P
P P0 0 (V 2V0 )
V 2V0 V0 2V0 V0
using PV = nRT
2 p0V 2
P0V 4 P0V
V0
Temperature, T
1 R
( n 1mole given)
P0 2V dT 4V 5
T 5V , 05 0 V V0
R V0 dV V0 4
P 5V 2 25 25 P0V0
T 0 5 0 V02
R 4 V0 16 8 R
18. From, ideal gas equation PV nRT
25 2
400 103 500 106 n (300) n
3 25
Let n1 & n2 be no. of moles of hydrogen & oxygen respectively
Also, n1 n2 n
m m1 m2 2
Using n
M 2 32 25
m 16
and m1 m2 0.76 gm 2
m1 3
19. Total energy,
2
1 E ' 2a
E m 2a 2 i.e., E a 2 , E ' 4 E.
2 E a
20. Equate torques about centre of mass
21. Surface area of bubble of radius r 4 r 2 .Surface are of bubble of radius
2
2r 4 2r 16 r 2 . Therefore, increases in surface area 16 r 2 4 r 2 12 r 2
.since a bubble has two surface, the total increase in surface are 24 r 2
Energy spent = work done 24 r 2
22. 2mv2 3mv,2 6 3v, v 4m / s
23. MI of plat form 200kg m 2
MI of man mR 2 200kgm 2
For system (plat form + man) by using COAM
50 1 2 1
Ip0 mvR 0 rad / s
200 2
V
Angular velocity of man w.r.t platform 0
R
1 1 2 rad
1rad / sec 2 s
2 2 1rad / sec
Time taken by the man to complete one revolution
24. m1 1kg , m2 2kg , u1 3ms 1, u2 2ms 1
Initial momentum (m 1u1)2 (m2u2 )2 9 16 5kg ms 1
5
If combined velocity is v(m1 m2 )v 5, v ms 1
3
g 9.8
uR 200 20m / s N 9
2H 2 490
29. Let a =edge of the block 3cm x height of the block above the water surface in
floating condition.
From F.B.D., we have
a3 g wa 2 (a x ) g ...(1)
a3 g W kx wa3 g ...(2)
From eqn. (1), we get x a 1 3 1 0.8 0.6 cm
w
From eqn. (2). we get
W kx w a 3 g 50 0.006 (1000 800) (3 102 )3 10
0.354 (20) Newtons
30. Fl
l =1
Ay
CHEMISTRY
31. Eq. H 2O2 eq. KMnO4
50 N 10 0.2
0.2 1 N 1
N ;M
5 25 2 50
S 1
M S 34 0.68 g / L
M .wt. 50
32. Pb PV
At high P,Z Z 1
RT RT
PV vs P, slope =b, intercept =RT
Vander waals Constant “a” values are negligible & neglected (for H 2 & He ) in
comparison with a values of other gases.
33. Kp Kp 1
log log RT 0 ( RT )
Kc KC
ng 1
34. Before mixing,
Ba 2 4 103 M SO 2 6 104 M
4
after mixing,
4 103 100 M 2 400
Br 2 103 M
6 104 300 M 2 400
SO 2 4.5 104 M
4
IP Ba 2 SO42 4.5 107 ; Ksp I .P.
35. E1 Z12 n22
E2 Z 22 n12
36. More the magnitude of negative charge, more the size
37. With non-metals like Cl2 , Br2 , I 2 , P4 , S8 NaOH gives disproportionated products.
38. BeSO4 to BaSO4 : Solubility decreases
BeCO3 to BaCO3 : Thermal stability increases
BeF2 MgF2 CaF2 SrF2 : Solubility in water.
39. ( Be; A)( Li; Mg )( B, Si) Diagonally related, in properties. Pairs
40. Conceptual
42. 2-ethyl-3-methylpentanal
43. a) lone pair of electrons is not involved in resonance
b) +I basic nature
c) Cyclic compounds are more basic then acylic camp
44.
R C O octet filled structure. where as R C O has “C” with 6e .
45. CH3
Ph C CH 2 D
OH
46.
It is E2 elimination and antiperiplanarity is required
Hence X is
47. NaNH 2 is a stronger base than KOH . Intermediate vinyl Bromide needs stronger
Base NaNH 2 for better yield.
48.
49. Phenol (OH) group is strongly activating and electron releasing group, so it prefers
elctrophilic substitution.
MATHEMATICS
61. 1 x
Replacing x by in the equation
1 x
f x f 11 xx x3 ....(i)
2
2 3
1 x 1 x
We have f f x ...(ii)
1 x 1 x
Solving (i) and (ii), we have
2
x3 f x 1 x 3
3 3
1 x 2 1 x
f x f x x
f x
2
1 x x 6
1 x 1 x
1 4
f 2 4
3 3
f 2 43 43 43 2 23
62. f x x b 2c 2 b 2 min f x 2c 2 b 2
2
e
i A B C
1
where
e
i A C
e
i A B
eiA
1 e
i B C
e
i A B
eiB
e
i B C
e
i A C
eiC
Using C1 C1 C2 , we get
0 1 1
1 1 0 1 1 1 2 2 4
2 1 1
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 11
SRI CHAITANYA IIT ACADEMY, INDIA 05‐01‐23_ Sr.Super60_NUCLEUS & ALL_BT_ Jee‐Main_GTM‐02_KEY &SOL’S
Therefore , 1 1 4
64.
1/3
f ( x T ) 1 1 3 f ( x) 3( f ( x)) 2 ( f ( x))3
1 1 f ( x)
3 1/3
f x T f ( x) 2 …(i)
f ( x T ) f ( x) 2 …(ii)
f ( x 2T ) f ( x T ) 2
from (ii)-(i) we get
f x 2T f ( x) 0
f ( x 2T ) f ( x)
Period of f ( x) is 2T
Assertion (A) & Reason (R) both are true & Reason (R) is correct explanation of
Assertion (A).
65. 1 1 2 1 1
Let 1 1 2 1 C1 C1 C2 C3
1 1 2 1
1 1 1 1 0 0
2 1 1 1 1 0
1 1 1 0 1
2
using C2 C2 C1and C3 C2 C1 2 1
If 0, then 2or 1
But when =1, the system of equation becomes x1 x2 x3 1 which has infinite
number of solutions. When 2 , by adding three equations, we obtain 0 3 and
thus, the system of equations is inconsistent.
66. 6 A A cA dI
1 2
6 I A cA dA 3 2
1 0 0 1 0 0 1 0 0
A 0 1 1 0
2
1 1 0 1 5
0 2 4 0 2 4 0 10 14
and A3 A2 A
1 0 0 1 0 1 0
0 0
0 1 5 0
1 0 11 19
1
Therefore, exp sin 2 x sin 4 x sin 6 x ...upto ln 2
2
exp tan 2 x ln 2 exp ln 2tan 2 tan x
2
x
2
Since 0 x / 2, tan 2 x 0 2 tan x 1. Therefore,
2
2tan x 16 24 tan 2 x 4 tan x 2 tan x 0
2cos x 2 2 1
Thus,
sin x 2cos x tan x 2 2 2 2
69. 1
x is discontinuous at x 1 ,
x 1
1 1
y f is discontinuous at
1
2 2 1
1
2, 1. If 2 then 2
x 1
1
x 1 / 2. If 1 then 1 x 2. Hence the composite function is
x 1
discontinuous only at x 1,1 / 2, 2.
70. x
Since x sin x, for x 0 and lim 1
x 0 sin x
11x 11x
so 11 as x 0 but 11. Thus
sin x sin x
11x
sin x 11 for value x 0 . Similarly
21sin x 21sin x 21sin x
21 as x 0 but 20 21 20. Hence
x x x
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 13
SRI CHAITANYA IIT ACADEMY, INDIA 05‐01‐23_ Sr.Super60_NUCLEUS & ALL_BT_ Jee‐Main_GTM‐02_KEY &SOL’S
11x 21sin x
lim x 31
x 0 sin x
11x
Similarly x sin x for x 0 , so 11
sin x
sin x
as x 0 and 21 20 as x 0 . Thus
x
lim
11x 21sin x
x 0 31
sin x x
71. 1 1
y tan 1 tan 1 ... upto n terms
2 2
1 x x x 3x 3
tan 1
x 1 x tan 1 x 2 x 1 ...n terms
1 x x 1 1 x 1 x 2
tan 1 x 1 tan 1 x tan 1 x 2 tan 1 x 1 ...
tan 1 x n tan 1 x n 1
tan 1 x n tan 1 x.
1 1
y' x
2
1 x n 1 x2
1 n2
y 0
'
1 .
1 n2 1 n2
72. Conceptual
73. 1 1 dy dy y
0 .
2 x 2 y dx dx x
y
Equation of tangent at any point x, y of the curve is Y y X x .So
x
intercepts of X axis and Y axis are x xy and y xy .
Therefore, the sum of intercepts x y 2 xy ( x y ) 2 ( a ) 2 a
74. f a f 1 c
f ' c
a 1 a2 c2
a2 a2 a2 1 c
a 1 a2 c2
a 1 c a 1 c2
a 1 2
a c 2 a 1 a2 c2
a 1 a 2 c 2 c 2 a 1
c 2 a 1 1 a a 1 a 2
c 2 2a a 1 a 2 c2
a 1 a
2
Since c 1, a so c
a 1 a
2
75. y 2x 1
Distance of any point x, y from y 2 x 1 is: . If x, y is on
5
x 4 3x 2 1
y x 4 3 x 2 2 x then this distance is S
5
dS 4 x3 6 x ds
0 x 0.
dx 5 dx
Als , S ' x 0 for x 0 and S ' x 0 for x 0. Thus S is minimum when x 0, and
1
min. S is .
5
76. For Rolle’s theorem & L.M.V theorem, the function f ( x) must be continuous &
differentiable in the interval (a, b) if Rolle’s theorem is applicable for f ( x) then
L.M.V. theorem is applicable for f ( x)
f ( x ) sin x in , . is non differentiable at x 0
3 3
Rolle’s theorem & L.M.V theorem can not be applicable
for f ( x) sin x x , .
3 3
77. x y X Y
Equation of the line L in the two coordinate system is 1, 1
a b p q
Where X , Y are the new coordinates of a point x, y when the axes are rotated
through a fixed angle, keeping the origin fixed. As the length of the perpendicular
from the origin has not changed
1 1 1 1 1 1
1 1 1 1 2 2 2 2
a b p q
a 2 b2 p2 q2
1 1 1 1
or 0.
2 2 2 2
a p b q
78. We are given l 2 m2 n 2 0 and l m n 0 also we have l 2 m2 n 2 1
1
So that 2n 2 1 n and l m n
2
2
l m n2 l 2 m2 2lm 0
1 sin 2 sin 2 1
1 sin 2 cos 2 1
1 1 3 3
Also A 1 sin 2 2 1 . Hence A 1
4 4 4 4
81. x2 x4 x 2 x 4 x 2 x3
1 ... 1 1 ... 1 x ..
2! 4! 2! 4! 2! 3!
2
1 x 2 2 x
3
x ... x x ...
2 4! 3!
1 x 2 x2
x3 ... 1 x ...
2 4! 3!
1
(cos x 1)(cos x e x ) terms containig x
2
x3
and higher powers of x
82. Any point on the first line is 2r1 1,3r1 1,4r1 1 and on the second line is
r2 3,2r2 k , r2
The lines will intersect when
2 r1 1 r2 3,3 r1 1 2 r2 k , 4 r1 1 r2
2r1 r2 2 , 4r1 r2 1
3
r1 , r2 5 .
2
9 9
and k 3 r1 2 r2 1 10 1 .
2 2
83. The given expression is equal to
1 tan 2 tan 1 2 1 cot 2 cot 1 3
1 4 1 9 15.
84. The given equation can be written as
sin 4 x cos 4 y 2 4 sin x cos y 0
r 2 cos 2 cos 2 cos 2 2 2 32 6 2 49
CHEMISTRY
31) 2 32) 1 33) 4 34) 1 35) 3
36) 1 37) 1 38) 1 39) 1 40) 2
41) 2 42) 1 43) 2 44) 1 45) 3
46) 4 47) 1 48) 1 49) 1 50) 4
51) 4 52) 222 53) 7 54) 3 55) 56
56) 18 57) 1 58) 7 59) 8 60) 3
MATHEMATICS
61) 4 62) 4 63) 1 64) 1 65) 1
66) 2 67) 3 68) 3 69) 1 70) 2
71) 1 72) 3 73) 3 74) 3 75) 4
76) 3 77) 3 78) 1 79) 3 80) 2
81) 11 82) 15 83) 2 84) 43 85) 14
86) 112 87) 35 88) 5 89) 38 90) 15
SOLUTIONS
PHYSICS
1. Pr 4 8Vl
We know that coefficient of viscosity, P
8Vl r4
Let P1, P2 be the pressures at the ends of the two tubes and V1 be the rate of volume
8V1l
flow through them, then pressure difference across the first tube, P1
r4
8V1l
Pressure difference across the second tube, P2
r / 2
4
The two tubes are connected in series. So, the total pressure, P P1 P2
8Vl 8V1l 8V1l Q
4
4
4
16 Q V1 16V1 17V1
r r r 17
So, the correct answer is (B).
2. V V1 V2
1
Pr 4 Pr14 Pr24
or r 4 r14 r24 or r r14 r24 4
8l 8l 8 l
3. For Si 0.7V , Ge 0.3V (barrier potential)
net emf E VSi VGe 12 0.7 0.3 11
i 3
103 2.2mA
R R 5 10 5
4. T2 40 3 5 5
1 1 T1 T2 T1 300 500 K
T1 100 5 3 3
New efficiency 60%
T2 60 2
1 1
T1 100 5
5
T1 300 750 K T 750 500 250 K
2
5. T T
1 1 2 1
T1 800
300
2 1 1 2 T 489.9 K
T
6. y A B .B A.B B.B A.B
7. Given, T2 40 C 277 K
T1 300 C 303K
Q2 600 cal per second
Coefficient of performance,
T 277 277
2
T1 T2 303 277 26
d
0.50 2 6 10 7
2 104 m 0.2 mm
3
3 10
17. Both ‘A’ and ‘R’ are true and ‘R’ is the correct explanation of ‘A’
18. I I I
I 0 cos 2 0 cos 2 450 0
2 2 4
I0
cos 2 cos 2 90 3
2
32 2
cos sin 2 3
2 ,
4 4cos 2 sin 2 3 sin 2 2
3
4
3
sin 2 sin 600 ; 300
2
29. In a common – base arrangement, the current amplification factor.
I I
C C;
I E VCB I E
Given 0.88, I E 1mA .
Collector current I C I E 0.88 1 0.88mA
Now since I E I B I C
base current I B I E I C 1 0.88 0.12 mA .
30. 0 Ni H 4 103 12
B 0 H ;i 8A
N 60 100
CHEMISTRY
31. Electrolysis of molten NaH
NaH Na H
1
At Anode H H 2 e
2
36. Liquid CO2 solvent for drycleaning due to less harm to ground water
37. Photo chemical smog is called oxidizing smog
38. Conceptual
39. Both statement I and statement II are true
40. Bakelite – electrices switches
Glyptol – paints & Lacquers
Urea – formdehyde – Lamineted sheets
HDPE – Buckets, Dustbins
41. Sucralose, aspartame are artificial sweetners
SO2 is antioxidant
0.987
X N2 3
0.0129 103 1.29 105
76.48 10
nN 2 nN 2
X N2 1.29 105 nH 2 71.595 104
nH 2O 55.5
CH 3 OH
CH 3
58. 4
M nO OH NH 3
At cathode M nO2 NH 4 e
3
x 4 y 3
59. Gd 2 Xe 4 f 7 5d 1 6 s 0
MATHEMATICS
61. Given expression is p q q
p q q ~ p q q ~ p t
Make truth table
p q p q ~ p q ~ p q q pq p p q
T T T F T T T
T F F T T T T
F T F T T T T
F F F T T F T
p p q is also a tautology.
62. 50 n
X i Yi T ; n X i 10, n Yi 5
i 1 i 1
50 n 500 5n
So, X i 500, Yi 5n n 30
i 1 i 1 20 6
63. Given a set 1, 2,.....50
Possible choices of P are
2,3,5,7,11,13,17,23,29,31,37,41,43 and 47.
So, we can calculate no. of elements in R1 as
2,2 , 2,2 .. 2,2
0 1 5
3,3 ,......3,3
0 3
5,5 ,......5,5
0 2
11,11 ,........11,11
0 1
1 11 q
p , q , 11 ……………… (i)
12 12 p
P x 15 P x 16
P x 18 P x 17
33 3
C15 p15q18 33
C16 p16 q17 q q
33
C18 p18q15 33
C17 p17 q16 p p
11 11
3
{From (i)} 1320
66. Let p Mean & q Variance p q
So, p q 24, pq 128 p 16 & q 8
1 1
np1 16; np1q1 8 q1 p1 , n 32
2 2
1
p x n 3 n n Cn 2 n Cn 1 n Cn
2
32 31
k 32 C30 32 C31 32 C32 32 1 496 33 529
2
67.
Given mean , variance and
3
4
P x 1
243
X nP
1 2
2 npq q q P 1 q
3 3 3 3
4
Here, P X 1
243
1 n 1
2 1 4
n
C1
3 3 243
2 1 4
n n 1 n6
3 3 243
4 2 5 1
2 1 2 1
So, P X 4 or X 5 C4 6 C5
6
3 3 3 3
n 3
And P X 3 n C3 p 1 p
3
Given P X 2 P X 3
n2 n 3
C2 p 2 1 p n C3 p 1 p
3
n
p 2 1 p p 3 1 p
n n
n! n!
. .
2! n 2 ! 1 p 2 3! n 3! 1 p 3
1 1 p
. 31 p p n 2
n 2 3 1 p
3 3 p np 2 p np 3 p
71. Definition of reflexive relation.
72. B
C 2h
h
2
H P x A
d 7h
h 2h
tan 2 and tan 2
x x 7h
74. 150
P
150
h
600
A B C Q
~ p q ~ q q
~ p q t ~ p q
From options we can say option c is correct
p q ~ p q ~ p ~ q ~ p q t
Hence C
78. Given conditional statement is
p q ~ p r ~ p r p q
Here, is equal to ~ A B .
From given statement,
~ p ~ q ~ p r p q
~ p r ~ q p ~ r q
If negation of p and only p is present with union, then it represents tautology.
79. Given boolen expression are
~ p q p q and ~ q p ~ p q
Negation of ~ p q ~ p q i.e., ~ p q
80. Negation of given statement ~ p ~ p q
~ p ~ ~ p q ~ p p ~ q
~ p q ~ p ~ q
F ~ p ~ p ~ pK 7 ~ p
81. 2k 12
Median k 6
2
Mean deviation about median
k 3 k 1 k 1 6 k k 6 k 9 k 15 k 18
6
8
60 2k 7
6 k 6
8 2
k 6, Median 6 6 12
82. x 24
x i 34 xi 24
5 5
2
xi2 24 194
2
xi2 154
5 5 25
x1 x2 x3 x4 14 x5 10
2 x12 x22 x32 x42 49
a
4 4
x12 x22 x32 x42 4a 49
x52 154 4a 49
4
10
2
x22 32 .... x50
2
225
50 50
4 2 225
x 2
2 x32 ..... x50
2
50
227
x22 x32 2
....... x50
50
From (iv)
60 x22 x32 ...... x50
2 2
16
2 2
50 50
60 60
2 227 256
50
2 72 227 256
2 43
85. Since 0 y x 2 y
x x
y x y
2 2
x y y x 2x y
yx
Hence median 10
2
x y 20
And range 2 x y x y x 2 y …………………. (i)
But range = 28
x 2 y 28 …………………. (ii)
From equations (i) and (ii),
x 12, y 8
Mean
x y y x 2x y 4x y
4 4
y 8
x 12 14
4 4
86. Given sets are A 1,2,3,4,5,6,7 and B 3,6,7,9
Total subset of A 27 128
Here, C B when set C contains the element 1,2,4,5 .
Therefore, S C A; C B
Total number of elements = Total C B
128 2 4 112
CHEMISTRY
31) 3 32) 3 33) 2 34) 1 35) 1
36) 3 37) 4 38) 2 39) 4 40) 4
41) 2 42) 1 43) 4 44) 1 45) 3
46) 1 47) 4 48) 2 49) 1 50) 3
51) 5 52) 2 53) 1 54) 10 55) 23
56) 2 57) 1 58) 500 59) 2 60) 10
MATHEMATICS
61) 3 62) 2 63) 4 64) 3 65) 3
66) 2 67) 3 68) 3 69) 1 70) 1
71) 3 72) 4 73) 3 74) 1 75) 2
76) 2 77) 4 78) 2 79) 3 80) 2
81) 6 82) 8 83) 2 84) 5 85) 9
86) 4 87) 1 88) 2 89) 3 90) 7
SOLUTIONS
PHYSICS
1. As increases saturation current also increases
2. Let x be the depth of point P from surface
x
App. depth of point P from surface
x 2h
App. depth of image of P from surface
x 2h x 2h
So, separation between two
3.
Velocity of point ‘A’ VA V 2 2R 2 v 2 Normal acceleration of point A,
2R V2
a A n 2R cos 45 R cos 45 a cos 45 , a A n
2 2R
radius of curvature of trajectory of point ‘A’ relative to the ground is
2
2
r
VA
V 2
2 2R
a A n V2
2R
4. : From ohm’s law electric field current density
5. A b 2 T
6. Conceptual
7. Conceptual
8.
SOL:
V 2 2 a 2 x 2
V12 2 a 2 y ......................1
2
1
V22 2 a 2 y ..................... 2
2
2
From 1 and 2 , weget
2 2
y1 y 2
T 2
2 2
v 2 v1
9. Conceptual
10. Conceptual
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 09‐01‐23_ Sr.S60_NUCLEUS & STERLING_ Jee‐Main_GTM‐04_KEY &SOL’S
11. Conceptual
12. tan
tan 1
cos
tan tan
and tan 2
cos 900 sin
tan
cos .................1
tan 1
tan
and sin ................. 2
tan 2
Dividing 2 by 1 , we have
tan 1
tan
tan 2
13. Conceptual
14. Ic 100 0.04mA 4mA
8
Vc 20 12 8V R c 2000
4 103
15. Conceptual
16. Conceptual
17. The density of lead is 1.13 104 kg / m3 , so we should expect our calculated value to
be close to this value. The density of water is 1.00 103 kg / m3 , so we see that lead is
about 11 times denser than water, which agrees with our experience that lead sinks.
Density is defined as m / V . We must convert to SI units in the calculation.
3
23.94g 1kg 100cm
2.10cm3 1000g 1m
23.94g 1kg 1000 000cm3
1.14 104 kg / m3
2.10cm 1000g
3
1m 3
18. I. Induced emf in the rod BIv
:
t / RC BIv t / RC
Current in the circuit I e e
R R
Since the net force on the rod should be zero, the external force will be equal in
magnitude but opposite to the magnetic force.
B2 I 2 V t / RC
F IIB e
R
19. Conceptual
20. SOL: (i), (ii) are true but (iii) is false, as we know that viscosity in gaseous is about
100 times less than viscosity in liquids.
21. V2 V3
R .V ;RV3
gv0 gV0
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 3
SRI CHAITANYA IIT ACADEMY, INDIA 09‐01‐23_ Sr.S60_NUCLEUS & STERLING_ Jee‐Main_GTM‐04_KEY &SOL’S
22. C1 V2 2
Capacitors are in series therefore
C2 V1 3
23. Conceptual
24. 2
0 I0 mR f 2mg
5
&f ma maR
10 10 10 2
f mg mg N mg 5mg ,
7 7 7 7
CHEMISTRY
31. Refer NCERT- P -block Group – 15, pg-179,180 and solutions, pg- 49
32. Refer f - block
33. Conceptual
34. Conceptual
35. NCERT-Hydrogen
36. C5H10
(trans) (cis)
, +
, ,
37. A is CH 2 CHCl , B is HC CH
HC CH has active hydrogen so CH 4 is liberated
38. Cl Cl
NO 2
Cl
NO 2 NO 2
A= B= C=
OH
OH
NO 2 NO 2
NO 2
NO 2 NO 2
D= E=
39. Solution :
N 2 Cl
2 2
a a a
x
2 2 2
60. Sol: 10
H 2CO3 NaOH NaHCO3 H 2O
Millimole 10 10 - -
At end 0 0 10+10=20.
Final mixture has 20 milli moles NaHCO3 and 10 millimoles Na 2CO3
salt
P H Pka 2 log
Acid
Buffer : Na 2CO3 NaHCO3
10
PH 10.31 log 10
20
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 7
SRI CHAITANYA IIT ACADEMY, INDIA 09‐01‐23_ Sr.S60_NUCLEUS & STERLING_ Jee‐Main_GTM‐04_KEY &SOL’S
MATHEMATICS
61. Let the total population of town be x
25x 15x 65x 105x
1500 x x 1500 x 30000
100 100 100 100
62. Given system has infinitely many solutions
k 26 11k 18
, and verify
19 19
63.
r 5x 2 8x 14
r 3 x
64. h a h b
: ,
y xy x xy
a b
h ;h
x y
1 1
y x
A Q
x a
1 a
T
y h b
x a ah h
1
y h h B x M y P
y h
x ah
b ab
h h
h ab
1
ab
65. A
C
R
E r B D
Let AB=h
BC=h-R
1
r 2 4hR h 2 and v r 2 h
3
1
v 4hR h 2 h
3
dv
0r 4
dh
71. 2 4
x 2 x2
A 2 7 x 1 dx 2 7 x 1 dx 32
4 4
0 2
0,1
72. 20
sin ce sin x i and sin 1 x i 10
1
2 2 i 1
sin 1 x i 1 i 20
2
x i 1, 1 i 20
20
x i 20
i 1
20
xi
i 1 2
10
73. : Centre of S1 2,4
Radius of S1 radius of S2 4
Centre of circle S2 4,2
2 2
S2 x 4 y 2 16
x 2 y 2 8x 4y 4 0.........1
Equation of the circle touching y=x at (1, 1) can be taken as
x 12 y 12 x y 0...... 2
2 2
2 4 2 242 1 and 2 orthogonal
2 2
2
2 2 6
74. 1
x sin , x 0
F x x
0 , x0
1
lim F x lim x sin 0
x 0 x 0 x
Also F (0) = 0
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 10
SRI CHAITANYA IIT ACADEMY, INDIA 09‐01‐23_ Sr.S60_NUCLEUS & STERLING_ Jee‐Main_GTM‐04_KEY &SOL’S
lim F(x) F(0)
x 0
F x is continuous at x=0
F x is continuous for all real numbers
Statement-1 is true
f1 x x
it is continuous on R
1
sin ,x0
f 2 x x
0 , x0
1
lim sin does not exist
x 0 x
it is not continuous at x=0
f 2 x is discontinuous on R
Thus statement-2 is false.
75.
sin
m
m 1
6
4 4
m 1 m
4
m 1 sin sin(
4 4
6
cot
m 1 cot m 4
m 1
4 4
cot cot 3
2 4
cot tan 4
tan 2 3
, 5 n ,
12 12 2
12 12 3
76.
Ans- 1 3c1 x92 2 3c2 9 3 1 300
77. b3 4b 2 3b1
b1h 2 4b1r 3b1
r2 4r 3 0
r 1 or r 3
78. CONCEPTUAL
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 11
SRI CHAITANYA IIT ACADEMY, INDIA 09‐01‐23_ Sr.S60_NUCLEUS & STERLING_ Jee‐Main_GTM‐04_KEY &SOL’S
79. USE EXPANSIONS
80.
Ans - f 3 2
2
1 3
gl 2
fl 3
2
7
81. 99 99
P x 2 1 P x 0 P x 1
100 100
1 3n 1
n6
100 4n
82.
A 4,3 C 0,3
B 4,3
AB 8
0 2 5
83. 12 14
Mean 13
2
122 142
2 132 1 var iance
2
12 14
mean 13
4
26................1
122 142 2 2
2 132 1
4
2 2 340..... 2
by 1 and 2
2
84. 1 x2 4
1 0 3 0
3 3 2
85. Solution: 2m 56 2n
2m 2n 56
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 12
SRI CHAITANYA IIT ACADEMY, INDIA 09‐01‐23_ Sr.S60_NUCLEUS & STERLING_ Jee‐Main_GTM‐04_KEY &SOL’S
2n (2m n 1) 56
m 6,n 3
86. 1
Ans- 2f x 2 3f x 2 1
x2
1
x
2
2f 2 3f x 2
1 x2
x
Bysoluvingweget
1 x 2 3 2x 2
f x 2
5x 2
1
Take x
52
87. 1 z z2 22
Ans: 1 R
1 z z2 1 z z2
z
R
1 z z2
1 z z2
R
z
1
z 1 R
z
1 1
z 2
z 2
1 1
zz
z z
zz
zz
zz
zz 1 z 1 z z
88.
Ans- Put x 2 11 x 2 2 11
t 2 11 2 11 4 1
Clearly t 2 t 11 t 2 t 11 2t 2
2
2t 11 2t 11
1 2 11 2 11 2
T
2 t 11 2 11 3
2
11
x 2
z 4.3 9 5
x 2
3 3
x 2 1
=3,1
90. Ans –
x 1, 1 x 0
0, x0
x, 0 x 1
f x
2x 1, 1 x 2
x 1 2x3
5 x 3
a 3,b 4
CHEMISTRY
31) 1 32) 3 33) 3 34) 2 35) 3
36) 3 37) 2 38) 1 39) 4 40) 1
41) 2 42) 4 43) 2 44) 4 45) 3
46) 2 47) 1 48) 4 49) 2 50) 2
51) 57 52) 1 53) 3 54) 3 55) 6
56) 8 57) 3 58) 3 59) 3 60) 4
MATHEMATICS
61) 3 62) 1 63) 1 64) 2 65) 3
66) 2 67) 4 68) 2 69) 1 70) 2
71) 4 72) 1 73) 3 74) 1 75) 1
76) 3 77) 1 78) 2 79) 2 80) 4
81) 216 82) 8 83) 2 84) 1 85) 7
86) 2 87) 4 88) 64 89) 5 90) 4
SOLUTIONS
PHYSICS
1. 53 52 55 54 51
tmean ttrue 53sec
5
0 1 2 1 2 6
Mean error 1.2
5 5
Least count is 1 sec, means round off 1.2 to 1 sec.
t 53 1sec
2. The rolling sphere has rotational as well as translational kinetic energy.
1 1 1 1 2
KE mu 2 I 2 mu 2 mR 2 2
2 2 2 2 5
1 1 7
mu 2 mu 2 mu 2 u r
2 5 10
7 7u 2
From energy conservation i.e., mgh mu 2 or h
10 10
3. V VCE I C RC
15 7 I C 2 103 iC 4mA
i 4
C iB 0.04mA
iB 100
4. Changing polarity is termed as AC.
5. Velocity of ball when it reaches to surface of liquid
V 1000 g
V 500 g
1000 gV 500 gV
a where V is the volume of the ball
500V
a 10m sec2 ()
Apply v u at 0 2 gh 10t
0 2 gh 10t 2 gh 10 2
2 10 h 400 h 20m
6. V BE sin
H BE cos
H
V
BE
7. Kq
For a metal sphere Ein 0 and E out 2 r
r
E
Ein 0
r
8. 0.61 0.61 0.5 m
Numerical aperture d 0.24 m
d 1.25
9. Fd dm 2 R
Fd ARd 2 R
dm 2 R
F d F
R
O
stress, F A 2 R 2
F l R
Now, Y Y
A l R
l 2 R, l 2R
R 2 R3
2 R 2 Y R
R Y
10.
2
m 1
FT V 2 2 g
L 2
mg 3mg
FT mg FNet mg
2 2
11. GMm 1 1
Te i Te m 3ve m v
2 2
R 2 2
Sec: Sr.Super60_NUCLEUS & STERLING _BT Page 3
SRI CHAITANYA IIT ACADEMY, INDIA 11‐01‐23_ Sr.Super60_NUCLEUS & STERLING _BT _ Jee‐Main_GTM‐05_KEY &SOL’S
1 1 1
mve2 9 mve2 m V V 2 2Ve
2
2 2 2
12. workdone 200 600 300 5
heat suplied 200 600 8
13. U x x 2 3x J
du
For a conservative field, Force F
dx
F
d 2
dx
x 3x 2 x 3 2 x 3
3
At equilibrium position, F 0 2 x 3 0 x m 1.5m
2
14. Eddy current effect is not used in electric heater
15. Let 1 4eV , then 2 2eV
E represent kinetic energy of most energetic electron.
E 2 2 E 1 E 6eV
16. Let a b c, so
V 2bc V 2 ac V 2 ab
P1 ,P ,P
a 2 b 3 c
m m m
Volume of cuboid abc 4 2c 3 c 3
d d 4 2d
17. 5 4L 5
L k
4 5 2L
2 4 L 5
k
k 5 2L
L
O
Equation of wave from open end:
P 1 5 x 2L L
At t 0 P 0 sin x
2 2 2L 6 5 15
18. Range x 2hT R
2 150 6400 103
Area x 2
50 105
Population density
2 150 6400 103
1 106
km 828.6km2
2
m 2
6 64 6 64
Sec: Sr.Super60_NUCLEUS & STERLING _BT Page 4
SRI CHAITANYA IIT ACADEMY, INDIA 11‐01‐23_ Sr.Super60_NUCLEUS & STERLING _BT _ Jee‐Main_GTM‐05_KEY &SOL’S
19.
F q v B
F v
Work done = F .S
Work done = 0
20. C p is always greater than Cv in gases.
Work done at constant pressure is more than at constant volume.
21. Mass of rope 10 0.5 5kg
Given force 25n
Acceleration F m 25 5 5 m s 2
Length of remaining rope 4m
Hence mass of remaining rope 4 2 2kg
Hence tension on the rope at a point 6m away ma 2 5 10
22. V
Under resonance iA 5 A Voltmeter reading V 500V
R
23. h hc 2mc 2
and 0 n2
2meV eV h
24. For maximum intensity on the screen d sin n
n n 2000 n
sin sin
d 7000 3.5
Since sin 1 n 0,1,2,3 only
Thus only seven maximas can be obtained on both sides of the screen
25. The two bodies will collide at the highest point if both cover the same vertical height
v12 sin 2 30 v22
in the same time. So,
2g 2g
v2 1
Or sin 30 0.5
v1 2
26. Energy FAT x 3
T
x3
M 1L2T 2 M 1LT
1 2
LT
1 2
2 2 2 2
29.
T 75 7
constant (or) P T
1
1
C .
P 1 2 5 2
30. I I
A and B are parallel so cos 2 cos 2 45
2 8
CHEMISTRY
31. C x H 2 y O y 2 xO2 xCO2 yH 2O xO2
Number of moles after cooling =2x
Volume after cooling=2.24 litres
Number moles of CO2 =0.05
EF= CH 2O
P 0 17.5mm
P 0 P 0.104mm
M=151.4
MF= C5 H10O5
32. For the given question only C & D compounds are possible. In that H of C is less
acidic.
33. O
Cl Cl
N2H4 OH,
0.4 y
2
5
y 0.13
y 9
0.13
At second equilibrium VAB 100 32.5%
2
0.4
46. m Zit
1
q Area of figure [100 10 10 3 ] 2[ 10 103 ] 2
2
m
m Z 2 Z
2
47. d a .No
3
Z a3 volume 10 A0 10 A0 sin 600 15 A0
M
2 3 750 3 1024 6 1023
Z 6
450
48. A is Prop –1–en–2–ol. On tautomerization, it changes to ketone
49. Cl Cl OH OCH3 OCH3
SOH
3
Nitration NaOH /1500C CH3 I H2SO4
O O O O O
50. ph
PhMgBr I2 / KOH
CHCOCH
3 3 CH3 CCH3 -ve
A) OH
MeMgBr I2 / KOH
CHCH
3 2 CHO
CH3 CH2 CH CH3 ve
B) OH
C) OH
Ph
PhMgBr I2 / KOH
CHCOOE
3 t CH3 CPh ve
D. OH
1000 5.12 w
1.28 ....1
mw 100
For the solution in water in which solute dissociates
1000 1.86 w
1.40 ....2
mexp 100
Dividing eq. (ii) by (i)
mN 1.40 5.12
i 3.01 3.0
mexp 1.28 1.86
Now, suppose that formula of solute is
Ax By xA yB
1 0 0
1 x y
i 1 x y
i 3 and 1 Given that 1
No of ions given (x+y) = 3
54. 1 micelle 2.4 1013 molecules
3
1.2 103 M 1mm3 103 cm3 1.2 10 106 moles
= 1.2 109 moles
1.2 109 moles 1.2 6 1014 molecules
1.2 6 1014 2.4 1013 x
1.2 6 10
x 30
2.4
H 2 D , He
2 P , Li2 D , Be2 D , C2 P , C D , N P , N 2O2 P , O2 P , S2 P , F2 D .
2
2
2
56.
and
both can show G.I.
8 alkenes of x
57. 2.303 R 2.303 1.24 102 2.303
K log 1 log log 6.2
t2 t1 R2 60 0.2 102 60
= 0.0304 3 102
[ ref : NCERT solved example 4.5]
58. H2O2 in basic medium reduces Fe3 to Fe 2 .
59. Mg3 N2 with D2O gives ND3 having M .wt 20
Al4C3 and Be2C gives CD4 having M .wt 20
60. Group 1 bicarbonates exists in solid state except lithium.
MATHEMATICS
61. f x and f 1
x can only intersect on the line yx
y x must be tangent
Solving 3 x 2 7 x c x 3x 2 8 x c 0
The above equation has real and equal roots
16
64 12c 0 c
3
62. Let g( x) f ( x T / 2) f ( x)
then g(k) f (k T / 2) f (k) …... (1)
and g(k T / 2) f (k T) f (k T / 2)
f (k) f (k T / 2) g(k)
Hence by intermediate value property there exist an x0 [k,k T / 2] for which g(x) = 0
63.
(0,2)
(1,1)
(2,0)
(1,0)
64. f 4 f 0
By LMVT, a 0,4 f 1 a f 4 f 0 4f 1 a
40
f 4 f 0
lies between f 0 and f 4 , by Intermediate value theorem
2
f 4 f 0
b 0,4 f b hence, f 4 f 0 8
2
f1 a f b
2
2
65. x A
We know that if di i then x h d .
h
x 3/ 2
In this case 2 xi 3 i .
1 / 2
1
So. h
2
1
This. d x 2 3.5 7
h
66. 2008 8 224 2518 has 25 9 225 positive divisors, including
67.
C
P
24 43
20
19 29
n 50 M
Since, n M P C 50
n M 37, n P 24, n C 43
n M P 19, n M C 29
And n P C 20
Since, we know that
n P C M n P n C n M
n P C n C M n M P n P C M
50 37 24 43 n M P n P C n M C n M P C
n M P C N M P n M C M P C 54
19 29 20 54 14
68. Equation of the chord AB having (a, b)
as M .P S1 S11 ax by a 2 b 2 0
Chord length 2 r 2 a 2 b 2
ar 2 br 2
c ,
a 2 b2 a 2 b2
r 2 a 2 b2
h
a 2 b2
1
Area bh
2
69.
16 sin 5 x cos5 x 11 sin x cos x 0
sin x cos x 16 sin 4 x sin 3 x cos x sin 2 x cos 2 x sin x cos3 x cos4 x 11 0
sin x cos x 16 1 sin 2 x cos 2 x sin x cos x 11 0
sin x cos x 4sin x cos x 1 4sin x cos x 5 0
As 4sin x cos x 5 0,We have
The required values are
/ 12,5 / 12,9 / 12,13 / 12,17 / 12, 21 / 12
They are 6 solutions on 0, 2
70. z 2i 2z i 1 z i 1
i , z 2
z 2i 4i i 1 2i i 1
71. Tangent on ellipse having slope 2 will be
y 2x 4a 2 b 2 It is normal to circle
(–2, 0) is on it. (–2, 0) is on it.
0 4 4a 2 b2 4a 2 b2 16
2 2
A.M. G.M. 4a b 2ab 8 2ab ab 4
2
Maximum value of ab 4 Ans.
72. 2
Equation of tangent y mx , Passes through 2,3
m
y
(-2,3)
y3 1
2m2 3m 2 0 2m 1 m 2 0 , m
x 2 max . 2
73. S1 : p q p r p q r
S 2 : p q r p q r By Conditional Law
S1 S 2
74. 5 5
4
sin x cos x 4
cos x sin x e x 4 dx
I=
3
x
dx ; I=
3
x
4 4
4 1 e 4 1 e
5
5
4
4
1 1 1 1
cos x sin x dx sin x cos x
2
2 2
2
3
4 3
4
2I 0 I 0 . Ans.
75. dy
f x y 0
dx
dy
f x dx
y
In y f x dx
1
y. y1 x r x y1 x dx , y r x y1 x dx
y1x
Hence Solution
76. 1 x y 1
x y 1 x y 1
2
Required area 1
77. 1001
1 x x 2 x3 x 4 1 x 1002
1001
1 x 1 x5
K 2 (e m) u .e u u .m m.r m.u 0
K 2 e m u .e u
K 2 e u r .e r
1
Substitute above, in the given question e u m r
2
80.
Pqr a3 b3 c3 abc p3 q3 r 3
pqr a3 b3 c3 3abc abc p3 q3 r 3 3 pqr
pqr a3 b3 c3 3abc abc p q r p 2 q 2 r 2 pq qr rp
pqr a3 b3 c3 3abc
C 5A 53 A 125
adj B
Now |A| = 5 1 Ans.
C
A P(x,0) B(1,0)
(0,0)
Now, Perimeter = 1 x y 1 x 2 y 2
By using (i), we get
Perimeter=2
87. c
Normal to xy = c 2 is y - = t 2 ( x - ct )
t
Solving with xy = - c 2 we get
æc 2 ö 2 2 2 æc 3ö 2
ç + t ( x - ct )÷÷ + c = 0 t x + ç
xç ç - ct ÷÷ x + c = 0
è t ø è t ø
2
æ1 ö
For equal roots çç - t 3 ÷÷ - 4t 2 = 0 Þ 4 values are possible
èt ø
88. 2
b
b bx bx 2tan a
tan , tan2 or
a a a 1 tan2 b2
1 2
a
bx 2ab 2a 2b
2 x b
a a b2 a 2 b2
b
Tower
P a A
or x
2
a 2 b b3 b a b
2
a 2 b2 a 2 b2
(0,8)
89.
x
(-1/2,0) O
2
z2 2
arg 2
z 2
1 3
z 2 lies on a circle whose center is , 0 and radius is equal to units.
2 2
z 2 1 i z 2 1 i z 2 4 2i z 2 8i
Minimum value of z 2 8i is equal to
1 3 257 3 a b a b 257 3
64 5
4 2 2 2 2 52
90. R : A B under given condition a < b is given by
1,3 1,5 2,3 3,1 5,1 3, 2
, R
1
R
2,5 3,5 4,5 5, 2 5,3 5, 4
RoR - 1 : for composing RoR - 1 we will pick up an element of R - 1 first and then of R
3,1 R 1 , 1,3 R, 3,3 R o R 1
R o R 1 { 3,3 , 3,5 , 5,3 , 5,5 } only
Elements are not repeated in a set
CHEMISTRY
31) 2 32) 2 33) 1 34) 1 35) 4
36) 4 37) 3 38) 2 39) 4 40) 3
41) 3 42) 3 43) 1 44) 1 45) 2
46) 4 47) 1 48) 3 49) 2 50) 1
51) 2 52) 1 53) 6 54) 1 55) 2
56) 6 57) 5 58) 5 59) 2 60) 3
MATHEMATICS
61) 1 62) 1 63) 1 64) 3 65) 4
66) 1 67) 1 68) 3 69) 1 70) 2
71) 1 72) 4 73) 2 74) 2 75) 2
76) 3 77) 3 78) 2 79) 1 80) 4
81) 1 82) 4 83) 2 84) 6 85) 113
86) 3 87) 16 88) 7 89) 9 90) 5
SOLUTIONS
PHYSICS
1. Conceptual
2. r f = r i + DS1 + S 2 + ...........
( ) ( ) (
r f = 2i + 3j + 5i + 8j + -2i + 4j + -6j )
r f = 5i + 9i
Distance = =
( )(
2 600 ´10-6 mm 2 ´103 mm ) = 2.4mm
(1.0mm)
m NI
7. D= 0
2p R
meffective
8. T = 2p
k
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 13‐01‐23_ Sr.S60_NUCLEUS & STERLING_BT_ Jee‐Main_GTM‐06_KEY &SOL’S
If mass increases time period increases. If collision take place of extreme position then no
energy loss take place hence amplitude remains same.
If collision take place at mean position then due to inelastic collision energy loss take
place & Amplitude decreases.
9. W = area enclose in the cycle
1
W = 4 ´10-4 ´ 2 ´105 = 40 J
2
10. Zero error is 3 division
0.5
LC = = 0.01 mm
50
zero error = 0.03 mm
Reading = 5.0 + 29 ´0.01
d = 5.29-0.03 = 5.26 mm
11. For initial condition :
1 é1 1ù 1 é3 ù é 2 ù
= [m -1] ê - ú = ê -1ú ê ú
f ê R1 R2 ú 12 êë 2 úû êë R úû
ë û
R = 12 cm
When liquid is poured
u = -12, V = -24, f eq = ?
1 1 1
+ = [Mirror Formula] f eq = -8
v u f
Peq = 2 PL1 + PL2 + PM
1 æ1ö 1 é1ù
= 2çç ÷÷÷ + 2 PL2 + 0 PL2 = = [m -1] ê ú
8 çè12 ø 48 ëê R ûú
1 é1ù 5
PL2 = = [m - 1] ê ú m =
48 êë R úû 4
12. For isothermal process
PV = C
-P
PdV + Vdp = 0 dp = .dV
V
-p æ Pa 2 ö÷
dp = ( Ax) Fnet = (dP) A = -ççç ÷÷ x F = - kx
V çè V ø÷÷
1 g RT
13. f=
4 M
df 1 dT 1 1
Since DT << T = df = ´ ´10,000 df = 16.67
f 2 T 2 300
17.
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 4
SRI CHAITANYA IIT ACADEMY, INDIA 13‐01‐23_ Sr.S60_NUCLEUS & STERLING_BT_ Jee‐Main_GTM‐06_KEY &SOL’S
Applying bernouli’s theorem between point on surface of water and point at orifice taking
ground as reference,
1 1
Patm + rV12 + r gH = Patm + rV22 V22 - V12 = 2 gH
2 2
æA ö
V22 - çç 2 ÷÷÷V22 = 2 gH [ A1V1 = A2V2 ]
çè A1 ÷ø
2 gH
V22 =
æ A ö÷2
1 - çç 2 ÷÷
çè A1 ÷ø
A2 1
Substituting = , H = 0.3m V2 = 2 2
A1 2
If q = 300
3
V22 sin 2(90 - q ) 8´ 2 2 3
Range = = =
g 10 5
18.
Let ' M ' be total mass of earth.
Consider a shell of thickness ' dr ' and mass
' dm ' at a distance ' r ' from centre inside earth,
dm = r 4pr 2dr
R
3 4pkR 4
M = ò dm = ò 4pkr dr = = pkR 4
4
0
Let field due to earth’s gravity at a distance '2 R ' from centre be
T , I ´ A = 4pGminside .
2
I ´ 4p (2 R ) = 4pG pkR 4 ( )
pkR 4G
I=
4R2
For a satellite of mass ' m ' moving in orbit or '2 R ' radius.
mv 2
mI =
(2 R)
V2
I=
2R
pkR 2G V 2
=
4 2R
pkR3G
V=
2
19. Conceptual
20. Conceptual
¶v
21. Ex = - = -6i
¶x
¶v
E y = - = -8j
¶y
¶v
E z = - = -8 zk
¶z
E net at origin = 62 + 82 = 10
F = qE = 20 N
22. Induced field in rod, E = vB
KQ
electric field on surface of sphere =
R2
KQ kQ 9 ´109 ´ 30
= vB R 2 = =
R2 vB 9 ´1
R = 3 ´105 = 1.73´105
23. For all collision to take place electron has to excite to n = 3.
4m
m Perfectly inelastic collision
EnergyE m+4m
V
mu + 0 = 5m V
1 2 1 æ 4 ö÷2 4 E
Loss = mu - 5m ´çç ÷÷ =
2 2 çè 5 ø 5
4E 2
= 12.09 ´(2) eV
5
E = 60.45eV
f max
24. = Quality factor
Df half of max power
XC
= Quality factor
R
æ IA ö
25. Impulse on block = çç ÷÷÷ cos 2 53 ´(Dt )
çè C ø
(20)(10 ´10-4 ) 2
= ´(0.6) ´ 6 ´10-3
3´108
72
= ´10h -14kg m / s
5
Now we have
Impulse = mv
72
´10-14 = 1´10-9 v
5
72
v = ´10-5 m / s
5
Now we have
1 2 1 2
kx = mv
2 2
10 x = 10-9 ´ 24 ´10-5 ´ 24´10-5
-5 2
72
x = ´10-7 m
5
7.2
N= = 1.44
5
26. mv min = L 2mneutron K neutron = 4 ´10-34
min = 1.25´10-14 m = 125´10-16 m
2 3
27.
0.2
3
DV 2Dr Dl Dl DV Dr
28. = + = -2 = 0.204%
V r l l V r
0.204
\ Stress = 2 ´1011 ´ = 4.08´108 N / m2
100
29. The diode is forwards biased, so the equivalent resistance of the circuit is 15KW .
w1 l1
30. =
w2 l2
CHEMISTRY
31. Polarizing power of the cation
32. Steam volatile and water insoluble
33. Aromatic aldehydes and ketones do not give positive Fehling’s test
34. E1 CB mechanism
35. Presence of unpaired electrons
36. SP mixing
37. Chromyl chloride test
38. X B2 H 6 ;Y B3 N 3 H 6 ; Z H 2
39. Calgon treatment
40. Half filled f orbital configuration
41. SRP vaues
42. Ozone is component of photo chemical smog
43. LiF has high lattice energy
44. Ethene is produced (gas)
45. Adsorbate is concentrated on surface of adsorbent
46. Addition of copper rod does not change direction of current flow.
47. NCERT XI part-1 Page No 181.
48. State-I to state- II is spontaneous, NCERT XI, Equilibrium
49. NCERT lab manual 12 class.
50. One motif for unit cell (NCERT 12 Page No. 6)
51. Two P-H bonds are present
52. Observe chiral carbons in the product
53. There are 6 atoms present in straight line
54. H 2 S 2O8
55. Nucelic acids
56. XeO3
57. = h/mv
NCERT (text question)
58. 0.005 moles of Barium chloride in 2L
59. CRT gh
0.2 / M 1.013 1000 0.2463
Or, 0.0821 300
100 / 1000 1.013 106
M 2 105
-4
éH +ù 5´10
60. êë úû = ´1000 = 10-3 M p H = 3.0
final 500
MATHEMATICS
z 2i
61. arg arg z 2i arg z 2i
z 2i 6 6
y 2 y 2 xy 2 x xy 2 x 1
tan 1 tan 1
x x 6 x2 y2 4 3
x 2 y 2 4 4 3x x2 y 2 4 3x 4 0
x2 3 2 y 2 12 4 42
centre 2 3,0 , radius = 4
P x, y
1 2
O 0,0
62.
1 2 1 2
2
1 2 2 1 2 2 1
2 2
dy
2 tan 2 1
2
dx x
1 tan 2
2 tan
1 dy
1
2 y
dx
2 2
dy dy dy dy
2y x x x 2y x
dx dx dx dx
63. Three b’s and four a’s can arrange abababa
babababa
abbababa
Fourth ‘b’ can take 5 places, ababbaba
abababba
abababab
Take 8 place from 12 places and arrange letters in same order, cc dd can take remaining
4!
4 place 12C8 5
2!2!
6
C1 6 C1 6 1 1 175
64. Required probability = 1 5 5 C2 . 2C1 5 . 4
2 2 2 2 216
68. As lines are perpendicular to each other ‘C’ moves on a circle with AB as diameter.
Now P, mid–point of AB (which is fixed) when joined with C is median.
1
Centroid is moving at a constant distance PA from P.
3
Locus is a circle
6 1
A is point of intersection of x + 4y + 2 = 0 and x – y + 1 = 0 i.e., ,
5 5
9 6
B is point of intersection of 4x – y + 6 = 0 and x + y + 3 = 0 i.e., ,
5 5
2 2
3 7 3 7 17
P , therefore locus is
2 10 x y
2 10 50
69. y cos sin sin 2 sin
y
sin sin 2 sin 2
cos
y sec sin sin 2 sin 2 4 y 2 1 y 2 sin 2 0
Squaring on both sides 1 y 2 sin 2 0
y 2 sec 2 sin 2 2 y tan sin 2 sin 2 y 2 1 sin 2 0
y 2 y 2 tan 2 2 y tan sin 2 0
y 2 1 sin 2 0
tan R 0
4 y 2 4. y 2 . y 2 sin 2 0 y 1 sin 2 , 1 sin 2
70. Since, f(x) is differentiable and hence continuous x R
f 0 f 0 P 0 0 and
f 0 f / 0 P 0 0
Similarly, continuity at x 1 P 1 1 and differentiability at x 1 P 1 0 .
Since, P(x) is a polynomial of least degree and P / x vanishes x = 1 and x = 0.
Hence, P(x) must be cubic.
x3 x 2
P x kx x 1 P x k C
/
3 2
Since, P 0 0 C 0 and P 1 1 k 6
0 if x0
Hence, P x 2 x3 3 x 2 . f x 2 x3 3 x 2 if 0 x 1
1 if x 1
2 4 6 2 n 1
71. S n 1 cos n 2 cos n 3 cos ..... cos
n n n n
2 4 2 n 1
S 1cos 2cos ...... n 1 cos
n n n
2 4 2 n 1
2 S n cos cos ....... cos
n n n
2 2 n 1
sin n 1
2S n n cos n n
2 n
sin
n
72. a tan A ; b tan B ; c tan C ;0 A, B, C 0 AC
2 2
P 2cos A 3cos C 2cos A C
2 2 2
3 3
=1 cos 2 A cos 2 cos 2 A 2C
2 2
3 3
=1 cos 2 A cos 2C cos 2 A cos 2C sin 2 A sin 2C
2 2
3 3
= cos 2C 1 cos 2C cos 2 A sin 2C .sin 2 A
2 2
3 3
cos 2C 1 cos 2C sin 2C
2 2
2 2
3 3 5 3
= cos 2C 2 2cos 2C cos 2C 2sin C
2 2 2 2
3 3
1 2sin 2 C 2sin C
2 2
3 3
3sin 2 C 2sin C
2 2
2
3 3 2 1 1 1 1
3 sin 2 C sin C 3 sec
2 2 3 9 9 3 3
10
=
3
73. Using A.M G.M
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 12
SRI CHAITANYA IIT ACADEMY, INDIA 13‐01‐23_ Sr.S60_NUCLEUS & STERLING_BT_ Jee‐Main_GTM‐06_KEY &SOL’S
1/3
x x x2 y
x y y 3
2 2 4
x
Equality holds if and only if y x 2y .
2
Also, 2 x 2 2 xy 3 y 2
2 x2 2 x 2 2 zy 2 xy
..... ..... y2 y2 y2
8 8 4 4
1 2
2 8 4
3 15 x y 5
2
2x 2 xy 2
15 y 15
8 4 4
2 x 2 2 xy
Equality holds if and only if y 2 or x = 2y. Thus
8 4
1/3
x2 y
k x y 2 x 2 2 xy y
2 1/2
3 15
4
74. Let the numbers be 1, 2, 3, 4, ……, n and the erased number be x then 1 x n
n n 1
x 7
Now, 2 35
n 1 17
n n 1 n n 1
n 7 1
2 35 2
n 1 17 n 1
n 7 n2 n 7 n2
35 35
2 17 2 2 17 2
14
n 70 n 2 n 69 or 70
17
69 70
2 7
at n = 69 ; 35 x 7
68 17
at n = 70 ; x I
10
75. xi x yi y 80
i 1
10 10 10 10 10
xi yi y xi x yi xy 80 which implies xi yi 10 yx 80
i 1 i 1 i 1 i 1 i 1
10
xi yi
2
2 i 1
10
yx 2 9
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 13
SRI CHAITANYA IIT ACADEMY, INDIA 13‐01‐23_ Sr.S60_NUCLEUS & STERLING_BT_ Jee‐Main_GTM‐06_KEY &SOL’S
76. Statement -1
x y x y x y x y ~ x y x y ~ x y
T T T T T F F T
T F F T F T T F
F T F T F T T F
F F T F F T F T
Statement -2 : ( p q ) « ( p q )
( p q ) « ( p q )
78. f 0 lt
1 f 0 h f 0
= lt
h 3e 1/ h 4
1
0 2
h n 0 1/ h h
h 0 2e
f 0 h f 0
Rf 1 0 lt
h 0 h
= lt
h 3e1/ h 4
0
1 = lt
3 4e1/ h
3
h 0 2 e1/ h h h 0 2e 1/ h 1
Since Lf 1 0 Rf 1 0
f(x) is differentiable at x = 0. But f(x) is continuous at x = 0
dy x12
79.
dx y12
Tangent equation is x12 x y12 y x13 y13
x12 x y12 y a 3
Since, it passes through x2 , y2
x12 x2 y12 y2 a3 (1)
and x13 y13 a3 (2)
x23 y23 a3 (3)
By solving (1), (2), (3) we get result
80. Let g ( x) = x n f ( x)(n > 0)
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 14
SRI CHAITANYA IIT ACADEMY, INDIA 13‐01‐23_ Sr.S60_NUCLEUS & STERLING_BT_ Jee‐Main_GTM‐06_KEY &SOL’S
g (0) = 0, g (3) = 0
By using rolls theorem, there exist some a Î (0,3) such that
g1 (a ) = 0 a f 1 (a ) + n f (a ) = 0, n > 0 .
2æ 1 ö÷ 0 3
çç 4
81. ( 2
) ÷
÷
ò ççç x - 2 x + 1 -1÷÷÷dx + ò ( x + 1)2 dx = 1
3 +1
1 çè ø -1
1 3
2 0
ò( )
4 2 2
3
x - 2 x + 1 dx + ò ( x + 1) + 1dx = 1 + 2 -1 I = 2
1 -1
82. Let P and Q be two points t1 and t2 respectively whose abscissas are in the ration m : 1.
at 2 m
\ 1 = or t1 = t2 (m)
at22 1
If (h, k) be the point of intersection of tangents at P and Q, then h = at1t2 k = a (t1 + t2 )
Or h = a (m)t22 k = a(1 + m )t2
2
Eliminating t2 we get the required locus as y 2 = ax m1/4 + m-1/4( )
83. We first use partial fraction decomposition on this function. Doing so gives us
5 x 2 - 2 xy + y 2
=
5 x 2 - 2 xy + y 2
=
(
3x 2 - 2 xy + 3 y 2 + 2 x 2 - y 2 )
x2 - y2 ( x + y )( x - y ) ( x + y )( x - y )
=
(
x 2 + 2 xy + y 2 + 2 x 2 - 2 xy - y 2 ) + 2 = ( x + y)2 + 2( x - y)2 + 2
( x + y )( x - y ) ( x + y )( x - y )
x+ y 2( x - y )
= + + 2.
x- y x+ y
We can then apply AM-GM to the first two terms to get
x + y 2( x - y )
+ ³2 2.
x- y x+ y
Thus, the minimum is 2 + 2 2 , which is achieved when x, y satisfy the equation
( x + y )2 = 2( x - y )2 , which has solutions y = (3 2 2 ) x . When y = 3(3 - 2 2 ) x
and x > 0 , then condition x > y > 0 is satisfied.
84. Since MN is tangent to C1 at M, NMQ = MPQ . Since MN = PN, DMNP is isosceles
so MPN = PMN . It follows that NPQ = PMQ . But MN is tangent to C2 at N, so
NPQ = MNQ . Hence, MNQ = PMQ . Combining this with the fact that
{ }
85. Since { x} + x 2 = 1 , the value x must satisfy x + x 2 = n for some integer n. The
quadratic equation the gives us
-1 1 + 4 n
x=
2
-1 + 1 + 4 n
If we consider when 0 £ x £ 8 , then we must have £ 8 . Solving the
2
inequality, we find that x satisfies the equation when 0 £ n £ 72 , giving us 73
-1 - 1 + 4n
possibilities. Likewise, when -8 £ x < 0 , we must have ³-8 , which has
2
solutions when 0 £ n £ 56 , for a total of 57 possibilities.
{ }
Since { x} + x 2 < 2 , we must also eliminate the cases when { x} + x 2 = 0 , which { }
happens only when -8 £ x £ 8 is an integer, for a total of 17 possibilities.
Therefore, the total number of solutions is 73 + 57 – 17 = 113 .
2 2 2 2
86. We know that,
a +
b +
c =a +
b +c +2
a .
b +
b .
c +
c .
a ( )
ïìï 2 2 2 ïüï
í2 a + b + c ý - 2
ïïî ïïþ
a .
b + (
b .
c+
c .
a )
2 2 2 2
=
a -
b +b -
c +c -
a 9 = 3´ 3 -
a +
b +
c
a + b + c=0
b + c = - a
2
a + 5 b + 5 c = 2 ( a +5 ) b + c = 2 ( ) a + 5 - a -3
a =3
87. é c d a ù b - é c d bù a + é d b a ù c - é d b c ù a + éb c a ù d - éb c d ù a + k a = 0
ëê ûú ëê ûú ëê ûú ëê ûú ëê ûú ëê ûú
Taking dot with b ´ c ,
-3 éêb c d ùú éê a b c ùú + k éê a b cùú + éêb c a ùú éêb c d ùú = 0
ë ûë û ë û ë ûë û
é ù é
-48 ê a b c ú + k ê a b c ú = 0 ù k = 48
ë û ë û
88. Let N be (3l + 6,2l + 7, -2l + 7) such PN is perpendicular to the line.
Then l = -1 \ N = (3,5,9)
\ PN = 7
89. n( F ) = 38, n( B) = 15, n (C ) = 20
n( F È B È C ) = 58, n ( F Ç B Ç C ) = 3
n ( F È B È C ) = n ( F + n ( B ) + n (C ) - n ( F Ç B ) - n ( F Ç C ) - n ( B Ç C ) + n ( F Ç B Ç C ))
n ( F Ç B) + n ( F Ç C ) + n ( B Ç C ) = 18
Sec: Sr.Super60_NUCLEUS & STERLING_BT Page 16
SRI CHAITANYA IIT ACADEMY, INDIA 13‐01‐23_ Sr.S60_NUCLEUS & STERLING_BT_ Jee‐Main_GTM‐06_KEY &SOL’S
a, denote number of men who got medals in foot ball and basket ball.
b, denote number of men who got medals foot ball and cricket.
c, denote number of men who got medals basket ball and cricket.
d, denote number of men who got medals in all the three sports.
a d b d c d 18 (d = 3) or a b c 9 .
90. 175 = 52.7.245 = 5.72.875 = 537.1715 = 5.73
Let a = log5, b = log 7
log175 2a + b log875 3a + b
a= = b= =
log 245 a + 2b log1715 a + 3b
1 - ab (a + 2b )(a + 3b ) - (2a + b )(3a + b )
=
a - b (2a + b )(a + 3b ) - (a + 2b )(3a + b )
=
(
5 b 2 - a2 )=5
b 2 - a2
CHEMISTRY
31) 1 32) 3 33) 1 34) 3 35) 1
36) 2 37) 2 38) 1 39) 2 40) 3
41) 4 42) 4 43) 1 44) 3 45) 2
46) 4 47) 1 48) 3 49) 2 50) 1
51) 42 52) 30 53) 1 54) 1 55) 3
56) 0 57) 4 58) 2 59) 24 60) 2
MATHEMATICS
61) 4 62) 3 63) 4 64) 3 65) 3
66) 3 67) 2 68) 3 69) 4 70) 4
71) 3 72) 1 73) 2 74) 3 75) 1
76) 2 77) 1 78) 4 79) 4 80) 4
81) 75 82) 0 83) 1062 84) 5376 85) 1
86) 2 87) 12 88) 1552 89) 12 90) 2
SOLUTIONS
PHYSICS
1.
0 0 0
1 1 1
0 1 0
1 0 0
From the truth table
Y = A.B
So it is “AND” gate
2
h1 d 1
2. d 2 Rh d h h1 900 m
h d
h
3. Given,
mv0
Velocity of an electron after time ‘t’
E e Ee
V V0 t V0 t Wave length
m m
h h 0
mv Ee
1
eE0
m v0 t t
m mv0
4. A A0 e t
A 1 t 30
Then 4 T 7.5
A0 2 t /T
T 4
Y V
E q
X
B
5. Z
E0
C
B0
FE E0 q
FB q B0
FE C
10
FB V
2 tan
6. R.P
1.22
R.P medium m 2
R.P air air 1
1
7. tan 1 tan
cos
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 17‐01‐23_ Sr.S60_NUCLEUS&ALL_BT _ Jee‐Main_GTM‐07_KEY &SOL’S
1
tan 60 tan
cos 450
3
Actual dip tan 1
2
R 4 3 16 3 J
2
8. H DC I DC
2
H AC I rms R1 4 / 2 2 16 J
2 2
I V1 0
9. R
2
I ____(1)
R r1 r2 R r1 r2
But V1 Ir1 _____(2)
Given V0 0 _____(3)
From (1),(2) and (3), R r1 r2
I
10. T 2
MBH
2
M 1 I1 T2 8
M 2 I 2 T1 3
3RT
11. A. RMS velocity
M
T is same & M is same so, RMS velocities will be same
So, A is correct
B. n1 : n2 1: 4
n1 RT1 n2 RT2
p1 : p2 :
V1 V2
n1 : n2 1: 4
T1 T2 ,V1 V2
So, B is correct
C. P1 : P2 1: 4 and not 1 : 1
So, C is wrong
D. rms velocities are equal so D is wrong
ax
Q ax q0 Q
12.
KQq0 KQq0
Fnet towards right
a x a x
2 2
a x 2 a x 2
KQq0 KQq 4ax
a2 x2
0
2
a4
KQq0 4ax Qq0
x
4 0 a 3 0 a 3
F Qq0
a net x
m 0 ma 3
2 0 ma 3 4 3 0 ma 3
T 2
Qq0 Qq0
L L L K A 1
13. R1 : R2 1 : 2 1 . 2 . 2 2.9. 9
K1 A1 K 2 A2 L2 K1 A1 2
Let junction temperature be T
T 450 T 0
Then , 0
R1 R2
R1 R2 450 0
T
R1 R2 R1 R2
1 450 R2 9 450
T 450 C
1 R2 / R2 R1 10 9
14. A. Small temperature difference allows use of newton’s law of cooling
dQ
kA 0
dt
dQ
0 is doubled doubled
dt
dQ dQ
B. : TA4 : TB4 2834 : 2934
dt P dtQ
4 4
293 10
1: 1: 1
283 283
40
1:1 = 1 : 1.15
283
[considering same emissivities]
15.
150
100 125
Initial
Effectively , 25 cm column of water from top of right vessel entered the left G mgh (h is
height reduced of the COM)
16 25103 g 25 102 1 J
f f
18. mg
N – mg = 0, f N
f = ma a g 4 m / s2
22 02
u = 0, 2 u 2as s
2 2
0.5m
2 4
19. ML2T 2
M L 2T
2 % error = 5% + 2(5%) – 2 (-5%) = 25%
M L T
20. Consider downward –ve
Then, u = - 100 a = -10
100 10t and after collision , the velocity becomes zero from – 200 almost suddenly
so, option A is correct
21. F 12t 3t 2 ; 1.5 12t 3t 2
1.5 12t 3t 2 d t3
4t t 2 4t t 2 2t 2
4.5 dt 3
To change the direction of motion, pulley need to come to rest momentarily,
t3
2t 2 0 t 6sec
3
d t3 2t 3 t 4 18
2t 2 t 6sec 36 rad rev
dt 3 3 12
2u 2u sin
22. Given, T1 T2 1 2
g g
H1 u12 2g
u1 u2 sin 2 2 1
H 2 2 g u2 sin
K
23. Initial maximum velocity at mean position, v1 A11 , 1
m1
By LCLM, m1v1 m1 m2 v2
m1v1 K
V2 A ,
m1 m2 2 2 2 m1 m2
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 5
SRI CHAITANYA IIT ACADEMY, INDIA 17‐01‐23_ Sr.S60_NUCLEUS&ALL_BT _ Jee‐Main_GTM‐07_KEY &SOL’S
200V1 50 Hz
1 1 1 V 200
xC i
C 100 C 2 Z X C2 R 2
400
2
X C2 200 2 X C 100 12
1 100 50
100 12 C F F
100 C 12 3
S l S 50
29. S 2400
R 100 l 5600 700
30. 1 MSD = 1 mm,
10VSD = 9 MSD 1VSD = 0.9 mm
LC = 1MSD – 1VSD = 0.1 mm = 0.01 cm
Zero error = +4 divisions
MSR = 4.1 cm, VC = 6
Diameter = MSR + (VC – zero error) LC
4.1 6 4 0.01 4.12cm 412 102 cm
CHEMISTRY
80 0.36
31. % Br 100 34.04
188 0.45
32. PhSO2Cl Hinsberg reagent
Ph C NH 2 Ph N C O
O
Hoffmann bromamide reaction
R NH 2 carbyl amine reaction
i amine
HCl
NaI
OH OH OH
A B
41. BeCl2 & AlCl3 acts as lewis acids and Be OH 2 , Al OH 3 are amphoteric
42. Pyrophosphoric acid H 4 P2O7
43. Calcination and leaching are used in concentration of ore not in the purification of metal
44. H 2O2 is used as OA & RA in both medium and dH 2O2 : 1.44 gm / cc , d D O 1.1059 gm / cc 2
MATHEMATICS
61. Circle is x y 2 gx 6 y 19c 0
2 2
5 t 3 dt , x 4
f x 0
2 x
x 4 , x4
5 x 3 , x 4 8 x , x4
f ' x 1 1
2 x , x 4 2 x 4 , x 4
4
1
f x is decreasing in , 8,
8
63. 2 x ky 5 z 1, 3kx ky z 5 are two perpendicular planes
6k k 2 5 0
k 1,5
But k 3 k 1
2 x y 5 z 1, 3x y z 5
P 2 x y 5 z 1 3 x y z 5 0
x 3 2 y 1 z 5 5 1
1
x- intercept = 1 5 1 3 2
2
5 1
y intercept = 7
1
64. A 1,1 B 4,3 C 2, 5
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 9
SRI CHAITANYA IIT ACADEMY, INDIA 17‐01‐23_ Sr.S60_NUCLEUS&ALL_BT _ Jee‐Main_GTM‐07_KEY &SOL’S
Area ABC 18
Let P , lies on BC
1 1 1
1 1
Area APB 1 2 5 7
2 2
4 3 1
Area APB 4 144
Given 2 5 7
Area ABC 7 7
144
2 5 7 ------(1)
7
Equation of AC is 2 x y 1 0 ----- (2)
1
It cuts x-axis at M ,0
2
Equation of BC 4 x y 13 0 --- (3)
Solving (1) & (3) we get
36 53 20 11
P , or ,
7 7 7 7
Since x coordinates of B,C are 4 and 2 respectively
20 11
P , 4 x intercept of P 2
7 7
1
Equation AP is 2 x 3 y 1 0 y 0x
2
1
Let N ,0
2
1 1 1
1 1 1
Area of NAM 0 1
2 2 2
1
0 1
2
65.
h
in ABCtan2
x
2h
in ADE tan
x 7h
2t
1 7
1 t2
1 t 2 2 7t 4 t 2 2 7t 3 0
2 7 28 12 2 74
t 72 t 7 2
2 2
66. truth table
P q ~p ~q p^~q
T T F F F
T F F T T
F T T F F
F F T T F
p ^ r p^ ~ q ~p p ^ q
T F F T T T
F T F T F F
F F T F T/F F
F F T F T/F F
ris equivalent to q.
67. a 2i j 5k b i j 2k
iˆ ˆj kˆ
a b 2 1 5 iˆ 2 5 ˆj 4 5 kˆ 2
2
i j k
a b i 2 5 5 4 2 ( 2) j (4 5)k
1 0 0
ˆ ˆ ˆ ˆ
ˆ
[( a b ) i ] k ( 2) j (4 5 ) k k
23 3
4 5
2 2
ˆ ˆ ˆ
i j k
b 2 j 2 4i 2k
0 2 0
ˆ
| b 2 j | (4)2 (2)2 16 4 2
dy dy 4
2y 8 m
dx dx y
dy 4 2
at P (a, b) 1, or
dx b 5
From (1) b 4 or 10
25
b2 8a a 2,
2
25
A 2 25
2
B 4 10 40 A B 65
70. a i j k
ˆ ˆ ˆ
b 3i 5 j 4 k
a b i (4 5) j (4 3) k (5 3)
Given
ˆ
a b i 9 j 12 k
By comparison
4 5 1 5 3 12
5 5 5 15
1 3
a 3i j k
b 3i 5 j 4 k
b 2a 3 6 i 7 j 6 k
9i 7 j 6k
b a 0i 4 j 3k
Projection of b 2a on b a
(b a ) (b 2a )
(b a )
28 18 46
5 5
71. y 2 8 x 4 ; x 2 y 2 4 3x 4 0
Points of intersection 0, 2
2
-2
x2 4 3x y 2 4 x 2 22 3 x y 2 12 4 12
x 2 3 y 4
2 2
2 2
y 42 x 2 3
x 2 3 16 y
2 2
y2 4
2
1
A 16 y 2 2 3 dy 4 12 3 8
2 8 3
dy
72. yx
dx
I.F1 e e x
dx
f ( x) sin [ x] 2 [ x]
2
4 1 2 3 4
Now 0
f ( x ) dx f ( x) dx f ( x) dx f ( x) dx f ( x) dx
0 1 2 3
1 2 0 4
(0 2 1) dx ( 1 2 2) dx (0 2 3) dx (1 2 4) dx
0 1 2 3
(1 0) 1(2 1) (3 2) (4 3)
1 1 1 1 2
/3
8sin x sin 2 x
74. Given I
/4
x
dx
8sin x sin 2 x
f x
x
21 3
2r
4 4 2 1
4 3
5
min area
12
f x is an increasing function
/3 /3
f / 4 I f / 3
/4 /4
4 2 1 4 2 1 4 2 1
f / 4
/4 /4 1
4 2 1 /3 /3
f / 4 I f r / 3
1 12 / 4 /4
5
4 2 1
12 12
____(1)
5
I
12
2023 2 2023 1
2022 2021
75.
7k1 2 7k1 1 7 N 22022 1
2022 2021
Remainder 2 1 2022
8 1 7 1 1
674 674
Remainder = 1-1 = 0
5
76. S5 [2a 4d ] 5a 10d
2
9
S9 [2a 8d ] 9a 36d
2
S 5 5a 10d 5
Now 5
s9 17 9a 36d 17
17a 34d 9a 36d
8a 2 d d 4 a ---- (1)
Now a15 a 14d 57a
given 110 a15 120 110 57a 120
1.929 a 2.105
10
Now S10 2a 9d 190a from (1)
2
= 380 for a = 2.
V x y 2 x 3 y 2 x 2 ( y 6) 2
2 2
77.
3( x 1) 2 3( y 2) 2 30
V is min at Z 0 1 2i v0 30
2 2
2Z 02 z03 3 v02 2( 3 4i ) ( 11 12i ) 3 900
| 8 6i |2 900 100 900 1000.
1 2
78. A , R
2 5
Trace 1 5 4,| A | 5 4 1.
A2 4 A I 0
2 A2 8 A 2 I 0
2 A2 8 A 2 I .
A2 A 2I 2 8 10.
79. i) aR1b ab 0
reflexive; let a R
aR1 a a 20
R1 is reflexive.
Symmetric; let a, b R
aR1b ab0
ba0
bR1a.
R1 is symmetric
5 64 5
59 a 642
82. Z 2 Z 0 x y x iy 0
2
y 2 x 1 0 x2 y2 x 0
and
y = 0 (or) 2x-1 = 0
of y = 0, x = 0,-1
1 3
of x , y
2 2
Re Z Im Z
Z S
1 3 1 3
0 0 1 0 0
2 2 2 2
83. f x 2 x2 x 1
f x 800 800 2 n 2 n 1 800
19 n 20
20
f x 2n
ns n 19
2
n 1 , replacing with n – 20
40
2n 2 81n 819
n 1
= 5376
85. Put x 2 t , then M + m = 2
dy y
Given equation
dt sin t cos t log tan t
sin t cos t
sin t cos t.log tan t
dt
sin t cos t log tan t
I.F e
log tan t
sin t cos t
Solutions is y log tan t dt sec t cos ect dt
sin t cos t
sec t tan t
log C
cos ect cot t
,1 is on this C log 3 2 3
6
When t , y 1
3
y 1
3
86. y 5 9 xy 2 x 0 -----(1)
dy dy dy 9y 2
4 y4 9x 9 y 2 0 4
dx dx dx 5 y 9 x
Tangent is parallel to x-axis
dy 2
0 y , not satisfying (1)
dx 9
Tangent is parallel to y-axis, if 5 y 4 9 x 0
10
From (1), y 5 5 y 5 y 4 0
9
5
y 0,
18
M 0, N 2, M m 2
16
For ellipse a 2 b 2 1 e22 64 1
113
2a 2 2 64 97 64 97
d
b 113 8 113
113d 1552
89.
cos sin 1 x cot tan 1 cos sin 1 x k ,0 | x | 1
2
1 2 x2
k
1 x2
1 2 x2
k 2 1 2x2 k 2 k 2 x2
1 x 2
k 2 2 x2 k 2 1
k 2 1
x 2 sum of the roots 0 1 ------- (1)
k 2
x bx 5 0
2
1 1
Sum of the roots = 2 2 b ---(2)
2
2 1 b (from(1))
2
2 -----(3)
b 1
Product of roots 5
1 1 2
2 2 5 2 1 5 b 4 (from(3))
2 k2 1 2 1 b
2
2
3k 1 k
2
12
5 k 2 3 k2
90. x 15, M 15
x 150 15 xi2
225
10
xi2 2400
x1 xn2 15 25 xi 10
x new 14
10 10
2400 (25) 2 (15) 2
M new (14) 2
10
2000
M new 196 4 S D 2
10
CHEMISTRY
31) 3 32) 1 33) 2 34) 1 35) 1
36) 1 37) 4 38) 3 39) 1 40) 3
41) 3 42) 4 43) 4 44) 2 45) 1
46) 1 47) 3 48) 3 49) 4 50) 3
51) 16 52) 32 53) 6 54) 536 55) 6
56) 55 57) 9 58) 6 59) 7 60) 7
MATHEMATICS
61) 4 62) 2 63) 1 64) 1 65) 3
66) 2 67) 2 68) 2 69) 3 70) 2
71) 4 72) 3 73) 3 74) 2 75) 2
76) 4 77) 3 78) 3 79) 4 80) 4
81) 17 82) 9 83) 6 84) 21 85) 2
86) 8 87) 7 88) 191 89) 6 90) 8
SOLUTIONS
PHYSICS
1. Independent of R.
Intensity of radiation at sphere
The radiation pressure acting on sphere =
speed of light
Po
= where P0 is the power radiated by sun
4 x 2c
Po
Force on sphere due to radiation pressure = R2
4 x c
2
GMm
Gravitational pull on sphere =
x2
The gravitational force and the force due to light pressure both decrease with the square
of the distance from the Sun. If a ball of radius R floats, it must be in neutral equilibrium
and will float at any height above the sun. This is quite independent of the radius of the
sphere.
2. The plot shows a linear relationship between x and log y, which means that y is an
exponential in x. Since y decreases as x increases, the answer must be (4).
3. Gravity exerts a force mg downward on the block, which means that the wedge must
exert a force mg upward on the block. Thus, the block exerts a force mg downward on the
wedge, and gravity also exerts a force mg downward on the wedge. Since these forces
have no horizontal components, no friction with the ground is necessary to keep the
wedge static.
1
4. X L – . Hence the graph of X vs. f is . Therefore the plot of
C
2t
Q0 dq Q0 22RCt
Hence q (1 e 2 RC
) or i e
2 dt RC
12. From symmetry of induced charges on sphere, the net electrostatic force Fe on induced
charges on sphere due to point charge is along line joining centre of sphere and point
charge as shown.
13.
Given NED 30
BED 120
BCDE is cyclic quadrilateral
BCD 60
The line CE will be angle bisector of BCD
a BE a 3 2
BE = a tan30º = now tan i
3 AB a / 2 3
2 2 1 4
sin i now by snell’s law 1 sin i n sin r n n
7 7 2 7
1
vcm = velocity of centre of mass of disc = 0. L I cm MR 2
2
18. From archimedes principle statement-2 is correct explanation of statement-1.
19. mT const. Fu; r ln m ln T C
d m dT d m dT
0
m T m T
\ =
d m 1
Now 1% (–ve sign indicates decrease)
m 100
dT = 1 (given) T = 100 K.
20. The magnitude of phase difference between the points separated by distance 10 metres
= k×10 = [10 × 0.] ×10=
1
21. mVm2 15 103 Vm 0.150 m / s
2
g
A 0.150 m / s Lqm 0.150 m / s
L
0.150 0.150
gL 3
1.5 m
100 10 0.1
my A4 A4
22. We have K .Q K .Q 48 .50 A 100
m y m A A
23. Strain
T 10 –5 200 2 10 –3
Stress = Y (strain)
Stress = 1011 × 2 × 10–3 = 2 × 108 N/m2
Required force = stress × Area = (2 × 108) (2 × 10–6) = 4 × 102 = 400 N
4V 6V 6V 6V
26. (Moderate)
8 6 4
E 4 2 4 6V ; Q 4V 1 F 4C
1 1 1
4 2 4
27. e (v B).
e [ iˆ (3iˆ 4 ˆj 5kˆ)] .5 ˆj
e 25 volt
c 0 E02 3 108 8.85 1012 362
28. I av
2 2
1.72W/m 2
29. Vin V VZ
band width
30. n
signal band width
CHEMISTRY
31. Conceptual
32. Conceptual
33. Conceptual
34. Negative pole of water molecules will attract the positive charged rod and positive pole of
water can attract negative charge of rod. Hexane is non polar.
35. Water sample is reported to be highly polluted if BOD value of sample is more than 17
ppm
36. Due to steric hindrance BrCl3 cannot be formed.
37. Cyclopentadienyl anion carry a negative charge. Since the complex contains three
negative groups(2 cyclopentadienyl anion ligands and one BF4 counter ion) the oxidation
state of iron is +3
38. I) Incorrect. As the reaction is exothermic, increase in temperature decreases Kc.
II) Correct. Addition of an inert gas at constant pressure drives the reaction in the
direction of increasing number of moles.
III) Correct. Increase in pressure moves the reaction in the direction of decreasing
number of moles.
IV) Incorrect. Value of Kc does not provide any information on rate of the reaction and
hence regarding catalyst.
39. Refer NCERT
40. Conceptual
41. The colloidal particle formed is AgI | I , thus Pb2 will be the most effective in
coagulating it.
42. Refer NCERT
43. Diamnine and dicarboxylic acid must give a polyamide. The connectivity must be
-NH-ring-NH-CO-ring-CO- or the reverse at meta positions of both the rings. Only 4
satisfies this criterion
44. Proline does not have primary amino group while histidine has. With NaNO2/HCl,
histidine gives effervescence of nitrogen.
Serine has an alcohol group and hence gives red colouration with ceric ammonium
nitrate.
Tyrosine has phenolic group and hence would give characteristic colouration with FeCl3.
As both Lysine and glutamic acids both have acidic groups, they both would evolve CO2
with NaHCO3 and hence can’t be differentiated.
45. E2 elimination. Zaitsev product
46. Equanil is a tranquilizer
47. Wolf-Kishner reduction selectively reduces carbonyl group.
48. The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon
atom of the carbonyl group present in propanal. The polarity of the carbonyl group is
reduced in benzaldehyde due to resonance as shown below and hence it is less reactive
than propanal.
49. Refer NCERT
50. The gausche form of N2H4 is stable due decrease in setric repulsion of lone pairs and
nitrogen atoms
51. Conceptual
Sec: Sr.Super60_(NUCLEUS,STERLING) & LIIT _BT Page 6
SRI CHAITANYA IIT ACADEMY, INDIA 18‐01‐23_ Sr.Super60_(NUCLEUS,STERLING)&LIIT __BT_ Jee‐Main_GTM‐08_KEY &SOL’S
s
52. cos
s 1
s
0.47
s 0.47
53. Except I2Cl6 the remaining are angular with oxygen bridge.
Initial Mass 1.43 1.5
54. As the gas behaves non-ideally, Final density = 536 g / L
Final Volume 0.004
55.
At the first nearest position there are 8 atoms while at the second nearest position there
are 6 atoms.
56. MnO2 + C2O24- + 4H+ ¾¾ 2Mn2+ + 2CO2 + 2H2O
2MnO-4 + 5C2O24- + 16H+ ¾¾ 2Mn2+ + 10CO2 + 8H2O
0.1´ 30.0
2 ´ nC O2- (unused) = 5 ´ nMnO- 2 ´ x = 5 ´ x = 7.5 ´10-3 mol
2 4 4 1000
1.89
nC O2- used) = - 7.5 ´10-3 = 7.5 ´10-3 = nMn (in pyrolusite)
2 4 126
7.5 ´10-3 ´ 55
% of Mn= ´100 = 55%
0.75
57.
CH4 10 OH CO32 7 H2O 8 e
1 80 3600 1
No.of Faradays required
8 96500
1 80 3600 1
VCH4 24 L 9L
8 96500
58.
59. A dodecapeptide is made up of 12 amino acid units. On hydrolysis they take up 12 moles
of water.
89 x
100 52.9 x 7
980 11 18
60. Primary amines give carbylamine test.
MATHEMATICS
n 2 n 1 1
x x
g n e d x n 2 n 1 ex / 2 dx
x /2
61. 0 2 0 2
1
x
n n 1 ex / 2 dx
2
n 2 n 1 4 2e1/2
0 2
So, minimum value is 12 6 e
2
et t 5 e
62. f 't f ' 1
t
2
4
2t 2 2 25
dv 1 ev v 2
Let x 2 v 2x dv
dx 2 v 2 2v 2 2
2
1 v 1 2v 2 1 ev 1 ex
e 2
v 2v 2 v 2v 2 2 v 2v 2 2 x4 2 x2 2
2 2
2 2
t
1 1
2 2
1 ex et e 1
f t
t 4 2t 2 2 2 2 f 1
2 x4 2 x2 2 10 4
0
e e 1 7e 1
f 1 f ' 1
10 25 4 50 4
2
dt 1 t sin 2022 tdt
63. Let x t 2 x I 2022
2
tan 1 ln 1 ln x 2 c
x 2 2 x 2 2
it passes through (3, 2)
1
tan 1 0 ln1 ln1 c c 0
2
it also passes through (p + 2, 3)
1 1 1 1
tan 1 ln 1 2 ln p
p 2 p
2 tan 1 ln 1 p 2
p
Sec: Sr.Super60_(NUCLEUS,STERLING) & LIIT _BT Page 8
SRI CHAITANYA IIT ACADEMY, INDIA 18‐01‐23_ Sr.Super60_(NUCLEUS,STERLING)&LIIT __BT_ Jee‐Main_GTM‐08_KEY &SOL’S
65. From the diagram, AOB BOC COD 60
YOD
6
2
n1 12 d12 n2 22 d 22
200 9 81 300 16 38
33600
67.2
n1 n2 500 500
1
m 1
m 1
m m
1
1 1
73. lim am 1
m
m m m e 1
h
74. In ECD, tan 3
CD
CD h cot 3 ____________ 1
h
In EBD, tan 2
BD
BD h cot 2 ____________ 2
h
In EAD, tan
AD
AD h cot ____________ 3
sin
75. Define A as the number of the elements in S, we have
2006 2005 2006 2003 2006
A 9 9 ..... 9
1 3 2005
2006
2006 2006 k 2006
2006
On the other hand, 9 1 2006 9 and 9 1 2006
1 k 92006 k
k 0 k k 0 k
5 1 1 5 5 1
x or x x is positive x
2 2 2
80. Equation of AG
4 1 3
y4 x 0 ; y 4 x
05 5
3
5 y 20 3x; y x 4
5
4
Equation AC y x4
5
PQ 10
Equation EF, y 2 x 7
EF 91
81. Conceptual
2 2cos x cos 2 x
x 3
x 3
82.
lim 3 2 cos x cos 2 x
x 0
x 2
is of the form1
lim
it is equal to e x0 x2
2 2 cos x cos 2 x
Now, lim
x0 x2
C2
10 1 x
12
..... C10
10 1 x
20
2 22 210
10 2
1 x 10 1 x 10 1 x
3
1 x
10
Coefficient of x in 1 x
10 10
C0 C1
10
C2 C3 ..... C10
10
2 2 2 2
10
1 x
Coefficient of x in 1 x
10
1 2
10
Coefficient of x10 in
1 x
2 10
C5 252
10
63
10 10
2 2 1024 128
i
1 i 3
89. f e 3 a c b c;
2
1 i 3
a c b c 4038 3i 4032
2 2
c a
a c 8076; b 4032 a c 4038and b 4032
2
90. A 3, 4,5,...., ; B ...., 7, 6
CHEMISTRY
31) 3 32) 2 33) 3 34) 4 35) 3
36) 4 37) 1 38) 4 39) 3 40) 3
41) 1 42) 2 43) 1 44) 3 45) 4
46) 4 47) 2 48) 3 49) 2 50) 4
51) 4 52) 6 53) 3 54) 2 55) 2
56) 5 57) 3 58) 3 59) 6 60) 6
MATHEMATICS
61) 2 62) 4 63) 3 64) 3 65) 2
66) 1 67) 4 68) 1 69) 1 70) 3
71) 1 72) 3 73) 2 74) 4 75) 3
76) 4 77) 3 78) 4 79) 4 80) 1
81) 2 82) 7 83) 4 84) 3 85) 2
86) 24 87) 2 88) 6 89) 4 90) 1
SOLUTIONS
PHYSICS
1. Conceptual
2. Conceptual
3. Conceptual
4. Conceptual
5. Conceptual
6. Conceptual
7. Conceptual
8. Conceptual
9. Conceptual
10. Conceptual
11. Conceptual
12. Conceptual
13. Conceptual
14. Conceptual
15. Conceptual
16. Conceptual
17. Conceptual
18. Conceptual
19. Conceptual
20. Conceptual
21. Conceptual
22. Conceptual
23. The correct answers are
b) continuous if there is no charge at that point
d) discontinuous if there is a charge at that point
24. Conceptual
25. Conceptual
26. Conceptual
27. (a) a larger angle to be subtended by the object at the eye and hence viewed in
greater detail.
(b) the formation of a virtual erect image
28. Conceptual
29. Conceptual
30. Conceptual
CHEMISTRY
31. Greater the magnitude of charge on the electrolyte added more will be the
coagulating power towards oppositely charged colloidal solutions.
32. Extent of physical adsorption is directly proportional to critical temperature of a
gas.
33. In an atom In an atom the Z eff experienced by the electron decrease with increase in
azimuthal quantum number.
34. In pentaacetate form of glucose as it cannot revert back in to open chain form with
free aldehyde group
35. For alkali metals melting and boiling points decreases in the order
F Cl Br I
36. Magnetic moment is directly proportional to number of unpaired electrons available
37.
OCH 3 OH OH
SOCl2 CH 3OH
38. NCERT
39. P is a tertiary alcohol, which is not oxidized by chromic an hydride.
40. Addition of inert gas at constant temperature and pressure will favour the reaction
where more number of moles of reaction where more number of moles of gases are
prepared
41. O OH
CH 3 CH 2 C CH 3
CH 3 CH 2 C CH 3
HCN
CN
42. NCERT
43. Greater the splitting energy lower will be the wavelength of radiation absorbed
44. Conceptual
45. LiAIH 4 reduces both C O as well as COOH to alcohols, while NaBH 4 reduces only
C O without affecting COOH .
46. Chromic acid will oxidise primary alcohol in to carboxylic acid.
47. Conceptual
48. LiH , CaH 2 , AlH 3 , SiH 4
49. For an irreversible spontaneous process dS 0 and dG 0 .
50. Localized lone pair on nitrogen atom and no inversion will make it a better base.
51. Chloramphenicol, Ofloxacin, Ampicillin, Amoxycillin
3 PtCl6 4 NO 8H 2O
52. 2
3Pt 16 H 4 NO3 18Cl
MATHEMATICS
61. Conceptual
62. Conceptual
63. Conceptual
64. Conceptual
65. Conceptual
66. Conceptual
67. Conceptual
68. Conceptual
69. Conceptual
70. Conceptual
71. Conceptual
72. Conceptual
73. Conceptual
74. Conceptual
75. Conceptual
76. Conceptual
77. Conceptual
78. Conceptual
79. Conceptual
80. Conceptual
81. Conceptual
82. Conceptual
83. Conceptual
84. Conceptual
85. Conceptual
86. Conceptual
87. Conceptual
88. Conceptual
89. Conceptual
90. Conceptual
CHEMISTRY
31) 4 32) 3 33) 3 34) 1 35) 1
36) 3 37) 4 38) 3 39) 3 40) 2
41) 2 42) 3 43) 3 44) 4 45) 3
46) 1 47) 3 48) 3 49) 2 50) 2
51) 3 52) 16 53) 2 54) 4 55) 8
56) 500 57) 1 58) 7 59) 3 60) 600
MATHEMATICS
61) 2 62) 1 63) 2 64) 3 65) 1
66) 1 67) 1 68) 2 69) 1 70) 3
71) 2 72) 4 73) 1 74) 1 75) 3
76) 1 77) 4 78) 3 79) 3 80) 3
81) 1 82) 1 83) 1 84) 0 85) 78
86) 2 87) 0 88) 4 89) 2 90) 8
SOLUTIONS
PHYSICS
1. v cos(900 ) u cos or v sin u cos ; v u cot
vT2 u 2 cot 2
ac ; R
R g sin
2. mg sin
a) when t , f will be upwards & f= mg sin kt
k
mg sin
b) At t , f 0
k
mg sin
C) At t till the body starts to moves f will be down wards and f= kt mg sin
k
d) Once it start moving f = constant
3. Conceptual
4. a) mvo sin 5R mv1R....(1)
1 2 GMm 1 2 GMm
b) 2 mv0 5 R 2 mv1 R ....(2)
1 8GM
Solving sin 1 1
5 5v02 R
5. 2 gyL2 2 g (4 y) R 2
L
R
2
6. 1 1
2T gh
r1 r2
h 11.36 mm
7. Resolving power is directly proportional to diameter of objective
8. Electromagnetic waves interact with matter via their electric and magnetic field which
in oscillation of charges present in all matter. The detailed interaction and so the
mechanism of absorption, scattering, etc. depend of the wavelength of the
electromagnetic wave, and the nature of the atoms and molecules in the medium.
9. Conceptual
10. Potential drop across C1 is maximum
Hence energy stored in C1 is maximum as Energy (potential drop)
11. r
4R
9
By symmetric method
13. Use Fleming’s left hand rule, we find that a force is acting in the radially outward
direction through the circumference of the conducting loop.
14. i1rms
Erms
130
10 A
xc2 R12 13
Erms
i2 rms 13 A
xL2 R22
i1 R1
R2
i2
Power dissipated
i12rms R1 i22rms R2 102 5 132 6 = 1514 W = power delivered by battery
19. CONCEPTUAL
20. Conceptual
21. Given Q x 2/5 y 1t 1/2 z 3
Q 2 x y 1 t z
100 100 100 100 3 100
Q 5 x y 2 t z
2 1
2.5 2 3 0.5 1 5%
5 2
22. lose in gravitational P.E= gain in spring P.e
1
mgh k ( h cot h) 2
2
2mg
or (cot 1)
kh
2mg
cot 1
kh
23.
Sol: mg
x (l / 2)
2
l l ml 3k 3k
kx
2 2 2 m m
25. 2
Er Ar v2 v1
2
1/ 9
Ei Ai v1 v2
E
Therefore, r 8 / 9
Ei
1,2
28. v
2
dv
0,0
E.d r d r dxiˆ dyjˆ
E .d r (2 xy y ) dx ( x 2 x ) dy d ( x 2 y xy )
v (1,2)
2
dv
(0,0)
( x 2 y xy )
V 2 12 2 1 2 0
V 2 4, V 2volts
29. 20
10 t
3
I1 1 e 510 1.5 A
3
10 2
4 5
20V 20V
L 5mH I1 I2 5
6 C 0.1mF
t
20 1103
I1 e 1.0 A
10
From superposition I I1 I 2 2.5 A
1 1 36 3 27 5
R 1 L
L 4 5 4 5 27
CHEMISTRY
31. Greater the polarity of solvent more will be its interaction with substance which will
effect R f . TLC is an example of adsorption chromatography.
32. Isomeric ethers have relatively low boiling point than alcohols. Cresol is soluble in
aqueous NaOH .
33. BF3 , CO32 , NO3 Planartriangular
Sec: Sr.Super60_(NUCLEUS,STERLING) & LIIT _BT Page 5
SRI CHAITANYA IIT ACADEMY, INDIA 20‐01‐23_ Sr.Super60_(NUCLEUS,STERLING) & LIIT _BT _ Jee‐Main_GTM‐10_KEY &SOL’S
2 2
SO , CrO , CF4 tetrahedral
4 4
NH 3 Pyramidal
SF4 sea saw
34. CH 3
OH
+
H 2O
60. A2 B2 2 AB H 300 KJ
H r B.E A2 B.E B2 2( B.E AB )
MATHEMATICS
61. p ~ q ~ p q ~ q p ~ p q
~ q p ~ p q ~ q F q ~ q q F F F F
Statement-1 is true p q ~ q ~ p
~ q ~ p ~ (~ q) ~ p q ~ p ~ p q
Statement-2 is true
Thus, both the statements are true and
statement-2 is not the correct explanation for statement-1
62. The given equation is dx – x (ydx+ xdy )= x5y4(ydx + xdy)
1
dx 1 5 5 xy x 5 y 5
(1 x 4 y 4 )d( xy) lnx = xy + x y ln c x= ce 5 .
x 5
63. The roots of first equation are –1 and a2 –1. Now the roots of second equation are 1,
a2 4a.
According to given condition a2 – 1 < 1 and a2 – 1 < a2 4a
a 2, 2 and a > a , 2
1 1
4 4
64. 1
Since 2
x 3x 2 0, 0 tan 2
x 3x 2
2
And 4 x x 2 3 0 0 cos 1 4 x x 2 3 .
2
Adding, we have 0 L.H.S.
The given equation has no solution.
65. 2 4 6 2(n 1)
S (n 1) cos (n 2) cos (n 3) cos ...... cos
n n n n
2 4 2(n 1)
S 1cos 2 cos .......... (n 1) cos
n n n
2 4 2(n 1)
2 S n cos cos ....... cos
n n n
2 2(n 1)
sin(n 1)
2S n n cos n n
n
sin 2
n
66. Let be the required angle, then
67. dy x2
12
dx y1
x x
1
possible if and only if 4
1 i.e. 0<x<1. Hence the domain of the given function is
x
x : 0 x 1
75. The chord of contact y yo 2 x xo of the point P xo , yo w.r.t the parabola is tangent
to the hyperbola x 2 y 2 1 iff 2 x02 y02 4 . Locus of P is the ellipse 2 x 2 y 2 4
76. 1 1
x 1 2 x2 x
C=AB= 1 2 x 2
3x 1
4 x 2 1 3 x
1 x 1 1
( x ) cij = c11 c12 c22 = +2x+6+1+2+2x+3-2+ 2 = +4x+10+
x 4x 1 x 1
1i , j 2
4x
x
1
Let 4x t t 4
x
1 57
( x ) min 4 10
4 4
2m !
n
2 1 m 1 2 1 1 n 2
n/2 n/2
1
m
2
80. Let the distance between each of the pole be x
h
tan
a 9x
h cos a sin
x=
9sin
15 15
x 2 x
2
2
n n
86. g 2 x g 2 x
& g 2 x sin x is an odd function I1 0
Now g 2 2 x g 2 2 x g x g 4 x g1 x g1 4 x
4 4 4
1 dx dx
So I 2 g1 x
dx 1 g1 4 x
g1 x
0 1 e 0 1 e 0 1 e
4 g1 x 4
e
g1 x
dx 2 1 2 : 2I 2 1dx I 2 2
0 1 e 0
87.
3 i k , i 3 j and i 2 sin j k
3 0 1
1 3
0 0
1 2 sin
2 sin 3 6 0 7 3 2 sin 0 0
88. Max values of sin x + cos x and 1 + sin 2x are 2 and 2 respectively.
2
2
Also 2
the equation can hold only when sinx + cos x = 2 and 1+sin 2x=2
Now sin x + cos x = 2
cos x 1 x 2n
4 4
n
1 sin 2x 2 sin 2x 1 x 1 n
2 4
The value in [-, ] satisfying both the equations is . [when n = 0 ]
4
89. 1 1
4 ex
sin x 4e x 1 sin x
lim
x 0
f ( x ) = lim
x 0
4 2 = lim
x 0
1 3 2 =0+2=2
1 e x x e e
x x x
4e x
sin x
lim f ( x ) = lim 4 2 =4-2=2
x 0 x 0
1 e x x
90. 1
We have sin x 8cos 2 x 1 sinx | cosx| =
2 2
Case – 1 when cosx > 0
1 1 3 9 13
In this case sinx cosx = sin 2 x 2x , , ,
2 2 2 4 4 4 4
3 9 13
x , , ,
8 8 8 8
3
As x lies between 0 and 2 and cos x 0 , x ,
8 8
Case – 2 when cosx < 0
1 1 1
In this case sinx cosx = or sin2x
2 2 2 2 2
5 7 13 15 5 7
x , , , x , as cosx < 0
8 8 8 8 8 8
Thus the value of x satisfying the given equation which lie between 0 and 2 are
3 5 7
, , , These are in A.P. with common difference .
8 8 8 8 4
CHEMISTRY
31) 4 32) 2 33) 3 34) 4 35) 3
36) 2 37) 3 38) 2 39) 4 40) 4
41) 1 42) 1 43) 2 44) 1 45) 2
46) 2 47) 3 48) 3 49) 4 50) 1
51) 80 52) 50 53) 0 54) 40 55) 200
56) 18 57) 3 58) 69 59) 3 60) 5
MATHEMATICS
61) 2 62) 1 63) 2 64) 3 65) 1
66) 1 67) 3 68) 1 69) 3 70) 1
71) 1 72) 2 73) 2 74) 3 75) 3
76) 2 77) 1 78) 1 79) 4 80) 1
81) 8 82) 1 83) 9 84) 1 85) 9
86) 3 87) 23 88) 166 89) 9 90) 24
SOLUTIONS
PHYSICS
1. No of divisions on main scale N
No of divisions on vernier scale N 1
Size of main scale division a
Let size of vernier scale division be b then we have
aN
aN b N 1 b
N 1
aN
Least count is a b a
N 1
N 1 N a
a N 1
N 1
2. 2u sin 300 2 10 1 / 2 2
t sec
g cos30 0 10 3/2 3
1
R 10cos300 t g sin300 t 2
2
10 3 2 1 14 10 20
10 10 m
2 3 2 23 3 3
3. Limiting friction between block and slab smAg 0.6 10 9.8 58.8N
But applied force on block A is 100 N. So the block will slip over a slab.
Now kinetic friction works between block and slab
Fk k mAg 0.4 10 9.8 39.2N
This kinetic friction helps to move the slab
39.2 39.2
Acceleration of slab 0.98 m / s 2
mB 40
4. 1
By conservation of energy mg 3h mg 2h mv 2 ( v velocity at B)
2
1
mgh mv2 ; v 2 gh
2
From free body diagram of block at B
mv 2
B h
N mg
mv2
N mg 2mg; N mg
h
5. By Maxwell’s law, time varying electric field produce time – varying magnetic field
C
and vice-versa. So statement I is correct and, V . So statement II is
r r
incorrect.
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 21‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐11_KEY &SOL’S
6. GMm 1 1
P.E RR dr GMm
0
r2 R R0
1 2
The K.E. acquired by the body at the surface mv
2
1 2 1 1
mv GMm
2 R R0
1 1
v 2GM
R0 R
7. The volume flow rate (Q) of an incompressible fluid in steady flow remains constant
From equation of continuity,
av constant
1
Q a v constant or, a v
Where a area of cross-section and v velocity
If v decreases a increases and vice – versa.
When stream of water moves up, its speed decreases and therefore ' a ' increases
v
i.e. the water spreads out as a fountain. When stream of water from hose pipe moves
down, its speed increases and therefore area of cross-section decreases.
8. Vertical distance covered by water before striking ground H h . Time taken is,
t 2H h / g :
Horizontal velocity of water coming out of hole at P,
u 2 gh
Horizontal range ut 2 gh 2 H h / g
2 h H h
9. The linear momenta given by,
p 2 mE 2 mqV E qV
p m q 4m p .2q p 4 2 2 2
pp m pq p m pq p 1 1 1
10. The wavelength of spectral line of the third member of Lyman series is given by
1 1 1 16
R 1 …………. (i)
1 1 16 15R
The wavelength of spectral line of the first member of paschen series is given by
1 1 1 144
R 2 …………. (ii)
2 9 16 7R
Dividing (ii) by (i) we get
1 16 7R 7
2 15 R 144 135
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 3
SRI CHAITANYA IIT ACADEMY, INDIA 21‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐11_KEY &SOL’S
11. For A 1/ 2 20 min, t 80 min, number of half lifes n 4
t
N
Nuclei remaining g 0 . Therefore nuclei decayed
4
2
N
N0 0
24
For B 1/ 2 40 min, t 80 min, number of half lifes n 2
t
N0
nuclei remaining . Therefore nuclei decayed
22
N
N0 0
22
N 0 40 1 1
N
Required ratio 2 16 15 4 5
N 1 16 3 4
N 0 20 1
2 4
12. As we know, current density,
vd
j E nevd ne ne
E
1 1
ne ee Resistivity
1
or 0.4 m
10 1.6 10 19 19 1.6
19
r1
B1 B2
r2
1 1
0.1 10 2 10 7 1
0.1 2 0.1
2 1
2 10 7 6
10 V
2 0.1
B1lV B2lV
Water
1.33
5 cm
1.5 1cm
Glass
d1 d2 5 1
Apparent depth 3.759 0.666
1 2 1.33 1.5
4.425 Shift 6 cm 4.425 cm 1.575 cm
So most appropriate option will be (c).
15. The two springs are in parallel.
Effective spring constant, k k1 k2
Initial frequency of oscillation is given by
1 k1 k2
f ………. (i)
2 m
When both k1 and k2 are made four times their original values, the new frequency is
given by
1 4k1 4k2 1 4 k1 k 2 1 k1 k 2
f f ' 2 fv
2 m 2 m 2 m
16. We know that velocity in string is given by
T
v ……………. (i)
Where m mass of string
1 length of string
m
The tension T x g …………..(ii)
From (i) and (ii)
gx x 1/2dx gdt x 1/2 dx g dt
dx
2 1
dt 0 0
20
g t t2 2 2 2
g 10
l T
9.9 1015 10
3.3 1018 C
mg
q q
4
E 3 10
18. We have given two metallic hollow spheres of radii R and 4R having charges Q1 and
Q2 respectively.
kQ kQ
Potential on the surface of inner sphere (at A) VA 1 2
R 4R
Potential on the surface of outer sphere (at B)
kQ kQ 1
VB 1 2 Here, k
4R 4R 4 0
Potential difference, V V A V B 3 . kQ1 3 Q
. 1
4 R 16 0 R
Q2
Q1
R A
4R B
Capacitor blocks the DC current. So current will flow in lower loop only.
5
So, VPQ 4 4V
4 1
Charge on 4 F V ' C 4 4 4 2 4 8 C
44
20. Resistance of a metal conductor at temperature t0C is given by Rt R0 1 t ,
R0 is the resistance of the wire at 00 C and is the temperature coefficient of
resistance.
Resistance at 50 0 C , R50 R 0 1 50 ……….. (i)
Resistance at 100 0 C , R100 R0 1 100 ……….. (ii)
From (i), R50 R0 50 R0 …………. (iii)
From (ii), R100 R0 100 R0 ………… (iv)
Dividing (iii) by (iv), we get
R50 R0 1
R100 R0 2
Here, R50 5 and R100 6
22. D
d
D
d
d 3 105 103
0.6 106 600 109 m
d 5 102
600 nm
B 80 10 4 8 mT
30. For minimum impedance, we have
1
X L Xc L
c
1 1
L 0.01 101 103 H 100 mH
2 2
c 2 500
CHEMISTRY
31. Cu2S .Fe2S3 or CuFeS2
32. 2 Pb NO3 2 2H 2O O2
2 PbO2 4 HNO3
33. Si contains vacant d-orbtials so it accepts lone pair of H2O and gets hydrolysed. On
the other hand C in CCl4 can’t do so due to absence of vacant d-ortbials.
34. It is Ionic compound. Remaining are only covalent.
35. 2XeF2 2H2O 2Xe 4HF O2
XeF6 H2O XeOF4 2HF
XeF6 2H2O XeO2F2 4HF
XeF6 3H2O XeO3 6HF
36. 3Hg 2HNO3 6HCl 3HgCl2 2NO 4H2O
37. 6 0
d 6 4s 0 4 p0
Co3 3d 7 4s2 t2 g eg 3
d 2 sp3
Fe3 W .L : t2 g 3eg 2
5
d
38. Mabcd 3 isomers (2 cis + 1 trans)
a ) Pt C l N O 2 N O 3 SN 3
b ) Pt cl NO 2 N O3 N CS 3
c ) Pt C l O N o N O 3 N C S 3
d ) Pt C l O N o N O 3 SC N 3
39. Intramolecular H-bond ortho effect are more acidic nature
40. Alternate double bonds with lone pair present in the compound.
41. Order of I effect.
42. K a1 K a2
I P P
P 6
2
43. Cl
SoCl2
A (Major product)
HO CH 2 OH
SoCl2 / P4
Cl CH 2Cl
Con.H SO
2 4
Aldol reaction H 3C CH 3
H in acidic medium
CH 3 H 2O
H 2CH C O H 2CH C CH 3
O
O C CH H2
CH 3
45. O O
NH 2 NH NH
NH 2
CH3CO 2 O / Py
3
KBrO / HBr
3 H O
Br Br
NaNO2 2 HCl
N 2 Cl 0 50 C
Br
Cu / HBr
Br Br
46. Ph NH 2 A
Ph Co NH 2
Br2 KOH
CHCl3 KOH
3 Ph N C H O
HCOOH Ph NH 2
B
(C)
47. Dinitrogen and dioxygen combine to form nitric oxide when the mixture is heated to
2273 – 3273 K in an electric arc.
48. Br Br Br
Br
Br2 / Fe
1,2-dibromobenzene
Br
1,4-dibromobenzene
49. p-hydroxy benzoic acid has higher b. pt. than o-hydroxybenzoic acid due to
intermoleucalr H-bonding.
50. Schotky in the pressure leads to increased collision frequency, missing from their
respective site.
51. For adiabatic process q 0 U Pext V2 V1 6 25 40 90L bar
Now H U PV 90 150 160 90 10 H 80 L bar
52.
For w.A & S.B OH K .C
Ka
53. For zero order reaction, the rate law is written as
x 0.25 x 0.06
KI 5 K II 5
t 0.05 t 0.12
54. 2 20 60 24
Eq. of OH produced
96500 965
CHO
CHCl3
NaOH
P Salicylaldehyde
60. N 2O3
N N
O O O
O
P
P
P4O6 O O O O
O P O P
P4O10
O P O P O
O
N O N O O O
O O
N 2O5
O P
P
O O
S
OH OH
O H 2 S2O3 HO S OH
P P
H 4 P2O5
h O O
O O OH
O O O S O
H 5 P3O10 HO P O P O P OH
H 2 S 2O5 HO S S OH
OH OH OH O
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 12
SRI CHAITANYA IIT ACADEMY, INDIA 21‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐11_KEY &SOL’S
MATHEMATICS
61. Given that f x 2 cos x which is continuous and differentiable every where
Also, f ' x sin x, f ' x 0 x n
There exists c t , t for t R such that f ' x 0
Statement – 1 is true.
Also f x being periodic 2 , statement – 2 is true, but statement – 2 is not a
correct explanation of statement – 1.
62. x2 x B 0 D 0 2 4 0 2 4
, 1,11,2.......1,6 , 2,2 , 2,3 , 2,4 , 2,5 , 26
3,3 , 3,4 , 3,5 , 3,6 , 4,5 , 4,6
63. A, D , I , K , M , N , N
M
A
N
K
I
N
D
6! 3 2 3! 1 2! 1! 0!
4 4!
Rank
2 2
1492
64. Mean + variance 24 np npq 24 …………. (i) np.npq =128 ……(ii)
33
p x 1 p x 2 32C1 pq31 32C2 p 2q30
228
65. Let PR x
15
tan 600 ………… (1)
AQ
x 15
tan 750
AQ
150 15 m
600
Q
(1)
(2)
2
2
y2 3y 2 0
3 17
Apply quadratic formula, y
2
2
Put y 0, in eq. (i). x x 2 0
x 2,1 .
3 17 3 17
Then, point A 2,0 , B 1,0 C 0, & D 0,
2 2
71.
lim tan 2 x 2sin 2 x sin x 4 sin 2 x 6sin x 2
x
2
Rationalize the functions apply the limit in the denominator.
tan 2 x sin 2 x 3sin x 2 tan 2 x sin x 1 sin x 2
lim lim
9 9 6
x x
2 2
1 1 sin x 1 sin x
2
1
lim tan 2 x 1 sin x lim
6 x 6 x 1 sin x 1 sin x 12
2 2
72. Given statement is
p q p r ~ p q p r ~ p q r
p q r c is true.
Now, A p ~ r q
~ p ~ r q p r q
~ p r q p q r
From option (D).
p ~ q r p q r
73. For getting infinite solutions 0, 1 2 0 then check all the three equations
2 1 1
Let 1 3 2 0 3
1 4
7 1 1
And 1 1 3 2 0 K 6 K 3
K 3 4
74. x6
We have y
x 2 x 3
At y axis, x 0 y 1
On differentiating, we get
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 15
SRI CHAITANYA IIT ACADEMY, INDIA 21‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐11_KEY &SOL’S
dy
x 2 5 x 6 1 x 6 2 x 5
dx 2
x2 5x 6
dy
1 at point 0,1 Slope of normal 1
dx
Now equation of normal is y 1 1 x 0
y 1 x x y 1
1 1
, satisfy it.
2 2
75. dx
ecos x sin x
Let I ……………… (i)
2
0 1 cos x ecos x e cos x
b b
Applying identity f x dx f a b x dx
a a
cos x
e sin x
I ……………. (ii)
dx
2 cos x
0 1 cos x e ecos x
Add equations (i) and (ii), we get
sin x
2I dx
2
0 1 cos x
On putting cos x t , we get
0 4
1 dt 1
2I 2 tan 1 t
2
01 t
76. 3 2
13 11 13 11 5
3x 2x 3x 2x 3
x x
I dx dx I dx
2x
4 4 4
4
3x 1 2 3 1 3 1
x16 2 2 4 2 2 4
x x x x
3 1 3 2
Let 2 t , 2 dx dt
x2 x4 x3 x5
dt
1 t 41 1 1 1
Then, I 2 C, I C
t4 2 4 1 2 3 3 1
3
2 2
4
x x
1 x12
I C
2x
6 4 2 3
3x 1
4 3 x 12 3 x 2
Required area dx
2 4
2
4
3x2 x3
6x
4 4
2
12 24 16 3 12 2 20 7 27
84. For circle, x 2 y 2 10 x 10 y 41 0
Centre C1 5,5 and radius, r1 3
For circle, x 2 y 2 24 x 10 y 160 0
Centre C2 12,5 and radius, r2 3
C1C2 7 r1 r2 Circles are separated
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 18
SRI CHAITANYA IIT ACADEMY, INDIA 21‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐11_KEY &SOL’S
Required minimum possible distance, p1 p2
7 3 3 1
85. If the line cuts the circle, then
CP r. ……….. (i)
Since, equation of circle is x 2 y 2 2 x 4 y 4 0
Centre 1,2 and radius 1 4 4 1
Also, the equation of line is 3x 4 y k .
38k
Using (i), 1
9 16
11 k
1 11 k 5
5
11 k 5 and 11 k 5
k 6 and 11 k 5 k 16 k 6,16
Integral values of k 7,8,9,10,11,12,13,14,15
Thus, number of integral values of k is 9.
86. Equation of straight line passes through P 3,2, 1 and parallel to given line is
x 3 y 2 z 1
……………. (i)
2 2 1
Q 2 3, 2 2, 1 be any point in line (i) and it is also lies on given plane.
3 2 3 2 2 4 1 1 0
4 4 0 1
87. 100 a
Here d
n 1
Now, A1 a d and, An 100 d
A 1 ad 1
So, 1 7 a 8d 100
An 7 100 d 7
100 a
7a 8 100 ……….. (i)
n 1
a n 33 ……….. (ii)
Now, by Eq. (i) and (ii)
7 n 2 132n 667 0
29
n 23 and n reject.
7
88. 10 k m
Given expression is
4 2
k 1 k k 1 n
2
2
1 10 k k 1 k k 1
2 k 1 k 2 k 1 k 2 k 1
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 19
SRI CHAITANYA IIT ACADEMY, INDIA 21‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐11_KEY &SOL’S
1 10 1 1 55 m
2 k 1 k 2 k 1 k k 1
2
111 n
m n 166
89. x2 y 2
Given ellipse is 1
16 9
So equation of tangent to the ellipse is,
y mx a 2m2 b2
y mx 16m2 9 ……………. (i)
Now, given circle is
x 2 y 2 12
So equation of tangent to the circle is
ymx 12 1 m2 ……………… (ii)
For common tangent on equating equations (i) and (ii)
16m 2 9 12 1 m 2
16m2 12m2 3 4m 2 3 12m 2 9
90. Given , roots of equation 3 x 2 x 1 0
1
So, ,
3 3
According to given relation of roots,
1 1 2 2
15 2 9 3
2 2 2 2
2
2 3 2 5
Now, 2
2 2 2 2
3 3 3
2
Take, 6 3 3 6 2 2
3 5 1 2 2
6 6 1 2 6 4 24 .
3 3 3
CHEMISTRY
31) 3 32) 1 33) 4 34) 3 35) 3
36) 4 37) 1 38) 4 39) 3 40) 1
41) 4 42) 2 43) 4 44) 4 45) 2
46) 4 47) 2 48) 1 49) 4 50) 1
51) 2 52) 0 53) 5 54) 6 55) 5
56) 2 57) 5 58) 8 59) 2 60) 9
MATHEMATICS
61) 3 62) 1 63) 3 64) 1 65) 2
66) 4 67) 1 68) 3 69) 1 70) 3
71) 3 72) 1 73) 2 74) 2 75) 3
76) 1 77) 1 78) 1 79) 3 80) 2
81) 2 82) 25 83) 7 84) 1 85) 8
86) 2018 87) 2 88) 26 89) 385 90) 100
SOLUTIONS
PHYSICS
1. vy u y gt 4 1
tan ux m/s 3 u y 1 10 12 uy 8 m / s
vx ux 1 2
8 10 1
tan
4 2
2. ke 2mg mg
3. P dt KE
4. Density is given as p x a 1 bx 2 where a and b are constants and 0 x 1
Let b 0, in this cases p x a constant Hence, centre of mass will be at x 0.5m.
(middle of the rod)
5.
L I cm m r v cm
1 5
2
MR 2 kˆ m 4 Riˆ 3Rjˆ Riˆ MR 2 kˆ
2
6. F F12 F22 2 F1 F2 cos
3GMm a
2
mr 2 Here, r
a 3
7. Motion of a simple pendulum is simple harmonic for small angular displacement only,
not for all angular displacement.
8.
l
Fl
; BC
70 103 1
3.5 107 m
Ay 1 2 10 11
9. 1
P0 Pg 2h 2 p gh P0 2 P v 2
2
Liquid of density 2p is coming out
10. V Vs 1
n11 n
V Vs
11. P1 d1
P2 d 2
12. Q T
2 2 ;P
W
W T1 T2 t
13. Conceptual
14. 1 1 1 1 1 1
1 ;
f R1 R2 f v u
15. 1 qx qx d 2x 1 qex
E , m 2
4 a 2 x
2 3/2 4 0 a 3
dt 4 0 a 3
1 qe
So motion is S.H.M. 2
4 0 ma 3
16. L T g 2
L 2T T T
T 2 L 2 or 2 20 0
g 4 L T T0
T20 T0 1 1
Or 20C 10C
T0 2 2
Here T20 is the correct time period . Since the length L of the rod decreases when
cooled, the time period decreases. So the clock runs fast at 0C . The time gained in a
day 24hrs 24 60 60 s is
10 24 hrs 10 24 60 60 s Thus
12 s
12s 10C 24 60 s 14 106 per C
10C 24 60 60 s
17. R 2100 X X
p R
Applying
Q S
2 X R X 20
We have i
R 10 X 2 80 x
Solving equations (i) and (ii) we get R= 3
Correct option is (a)
18. B1 n1 i1
B2 n2 i2
19. For given circuit current is lagging the voltage by / 2 so circuit is purely inductive
and there is no power consumption in the circuit. The work done by battery is stored as
magnetic energy in the inductor.
20. 1
1
1
3 ?
3 1 2
21. Dimensional formula of Y ML1T 2
Dimension of L,b,t,e=L
22. h h p ma 4
2 :1
mv 2mE a m p 1
23. F applied f K 0t mg K 0 3 mg
a g
m m k0 m
3 g g 2 g a 2 g
26. K.C.L
27. B 2l 2V
F
R
28. 1 2 or
1 1 1
, where t is T1/ 2 T1/ 2 20 years
t t1 t2
29. 12 8 8
Current in zener diode 6.4mA
500 5 103
Power lost in zener diode VI 8 6.4mw 51.2 mw
30. m
Vm
Ve
3
Vm m Ve 12 9V
4
CHEMISTRY
31. O.P = (6.35/12.7)100 = 50%
32. All others are used for this purpose and they form cyclic acetal or cyclic thioacetals
at
46. Conceptual
47. strong heating
(A) 2H3PO2 H3PO4 PH3
+4
60. VSEPR theory , back bond application.
MATHEMATICS
61. Clearly n
x2 1 2
l t x (cos ) x
x e x
1
l t x 2 (cos 1)
0 e x x
e1/2
62. dy 3 1 1 1
x ,P ,
dx p 4 8 8 16
63. f '(x) 0 f (x) is one one
64. Tangent at (0,1) is 3x y 1 0
Area = 500/81
65. Point of intersection is (a b)
Length of the ar
AB AC
AB
66. The plane contains
L1 and ar to the plane containing L1 & L 2
67. f (x) is real 0 [x] 2 0 x 3
g(x) is real
x
68.
r z1 cos
8
R z1
ratio cos 2
8
69. pq p (p q)
t
(p q) q p(p q) q
t
70. ab 0
and a 3 b
(or) b 3 a
71. A lies inside the director circle and outside the ellipse
72. A B C D 2 cot A cot A cot B cot C
cot A cot A cot B cot C cot D tan A
tan A tan A
cot A
73. abc total (numbers difer by 10) 100c 2 90c2 945
74. 5
1 1 1
6
. .. 1
2 2 2
3 4
1 1 1 1 4
....
2
2 2
2
75. b r 1 b r 2 1 br br 2
br
b r 1 b r 2 1 b r b r 1
n 1 1 b
G.E. b n 2 r
b0
1 br
76. Conceptual
77. If , are the
roots, then
a 2 b 2 ( 2 1)(2 1)
78. (A B) c1 15(2n 1) / n , n 50
79. PQ distance between the lines
80. (2, 2) R
(2, 0)(0, 2) R, but(2, 2) R
81. Sketch the graph
82. 2x y1/5 y 1/5
diff w.r.t. x
10y y1/5 y 1/5 y1
100y 2 4(x 2 1)(y1 ) 2 (x 2 1)(y1 ) 2 25y 2
diff w.r.t x
(x 2 1) xy1 25y
83. n 5
5
1 55
A 3 5
2 2
B2 5
84. 1 1 1 1
(x, y) , (or) ,
2 2 2 2
85. A = (2,4),B = (-4,-2)
86. Apply by parts twice
87. 0 a = -1 only
Sum n 1 n n n 1
88. 2 2
2
2n
2 2
89. a 5 8 no of numbers 7C4
a 5 8 no of numbers 8C4 5C4
90. y1 (x 1 ) 0
x 12 2cx 1 1 0
Now x 1 .y(x 1 )
x 12 cx 1 1 cx 1 1
1 x 12 2 2cx 1 2
CHEMISTRY
31) 2 32) 2 33) 4 34) 1 35) 1
36) 2 37) 3 38) 3 39) 1 40) 1
41) 3 42) 4 43) 2 44) 4 45) 4
46) 3 47) 1 48) 1 49) 4 50) 1
51) 6 52) 1 53) 2 54) 90 55) 1
56) 34 57) 5 58) 8 59) 3 60) 1
MATHEMATICS
61) 3 62) 2 63) 4 64) 4 65) 1
66) 4 67) 3 68) 4 69) 1 70) 3
71) 2 72) 1 73) 3 74) 2 75) 3
76) 3 77) 3 78) 4 79) 4 80) 2
81) 1 82) 9 83) 10 84) 6 85) 1
86) 21 87) 81 88) 19 89) 120 90) 2
SOLUTIONS
PHYSICS
1. 1 M .S .D 1
L.C 0.1mm
no.of V .S .D 10
Side of cube L 10mm 1 0.1mm 1.01cm
m 2.736
2.66 gcm3
v 1.01 3
2.
u
H
O R
2
u 2 sin 2
2
2 g sin 2 1
H
Tan Tan tan
R / 2 u sin 2 sin 2
2 2
g
3. f
mgsin37 f1
f
3mgsin37
For equilibrium of plank 3mg sin37 f f1
Where f1 umg cos 37 = 0.5 (4 mg cos37) = 2 mg cos37°
9 8 mg
mg mg f f 2m
5 5 5
For equillibrium of man mg sin37 + f = ma
6m + 2m = ma
a 8ms 2
4. V = Vmaxwhen a = 0
Let dispt. of block is x0 when its speed is max
mg sin mg cos k x0
mg sin mg cos k x0 ____(1)
1
By W.E.T, K .E f K .Ei mgx0 sin kx02 mgx0 cos
2
1 2 1
mVmax 0 mgx0 sin kx02 mgx0 cos
2 2
1 1
2
mVmax mgx0 sin mg cos x0 kx02 ____(2)
2 2
1 2 1 1
(1) or (2) mVmax kx02 kx02 kx02
2 2 2
K
Vmax x0 substituting eq (1), we get
m
K mg sin mg cos
Vmax
m K
m
Vmax sin cos g
k
5. m x m2 x2 100 25 50 55
X cm 1 1 35 cm
m1 m2 100 50
Distance from centre of rod = 35 – 25 = 10 cm to the right
6. 1 2 1 2 1 2 1 2
mv I mV 1 I 2 mv1 mgh
2 2 2 2
2
v
v1 v / 2 h
4g
7. I R I I P IQ but I P I Q I R 0
8. Conceptual
9. L
W LA g OT
2sin
L
FB A w g
2sin
OT L
FB acts at P, where OP
2 4sin
FB
Q T
P W
O
R
Balancing torque about O,
L L L
W OQ cos FB OP cos LA g A w g
2 2sin 4sin
1
sin 2 w sin 2 450
4 2
10. kA 1 2 t
= mlice
l
11. Conceptual
12. Conceptual
Sec: Sr.Super60_(NUCLEUS,STERLING) & LIIT _BT Page 3
SRI CHAITANYA IIT ACADEMY, INDIA 23‐01‐23_ Sr.Super60_(NUCLEUS,STERLING) & LIIT _BT_ Jee‐Main_GTM‐13_KEY &SOL’S
I=6A
I=6A
1A
VL L=1H
9
D C
O'
(assumed to be rest)
Separation will be minimum when particle O is at A, i.e releative dispt OA = 10 m
OA 10
t 1sec
VO / O 10
22. dV dV dV y
V 2 Vx2 V y2 2V 2Vx x 2V y
dt dt dt
15
V a V a 3 5 4
dV
x x y y
4
6ms 1
dt 2 2 2 2
V Vx y 3 4
23. FB
6 rv
v
First case : mg
FB 6 rv mg ____(1)
F 2 mg FB
FB
6rvt
vt
xv
VMI VM VI 2v sin iˆ sin (given)
4
V
vcos vcos
y
4
25. V Vz Vz
I z in
R RL
90 30 30
Vz 15 103 6 103 9 103 A 9mA
3 3
4 10 5 10
26. 1 1 3
E 13.6 13.6 10.2eV
4 1 4
1 2
KEman E W0 mvmax 10.2 1.2 9eV
2
2 9 1.6 1019
Vmax 2 1.6 1012 3.2 106 1.78 106
9.1 1031
17.8 105 N 105 N 18
27. Band width 90
No. of stations 9
2 highest band width 25
c
28. c c 2c
A c
=
A B C
c
C 2C 2 2 A 2 2 3 / 2 2 0 x 0
C AC C 0 C AC 0 x2
3C 3 3 d 3 d d d
29. Force on Q2 will be due to induced charge on outer surface only which will be same in
both cases along with its distribution
B
30. 5V 2 A 3
5V
I1 I2
C
3 3
5 5 5
i1 1A , i2 A. v A 0 3i1 3 1 3 V
23 33 6
5
vB 0 3i2 3 2.5 V
6
1
P.d on capacitor 3 V 2.5 V 0.5 V , q CV 2 1C
2
CHEMISTRY
31. 2k2CrO4 H 2 SO4 k2Cr2O7 Na2 SO4 H 2O
Oxidation state of Cr in k2CrO4 and k2Cr2O7 is +6.i.e no change in o.s so, the
explanation is wrong.
32. Compound can be chiral even in the absence of chiral atoms
33. Due to its higher oxidation state, B3 ion does not exists.
34. Activation enthalpy to form C is 5 kJ more than that to form D
35. The PH of NaOH is more than 1 and during the titration it decreases so graph(1) is
correct
36. For the extraction of iron, haematite ore in used
Haematite= Fe2O3
37. RT
P
Vm b
PVm pb pb
PVm pb RT 1 Z 1
RT RT RT
b
Slope of Z vs P curve (straight line)=
RT
Higher the value of b, more steep will be the curve and b=size of gas molecules
38. O
CH3 CCH3 CH3 CH2 CHO
Generally, aldehydes are more reactive than ketone in nucleophillic addition
reactions. Rate if reaction with alcohol to form acetal and ketal is
O
CH3 CH2 CHOCH3 CCH3
48. Z M0
Density
N A a3
Z=4 (FCC) M 0 63.5 g N A 6 1023
a x 108 cm
4 63.5 422 g
d .
6 1023 x3 1024 x3 cm3
49. U n.cvm T 5 28 100 =14 kJ
PV nR T2 T1 5 8 100 4kJ
50. NH2 NC
C
HCl2.KOH
CH2
O CN O
CN
H2 / Pd C
NH CH3
OH
H2N
Cl Cl
square pyramidal
Cl Cl
Cl
square planar
Cl Cl
H
+ +
CF3 CH CH3 CF3 CH2 CH2
(More stable)
H3I
base
C
xN2
N N N N
(-)
H(-)
NH3
N
N
N N
CH3
In the given compound, H-atom attached to secondary N-atom is more acidic. The
base removes the more acidic H-atom and the conjugate base of the given compound
attackes at CH 3 group to give the final product shown above.
58. O
Cr
H
1BuCl
O
Conc
H
2SO4
H
+
E0 z
EFe2 /Fe2 3z 2y
E0 x
Ag / Ag
0
ECell x 3z 2 y
60. According to Henrys law
MATHEMATICS
61. Hint: PQ 3( AB) 7 2
C (2,1)r 5 C
3 3 1
M , CM
2 2 2
1
7 2 2 5 c C 20 r 5
2
62. A2 A A
( AB )( AB ) A( BA) B ( AB) B AB A
Similarly B2 B A A2 A3
B B 2 B3
A2021 B2021
2022
( A B) 2022
( A B)2 ( A B)( A B) A2 AB BA B2
A2 A B B2 2( A B)
( A B)3 22 ( A B) ( A B)2022 22021( A B)
63. x c2 x c3 x 2
y
x c1 x c1 x c2 x c1 x c2 x c3
x2 c3 x 2
( x 4c1) x c2 x c1 x c2 x c3
x3
x c1 x c2 x c3
ln y ln x3 ln x c1 ln x c2 ln x c3
ln y 3ln x ln x c1 ln x c2 ln x c3
y' 3 1 1 1
y x x c1 x c2 x c3
y x x x y c1 c c
y' 3 2 3
x x c1 x c2 x c3 x c1 x c2 x c3 x
64. 1
T p a ( p 1)d ------- (1)
q
1
Tq a (q 1)d --------(2)
p
pq 1 1
(1)-(2) ( p q)d d a TPq 1
pq pq pq
Clearly 1 is one of the roots of given equation
Sec: Sr.Super60_(NUCLEUS,STERLING) & LIIT _BT Page 11
SRI CHAITANYA IIT ACADEMY, INDIA 23‐01‐23_ Sr.Super60_(NUCLEUS,STERLING) & LIIT _BT_ Jee‐Main_GTM‐13_KEY &SOL’S
which are in A.P. Now, a, b, c are in A.P. if either a and c are odd or a and c
are even.
Number of selection ways of 2 odd numbers is 51 C2 . Number of selection
ways of 2 even numbers is 50 C2 . Hence, total number of ways is
51
C2 50 C2 1275 1225 2500 .
66. 7 9
1 x 2 1 x 2
dx
I2
0 5 x 5 x (5 x)2
x 5 dx 1
Put t dx dt dt
5 x 2 2 5
(5 x) (5 x)
1 7 9
dt
I 2 6 (t ) 2 (1 6t ) 2
0 (5)11/2
; Now Put 6t
1
and simplify we get I 2 I we Conclude a 30
9/2 7/2 1
5 6
67. m n
sin 2 ; cos 2 s mcosec 2 t n sec2
s t
s t mcosec2 n sec2 m n m cot 2 n tan 2
3 m cot 2 n
n n tan 2
Use Am Gm
3 2 mn mn 2 mn3
m 1 n 2 ( m n) Point is (1,2)
use S1 S11
68.
(2n 1) n 2 2n n 2 1
sin 1
n 1
n(n 1) n 2 2n n 2 1
2 2
1 n 2 n n 1
sin n(n 1)
n 1
2 2
1 ( n 1) 1 n 1
sin n(n 1)
n 1
1 1 1 1 1
sin 1
2 n 1
1
2
n 1
n ( n 1) n
1 1
sin 1 n sin 1 n 1
n 1
1 1 1 1 1
Sn sin 11 sin 1 sin 1 sin 1 sin 1 sin 1
2 2 3 3 4
1 1
sin 1 sin 1
n n 1
1
Sn sin 1 lim Sn .
2 n 1 n 2
69. The direction cosines of segment OA are
2 1 3
, and . OA 14n
14 14 14
This means OA will be normal to the plane and the equation of the plane is
2 x y 3 z 14
70. 2
2 1 ( 1) 1
3 1
2 1 ( 1) 2 1 ( 1) 2 1
2 2 6 2 ( 3) 3
3
2 2 1 2 4 2
Similarly remaining
(3 ) (3 ) (3 )
3( ) 2 2 2 7
2 2
71. 4r 2
n n
1 4r 2
lim ln n lim ln
n r 1 n 2 n r 1n n 2
1 1
ln 4 x dx (2ln 2 2ln x)dx
2
0 0
2 x ln 2 2 x ln x 2 x]10 2ln 2 2
72. 1
1 2 x 2x 1
3 cos sin 1
2 3
2
1 x 1 x 1
I ex 1
2 1 e 1
x
dx
1
3 3
78. 6
6 10 15
P xi 3
i 4 36 36 36
xu 2 3 4 5 6 7 8 9 10 11 12
P( x x) 1 2 3 4 5 6 5 4 3 2 1
36 36 36 36 36 36 36 36 36 36 36
31 77
3
36 36
79. n1 10, n2 10
Average m1 60 m2 40
1 4; 2 to
2
n 2 n2 22 m1n2 m1 m2
Standard deviation of Combined series 1 1
n1 n2 n n 2 1 2
126
80. Let height of pole 10l
3l l 10l 2 tan 10l
tan , tan 2 ,
18 6 2
18 1 tan 18
l 72
use tan l
6 5
k 164
2 | |max 3 | |max 164 18 1 9
K 2 18
83. 1 2 1 32
8 8 32 Δ 32 [Δ] 10
2 3 3 3
CHEMISTRY
31) 3 32) 4 33) 1 34) 2 35) 2
36) 1 37) 1 38) 3 39) 4 40) 3
41) 1 42) 2 43) 1 44) 3 45) 2
46) 2 47) 3 48) 2 49) 2 50) 1
51) 6 52) 6 53) 4 54) 10 55) 36
56) 7 57) 300 58) 2 59) 8 60) 2000
MATHEMATICS
61) 3 62) 4 63) 2 64) 4 65) 1
66) 1 67) 4 68) 3 69) 3 70) 2
71) 1 72) 3 73) 1 74) 2 75) 3
76) 4 77) 2 78) 2 79) 4 80) 3
81) 9 82) 5 83) 6 84) 9 85) 9
86) 2 87) 5 88) 3 89) 1 90) 8
SOLUTIONS
PHYSICS
1. When final image is formed at infinity.
Length of the tube v0 f e 15 v0 3 v0 12cm
1 1 1 1 1 1
For objective lens u0 2.4cm
f0 v0 u0 2 12 u0
2.
Given
Direct current I dc a
Alternative current I ac b sin t
Total current
i 2dt T
2
I I dc Iac I a b sin t I rms
1
a b sin t 2 dt
T
dt
0
T T T T
2 1
I rms a 2 dt b2 sin 2 t 2ba sin t sin tdt 0
T
0 0 0
0
T
1/2
T 1 T b2
sin 2 tdt 2
I eff a 2T b 2 0 I rms a 2
2 T 2 2
3. conceptual
4. Given
Radius of hollow sphere = R
Specific gravity
Now mass of spherical shell
M1 Solid volume of the sphere × density of material M1 4 R 2t
Where M1 =Mass of the hollow sphere
t = Thickness of the hollow sphere
While the mass of water having same volume
M 2 =Whole volume of the sphere × density of the water
4
M 2 R3 w , For the floatation of sphere M1 M 2
3
4
3
R
4 R 2t R3 w tp w 1g / cm3
3
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 24‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐14_KEY &SOL’S
5.
1
Before 1 K opened the energy stored over capacity C1 CV 2
2
1
3 106 102 150 J
2
2. Now this energy will be dissipated E i 2 Rt in the two resistors in the ratio of
R1 : R2 as they are in series (current flowing through the resistors is same) when switch
K 2 is closed.
150 J is lost at the radio 2:4=1:2
1 2
In 2 rd of 150 Jand in 4 rd of 150 Jwill be lost
3 3
Therefore, the correct answer is 2
6.
The induced electro motive force v across ends of rotating rod about one end in
B
magnetic field 12 , 2. can be calculated according to law of conservation
2
energy. Increase in rotational kinetic energy = decrease in gravitational potential energy
1
3. I 2 mgh
2
1 ml 2 2 1 3g
mg. sin sin
2 3 2 1
1 3g
NowV Bl 2 sin ......1 V sin
2 1
3
Also from 1 , V 12
Therefore, the correct answer is 2
7. E
tan 45 v
Er
8. Given
Weight of a body at the equator of planet is half of that at the poles
ve 2 R 2 R 2 ve 4 R 2 2 ve 2 R 2V0
9. W0 mg 46 gm
At 1 27 C
W1 30 gm w0 B1
B1 46 30
B1 16 V11g
2 42 C W2 30.5 gm w0 B2
B 1.2
B2 15.5 V2 2 g 2
B1 1.24
15.5 1.24 1
s 1
16 1.2 45
1
s 2.31 105 I 0C
43200
10. Velocity of ball when it reaches to surface of liquid
100 gV 500 gV
a where V is the volune of the ball
500V
a=10m/sec2
Apply v=u+at 0= 2 gh 10t
2 gh 10 2
2 10 h 400 h 20m
11. Given
Density of water
Cross-sectional area = A
Constant speed = v
Along x and y directions along in momentum of water is
3
Px mv sin 60 mv
2
mv 3
Px mv mv
2 2
9 3
Pnet Px2 Py2 mv
4 4
Pnet 3mv
Force on bend is rate of change of momentum
dm 2 dm
Pnet 3 .v 3 Av Av
dt dt
12.
L 2u sin gL
So u2 u
2u cos g 2sin 2 min
gL
2
13. H H
F mg mg F mg 1
h h
14.
15. 1 2 2u g
h ut1 gt1 t1 t2 , So h= t1t2
2 g 2
16. Let n moles of diatomic gas dissociate into monoatomic. Then mono 2n moles and dia
5 Pfinal 160
1 – n moles n
11 Pinitial 33
17. emf in PQ=0
emf in QR= B a 2
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 5
SRI CHAITANYA IIT ACADEMY, INDIA 24‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐14_KEY &SOL’S
18. Mr 2 3
w0 MR 2 w
2 2
w 2 g Rw0
w 0 , ,t
3 R 3mg
19. v vc
Wavelength of sound reaching the hill
f
v v0 v v0 2vc v v0
f1 f , f2 f , f f1 f 2
v vc v vc v 2 vc2
20. Dimensional analysis
21. 1
fc 6.37kHz
2 RC
1 x2 4
Modulation factor on=
n 3
as n=0.6, fmax m fc
22. bt
A A0e 2m
23. k
cut-off potential max
e
24. X 53
X 10.60
10 50
25. i 2 2A
26.
Optical source frequency f
c
3 108 / 800 109 3.8 1014 Hz
2 3 9 109
23 6
2.678 . 2.68Vm 1
8 5 2.24
25 3 10
29. Instrument has negative error
e=-5×0.01=-0.05 cm
Measured reading =2.4+0.04 2.46 cm
True reading =2.46+0.05=2.51 cm
30. For maximum intensity on the screen
d sin n
n
sin
d
n 2000 n
sin
7000 3.5
Since sin > 1
n=0,1,2,3 only
Thus only seven maximas can be obtained on both sides of the screen
CHEMISTRY
31. (A) The process of precipitating colloidal solution is called coagulation. Hence false.
(B) For colloidal solutions concentration is very small due to very large molar mass
and hence their colligative properties are very small as compared to true
solutions T f is lesser for colloidal solution. Hence false.
(C) At CMC surfactant from micelles. Hence true
(D) Micelles and macromolecular colloids are two different types of colloids. Hence
false.
32. ( A)2 Na Al OH 4 CO2 Na2CO3 H 2O 2 Al OH 3
aq
(B) Function of Na 3AlF6 is to lower the melting point of electrolyte.
(C) During electrolysis of Al2O3 the reactions at anode are:
2 Al 3 3O 2
At anode
O2 gas 2e
C graphite O2 CO CO2
(D) The steel vessel with a lining of carbon acts as cathode.
33.
PV
is a conjugated diketone
OH
and
H3C CH3
H3C C OH
CH3
CH3
Chloroxylenol Terpineol
(Compound A) (Compound B)
It has 6 e It has 2 e
49. O C CH3
HC CHO
O C CH3
O
H 2O / H
CrO3 / Acctic an hydride
2CH 3COOH
Hydrolysis
50.
54. O
*
O O O
* * *
O O
1 2 1 2 3 1
R+S R+S R,R
R,S
S,S
55. C.R.T
7.47=C 0.083 450
C=0.2M=0.2 108gL1
21.6gL1
56. X=1 Y=6
OC OC CO
OC CO CO CO
OC OC CO
57. G=H-TS=0 at equilibrium
-165 103 T 505 0 T 300 K
The answer is 300
58. Tb iKb m
4 K 1.5 K
T f iK f m, b , b 2
4 Kf 3 Kf
59. c and e are the graphs which represent first order i.e, x=2 and a,b and d are graphs
which represent zero order i.e, y=3. Then 23 8 .
60. 200 times
MATHEMATICS
61. , are roots of the equation
x 2 px 2 0
62. 8x+y+4z=-2
X+y+z=0 ….(1)
x 3y .....(2)
From (1)-(2), we get ….(3)
7x+3z=-2 ….(4)
From 3(2)+(3), we get
3 x 3z
For infinitely many solutions, we have
4, 2
1 1
, , 4, 2,
2 2
63. z 5 4
x 52 y 2 16
So, points (x,y) lie inside or on the circle whose center is (-5,0) and radius is4.
Comparing thes with 2, we get
32, 16
48
64. S1 : p q q p q p p q t t
S2 : p q p q p q p q f
So, both S1 and S 2 are true.
65.
2 4 2 b 2 4c
2
70. M (3, 5, 7) satisfies the line L1 .
3 a 52 7 b
l 3 4
b=3 and a+1=3
M is foot of perpendicular from P (4, 3, 8) on line L1 .
Also, 2iˆ 3 ˆj 4kˆ and v2 3iˆ 4 ˆj 5kˆ
v1 v2 iˆ 2 ˆj kˆ
AB. v1 v2 1
Shortest distance
v1 v2 6
71. Given differential equation
dy 2e4 x
8 4 cot 2 x y 2sin 2 x cos 2 x
dx sin 2 2 x
IF .
e
Solution is
8 4 cot 2 x dy e8 x 2loge sin 2 x e8 x .sin 2 2 x
y e8 x .sin 2 2 x
e4 x
2e4 x 2sin 2 x cos 2 x dx C
y x
sin 2 x
4 2
e 6 2 3
y e
6 sin 2. 3
6
72.
a b c a b c sin
6
Now,
a b 2iˆ ˆj 2kˆ iˆ ˆj
2iˆ ˆj 2kˆ
From c a 2 2 , we get
c 2 2c 1 0
c 1 c
Thus, from (1),
a b c 3 1 1 / 2 3 / 2
73. Period of both sin 2 x and x / is .
100
So, I
0
e
sin 2 x
x /
dy 100
0
sin 2 x
e x /
dx
50 e x / dx e x / cos 2 xdx
0 0
1 e 1 2
0
e x / sin 2 xdx
1 e1
I 50 1 e1
1 4 2
200 1 e1 3
1 4 2
74. Let C,S,B and T be the events of Ramesh using car, scooter, bus or train.
Let L be the event of Ramesh reaching offices late. By hypothesis
1 3 2 1
P C , P S , P B and P T
7 7 7 7
L 4 5 L 1 8
P 1 , P 1
C 9 9 T 9 9
By baye’s theorem,
L
P C P
C C
P
L L L L L
P C P P S P P B P P T P
C S B T
75. 1
A1. A3. A5 . A7
1296
4 1 1
A4 A4
1296 6
7 1
A2 A4 A2
36 36
A6 1, A8 6 and A10 36 A6 A8 A10 43
76. Let xi 5 yi
9 9
2
xi 5 9 and xi 5 45
i 1 i 1
So, required standard deviation is
9
9
yi 2
2 i 1 45 9
yi 9 9 2
i 1
9
77. In the figure PQR is triangular park with PQ=PR=200 TV tower of height ‘h’ stands at
midpoint M of QR.
MD 2 MC 2 h2 64 H 10 2 121
2h 2 20h 64 100 121
2
2 h 5 235
79. Conceptual
80. x2 y 2
Equation of hyperbola is 1
4 2
a 2 e 2 a 2b 2 4 2 6
So, focus F 6, 0
Equation of tangent at p 4, 6 is
4 x 2 6 y 4 or 2x- 6 y 2
Solving it with latus rectum line, x 6 we get
R 6,
2
6
6 1
Also, Q 1, 0
1
5 x 2 1 x dx
1
5 x 2 1 x dx
5 1 5 2 5 1
2 1 sin 1 2 1 sin 1 1 sin 1
2 5 2 5 2 5
5 1 1
tan 1 tan 1 2
2 2 2
5 1
4 2
83.
max 82sin 3x.44cos3x
xR
max 26sin 3 x 8cos3 x 210
max 26sin 3 x 8cos3 x 210
9 x2
I max ,x
5 x
1
9/5 3
I
1
5 x
1 18 and 2 16
16
dx I
x 5
9/5
xdx
90.
dx
I
2
1
2
3
x
2 4
1 3
Put x tan
2 2
I
2
3
4 3
9
16
sec2
sin 2
4
sec
c
d
9 2
4 3 2 x 1 1 2 x 1
tan 1 c
9 3 3 x2 x 1
9
3a b 15
CHEMISTRY
31) 4 32) 4 33) 3 34) 2 35) 3
36) 1 37) 1 38) 3 39) 2 40) 2
41) 3 42) 1 43) 1 44) 2 45) 2
46) 4 47) 3 48) 2 49) 4 50) 2
51) 875 52) 143 53) 173 54) 167 55) 108
56) 144 57) 47 58) 19 59) 7 60) 7
MATHEMATICS
61) 1 62) 4 63) 3 64) 1 65) 3
66) 4 67) 3 68) 3 69) 2 70) 3
71) 1 72) 4 73) 1 74) 3 75) 2
76) 3 77) 2 78) 4 79) 3 80) 2
81) 98 82) 11 83) 100 84) 216 85) 5
86) 0 87) 4 88) 2 89) 7 90) 12
SOLUTIONS
PHYSICS
1. kt
P log e
x
kt kt ML2T 2 1
1 E kt
x x L 2
As P is dimensionless MLT 2
2.
mg N ma N m g a
Person experiences weightloss, whenacceleration of lift is downward.
3. At maximum height, V = 0
Momentum of object is zero.
4. V 2 gR sin
mv 2
N ma sin 2mg sin
R
N 1 3
1
2mg sin 2 2
A constant
5. Applying conservation of angular momentum
MR 2 MR 2 2mR 2 ' '
2m
M 2m
6. GMr
3 , r R
g R
GM , r R
R 2
7. T
1 L 100%
Tn
TL 00 C 273K , Tn 373K 26.809%
8.
T 2
geff
a)When a 0,T 2
g
g ' 6
b) when a , T 2 T ' T
6 g
g 7
6
9. CP 2
1 1.4 F 5
CV F
By conservation of energy
F 1 mv 2 mv 2
nRT nm v 2 T
2 2 FR 5R
10. Charge on capacitor C2
C Qtotal C2 C1V C1C2V
2
Qtotal C1 C2 C1 C2
11. S1 : In nonpolar molecules, centre of +ve chargecoincides with centre of –ve charge,
hence netdipole moment is comes to zero.
S2 : When non polar material is placed in externalfield, centre of charges does not
coincide, hencegive non zero moment in field
12. d
5t 3 4t 2 2t 5 e 15t 2 8t 2
dt
e 78
At t 2, e 15 22 8 2 2 e 78V I 15.60
R 5
13. R A
R
A R A
A k
1 1 2 kJ
strain y 5 104 20 1010 25 102 10 25
2
2 2 m3
24. earth g 104
g earth
planet g planet 6 105
g planet 6 ms 2
25.
dt Ldi / dt dt L di Li
dt dt dt i
1 450
V IRnet
10 I 10
I 1A
29. At resonance I L I C
2
1 1 1
Alternatively,
Z X L XC
At resoancne, X L X C and Z
Z total circuit i.e, I 0
30. From continuity equation
a
av1 v2 v2 2v1
2
From Bernoulli's theorem,
1 1
P1 gh1 v12 P1 gh2 v22
2 2
v 2 v 2
P1 P2 2 1 g h2 h1
2
4v 2 v 2
4100 800 1 1 10 0 1
2
41 3v12 121 2
10 v12
8 2 8 3
I 21 3
v1
43 3
363
v1 m/s
6
X=363
CHEMISTRY
31. At the same temperature, lighter gases (with lower molar mass, M) will have higher
values of vmp . But on increasing temperature, peak shift forward showing that vmp
2 RT T
increases. vmp ; vmp
M M
300 400 300
For N 2 , O2 , H 2
28 32 2
vmp of N 2 300 K vmp of O2 400 K vmp of H 2 300 K
32. Number of radial nodes n l 1
For 3s-orbital n 3, l 0 Number of radial nodes 3 0 1 2
33. Cupric metaborate is formed by heating boric anhydride with CuSO4 in an oxidizing
(non-luminous) flame.
B2O3 CuSO4 Oxidising
flame
Cu BO2 2 SO3
(Cupric metaborate)
(Blue-green)
Blue cupric metaborate is reduced to colourless cuprous metaborate in reducing
(luminous) flame.
2Cu BO2 2 2 NaBO2 C
Reducing
flame
2CuBO2 Na2 B4O7 CO
(Blue) (Colourless)
34. Sucrose is disaccharide and a non-reducing sugar. Hence, assertion is true. In sucrose,
linkage is in between C1 of - glucose and C2 of - fructose. Hence, reason is false.
35. NaH acts as reducing agent.
The lone pair on nitrogen in pyridine does not get delocalized and is available easily
for donation, making it basic.
NaH Na H
(Pyridine)
36. O
CH 2 Br COOH C
O
O
CH 3 C
COOH
A B C O
37. Basicity is inversely proportional to electronegativity.
38. Biochemical oxygen demand (BOD) is the amount of dissolved oxygen needed by
aerobic biological organism to break down organic material present in a certain
volume of given water sample at certain temperature.
39.
NiCl4 2 : Oxidation state of Ni in NiCl4 2 2
Hence, the complex is tetrahedral and paramagnetic with two unpaired electrons.
Ni CO : Oxidation sate of Ni in Ni CO is zero. CO is a strong field ligand.
4 4
It has phenolic functional group, alcoholic functional group and a terminal alkyne.
Hence, it can react with Br2 / water due to presence of unsaturation, with
ZnCl2 / HCl due to presence of alcoholic group and with FeCl3 due to presence of
phenolic group.
46. Both I.E. and electron gain enthalpy increase on going from left to right in a period.
47. In the given Ellingham diagram, below 1200K the C CO curve lies below the
M MO curve hence, carbon can reduce MO.
48. Conceptual
49. Due to the inert pair effect (the reluctance of ns 2 electrons of outermost shell to
participate in bonding) the stability of M 2 ions (of group 14 elements) increases as
we go down the group.
50. Conceptual
51. 2SO2( g ) O2( g ) 2SO3( g )
Initial pressure: 250 m bar 750 mbar 0bar
At completion:250-250=0 m bar 750 125 625 m bar
250 m bar
o RT
Ecell ln KC
nF
o
Ecell Eo Eo 0.52 0.16 0.36V
Cu / Cu Cu 2 / Cu
0.025
0.36V ln KC
1
0.36
ln KC 14.4 144 101
0.025
57. According to Arrhenius equation
k Ae Ea / RT
Ea
log k log A _____(i )
2.303RT
2.47 103
log k 20.35 _____(ii )
T
Comparing (i) and (ii)
Ea
2.47 103
2.303R
Ea 2.47 103 R 2.303 2.47 8.314 103 2.303
47 103 J / mol or 47 kJ / mol
58. Reaction(1);
2 Fe2 H 2O2
2 Fe3 2OH
Reaction(2);
2MnO4 6 H 5H 2O2 2Mn2 5O2 8H 2O
Thus, x 2, y 2, x ' 2, y ' 5, z ' 8
Sum 2 2 2 5 8 19
59. According to Dumas method:
y y z y
C x H y N z 2 x CuO xCO2 H 2O N 2 2 x Cu
2 2 2 2
For C2 H 7 N
x 2, y 7, z 1
60.
MATHEMATICS
61. We have, z0 or 2
10
x1/3 1 x 2/3 x1/3 1
x 1 x 1
x 2/3
x1/3
1 x x 1
r 10 r r
10 1/3 10 r 1 10 3 3 2 1r
Cr x 1/2 C r x
x
10 r r
Now for x 5 , 5
3 3 2
10 1 1 25 5 25 6
5 r r r 10
3 3 2 3 6 3 5
Coeff.of x 5 10C10 1 1 1
10
65. 100 199 100 100 1100 1 100 2 100 2 ..... 100 99 100 99
2
2
2 2
100 100 1 100 2 2 2
..... 100 2 2
99
100 99 100 12 22.... 992
2 2
2 99 100 199
100 .100 100 3 199 1650
6
3 and 1650
1650 0
So, required slope, m 550
30
66. We have
p q p q q simplifying as
p q p q q
p q p q q q
p q p q which is a tautology
67.
Given, tan 1 a tan 1 b 0 a, b 1
4
ab
1 a b 1 ab a 1 b 1 2
1 ab
a 2 a3 b 2 b3
Now, a ..... b .....
2 3 2 3
loge 1 a loge 1 b loge 1 a 1 b loge 2
68. Let height of the pole AB be h.
Then BC h cot 600 h / 3
BD h cot 450 h
As BD BC CD
h
h
3
7h
3 1 7 3
7 3 3 1 7 3
h
7 3
3 1
2
2
3 1 m
69. Let number of trials be n, probability of success be p and that of failure be q.
Given, mean np 8 , variance npq 4
4 1 1 1
q p 1 p q 1
8 2 2 2
So, n 16
16
C0 16C1 16C2
Now, P X 2
216
1 16 120 137 k
k 137
216 216 216
70. Total number of observations are 9 which is odd and it means median is 5th item.
Now we are increasing 2 in the last four items which does not effect its value. So,
new median remains unchanged.
71. 2 4
Let a cos b cos c cos k ( say )
3 3
k k k
a ,b ,c
cos cos 2 / 3 cos 4 / 3
Now, ai b j ck bi c j ak
ab bc ac
cos cos 2 / 3 cos 4 / 3
k2
cos .cos 2 / 3 .cos 4 / 3
cos 2cos cos / 3
k2
cos .cos 2 / 3 .cos 4 / 3
cos cos
k2 0
cos .cos 2 / 3 .cos 4 / 3
Angle between ai b j ck and bi c j ak is
2
72. x 2 y 1 z
The given line is ( say )
3 0 4
So, the coordinates of any point D on the given line are 3 2,1,4 .
Let AD is perpendicular to the given line.
AD. 3i 4k 0
3 2 1 3 1 1 0 4 2 4 0
9 9 16 8 0
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 13
SRI CHAITANYA IIT ACADEMY, INDIA 25‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐15_KEY &SOL’S
17 24 18
25 17 i 2 j k
25 25 25
2 2
24 2 18
So, AD 2
25 25
576 324 900 2500 3400 34 2
4 10 34
625 625 625 625 25 5
1
Now, area of ABC BC AD
2
1 2
5 34 34 sq.units
2 5
73. 5
Let a tangent to the parabola be y mx m 0
m
As it is a tangent to the circle x 2 y 2 5 / 2 , we have
5
m
5
2
1 m2 1 m2 m2 2
Which gives m4 m2 2 0 m2 1 m2 2 0
As m R, m2 1 m 1
Also m 1 does satisfy m4 3m2 2 0
Hence common tangents are y x 5 and y x 5
74. x
Given line are y x 0 and y 3x x 0 using a, a 2 in these lines
2
a
a 2 0.....(i) and a 2 3a 0.......(ii )
2
1
Solving (i) and (ii), we get a 3
2
75. dy y 2 x
The given differential equation can be written as,
dx x 2 x 1
dy
2 x dx log y 1 2 1 dx
y x 2 x 1
x x 2 x 1
2
log y log x log x 1 c......(i )
x
Now, y 2 e
log e log 2 1 0 c c log 2
i becomes,
2
log y log x log x 1 log 2
x
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 14
SRI CHAITANYA IIT ACADEMY, INDIA 25‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐15_KEY &SOL’S
xy 2
log
2 x 1 x
xy 2 x 1 2/ x
e2/ x y .e
2 x 1 x
2.3.e1/2 3
y 4 e
4 2
76. 2 4d sin 2
We have , det A 1 sin 2 d
5 2sin d sin 2 2d
Applying R1 R1 R3 2 R2 , we get
1 0 0
det A 1 sin 2 d
5 2sin d 2 2d sin
2 sin 2 2d sin d 2sin d
4 4d 2sin 2sin 2d sin sin 2 2d sin d 2
2
d 2 4d 4 sin 2 d 2 sin 2
2
For a given d, minimum value of det A d 2 1 8 d 1or 5
77. Given y x sin y
dy dy
1 cos y
dx dx
dy dy 1
1 cos y 1 ____(i )
dx dx 1 cos y
3 1
Since tangent is parallel to line joining 0, and ,2
2 2
3 1
2
dy 2 2 1____(ii )
dx ( a,b) 1 0 1
2 2
1
From (i) and (ii), 1
1 cos b
1 cos b 1 cos b 0 b 2n 1 , n Z .
2
Since point a, b lies on curve y x sin y .
b a sin b
b a sin b b a 1
y
x
x3 xy c x 4 y x 2 1 cx
Now, y 3 3 (given)
57
81 24 3c c 19
3
Solution is x 4 y x 2 1 19 x
Putting x 4 , we get
4 4 y 42 1 19 4
256 76
y 4 12
15
80. 1
d 2x d dx d dy
dy 2 dy dy dy dx
1 2 1 3 2
d dy dx dy d 2 y dy dy d y
. .
dx dx
dy dx dx 2 dx dx dx 2
z2 x iy 2
Since, arg arg 4
z 2 4 x iy 2
x 2 iy x 2 iy
arg
x 2 iy x 2 iy 4
arg
x 2 4 y 2 4iy
tan 1
4y
2 x 2 4 y 2 4
x 2 y2 4
4 y x 2 4 y 2 tan / 4 1
2 2 2
x2 y 2 4 y 4 8 x 0 y 2 2 2 ,
Which represents a circle with centre, A 0, 2 and radius, r 2 2
Let P 9 2, 2 be point which lies outside the circle.
2 2
Then, minimum value of z 9 2 2i AP r
2
9
2 2 2
2 0 2 2 2 2 7 2 98
82. Let f x c 5 x 2 2cx c 4
f 0 c 4
f 2 c 5 4 4c c 4 c 24
f 3 c 5 9 6c c 4 4c 49
Now, f 0 f 2 0 and f 2 f 3 0
c 4 c 24 0 and c 24 4c 49 0
49
4 c 24 ___(i ) and c 24 ____(ii )
4
49
From (i) and (ii), c , 24
4
S 13,14,15,....,23
So, number of elements in S is 11.
83. For number to be divisible by 55, it should be divisible by both 5 and 11.
So, the number should be of the form 5abba5.
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 17
SRI CHAITANYA IIT ACADEMY, INDIA 25‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐15_KEY &SOL’S
Total possible values that a can take = 10
Total possible values that b can take = 10
Total number of possible 6 digit palindromes divisible by 55 10 10 100
84. x y z 12
Now, A.M G.M .
x y z
3 4 5 3 4 5 1/12
3 4 5
x y z
12 3 4 5
x3 y 4 z 5
1 x3 y 4 z 5 33.44.55
334455
3
But,given x3 y 4 z 5 0.1 600
all the numbers are equal.
x y z
k ( say ) x 3k , y 4k , z 5k
3 4 5
But, x y z 12 3k 4k 5k 12 k 1
x 3; y 4; z 5 So, x3 y3 z 3 216
85. We have AD 8m , BC 11m, AB 10m .
Let AM x m , then BM 10 x m
In DAM , by Pythagoras theorem, we have
MD 2 AD 2 AM 2 82 x 2
MD 2 64 x 2 ____(i )
In CBM , by Pythagoras theorem, we have
2
MC 2 BC 2 BM 2 121 10 x
MC 2 121 100 x 2 20 x
MC 2 221 x 2 20 x ____(ii )
From(i) & (ii), we have MD 2 MC 2
64 x 2 221 x 2 20 x 285 20 x 2 x 2
dS
Let S 285 20 x 2 x 2 20 4 x .
dx
dS
Now 0 4 x 20 0 x 5
dx
d 2S
Also, 4 0 . So, S is minimum for x 5 .
dx 2
Thus, distance of M from the point A is 5m.
86. 4/ n2
Let L lim U n
n
4
log L lim log U n
n n 2
4 1 22 32 n 2
lim log 1 2log 1 3log 1 .... log 1 2
2
n
n n 2 n2 n2 n
n
4 n r 2
lim r log 1
n n 2 r 1 n2
n 1 r r 2
4 lim . log 1
n r 1 n n n2
1
log L 4 x log 1 x 2 dx
0
2
Put 1 x t 2 xdx dt
When x 0, t 1 & when x 1, t 2
2
4 2
log L log dt 2t log t t 1 2 2log 2 1
2
1
1
log
Le 4 log 2 2
e 16 .e 2 1 e 2
16
87. x2 y2 z 5 x 1 y 4 z 4
Let L1 : and L2 :
3 5 7 1 4 7
Equation of plane containing L1 and L2 is
x 1 y 4 z 4
3 5 7 0
1 4 7
x 1 35 28 y 4 21 7 z 4 12 5 0
7 x 14 y 7 z 77 0 x 2 y z 11 0
11 11
Perpendicular distance from the origin to the plane is units
1 4 1 6
88. 1
Given, probability of any machine to be out of service
4
So, t 2 3t 2 4b t 2 b
t 2 3t 2 b 3b
Also, 1 1
16 b 2 16 b2
b2 16b 48 0 b 4,12
But b 4 b 12
CHEMISTRY
31) 2 32) 1 33) 4 34) 4 35) 2
36) 1 37) 4 38) 1 39) 1 40) 1
41) 2 42) 1 43) 1 44) 2 45) 3
46) 4 47) 1 48) 1 49) 3 50) 4
51) 3 52) 6 53) 2 54) 16 55) 8
56) 3 57) 3 58) 3 59) 5 60) 1
MATHEMATICS
61) 4 62) 3 63) 1 64) 1 65) 2
66) 1 67) 3 68) 3 69) 4 70) 2
71) 2 72) 1 73) 2 74) 2 75) 3
76) 4 77) 4 78) 2 79) 1 80) 3
81) 2 82) 8 83) 5 84) 0 85) 20
86) 1 87) 5 88) 1 89) 4 90) 3
SOLUTIONS
PHYSICS
1. Q AT
2
Charge Q=CV C 2 2
M 1 L2T 4 A2
V ML T
F MLT 2
Electric field , E LMT 3 A1
q AT
q1q2
Force ,= F 0 M 1 L3T 4 A2
4 0 r 2
1 1 1
Speed of light , C 0
0 0 0 C 2
M L T A2 LT 1
1 3 4 2
M 1 L1T 2 A2
2. Conceptual
3. For Statement
The maximum speed by which cyclist can take a turn on a circular path
v rg 0.2 2 9.8 v 3.92
5
Speed of cyclist, 7 kmh-1 = 7 18 1.94m / s
The maximum safe speed on a banked frictional road
tan 98 0.2 tan 450 2 9.8 1.2
vallowable rg v
1 tan 1 0.2 tan 45 0
0.8
5.42 m / s
Speed of cyclist, 18.5kmh-1=5.13 m/s
So, both the statements are true.
4. Here M 0 200kg , m 80kg Using conservation of angular momentum Li L f
M 0 R2
I11 I 22 I1 I M I m mR 2
2
1 M R2 5
I2 M 0 R 2 and 1 5rpm w2 0 mR 2 0 2
2 2 M R
2
5 R 2 80 100
9rpm.
R2 100
For point O to be the centre of mass of the system, moment about O should be zero
d
2mx m d x 3mx md x
3
For equilibrium, F gravitational Fcentripetal
G 2m m d
F 2
2m 2
d 3
Gm d 3Gm 3Gm
2 2 3
d 2
3 d d3
2 d3
Period of revolution, T 2
3Gm
6. Stress
Normal force N
N
Area A 2 a b
V a 2b
V 2 aba
Stress B strain
N 2 aa b V
B Strain
2 a b a b
2
V
2 a
2
ab 2
NB
a 2b
Force need to push the cork.
B 4 2 a 2b 2 a
f N 4 Bb a
a 2b
7. Let R be the radius of curvature of common surface
4T 4T
P1 P0 and P2 P0
a b
4T 4T 4T 4T 1 1 1 ab
And P1 P2 P0 P0 R
R a b R a b R b a
8. As the rods are identical, so they have same length (l) and area of cross-section (A).
They are connected in series. So, heat current will be same for all rods.
Q Q Q
Heat current
t AB t BC t CD
100 70 K1 A 70 20 K 2 A 20 0 K3 A
l l l
K1 100 70 K 2 70 20 K3 20 0
11. Frequency of unknown fork=known frequency Beat frequency =288+4 cps or 288-
4cps i.e. 292 cps or 284 cps. When a little wax is placed on the unknown fork, it
produce 2 Beats/sec. When a little wax is placed on the unknown fork, its frequency
decreases and Simultaneously the beat frequency decreases confirming that the
frequency of the unknown Fork is 292 cps.
Note: Had the frequency of unknown fork been 284 cps, then on [lacing wax its
frequency Would have decreased thereby increasing the gap between its frequency and
the frequency of Known fork. This would produce high beat frequency.
12. Time period of the pendulum (T) is given by
mg qE
2 2 2
L gE L
T 2 geff g eff g
2
T 2
geff m m qE
2
g
2
m
13. Electric potential is constant inside a charged spherical shell and outside it vary in
inversely with distance.
14. 0 I I x
B1 sin 90 sin 1 0 1 2 2 .... i
4 y 4 y x y
0 I I y
B2 sin 90 sin 2 0 1 ..... ii
4 x 4 y x 2 y 2
10 I x 1 y
BNet B1 B2 B
4
y y x 2 y 2 x x x 2 y 2
0 I x y x 2 y 2 0 I x y x2 y 2
B
4 xy xy x 2 y 2 4 xy xy
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 4
SRI CHAITANYA IIT ACADEMY, INDIA 26‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐16_KEY &SOL’S
0 I 2
B x y 2 x y
4 xy
100 50
Current flowing through 1000, I 50mA
1000
50
Current flowing through 2000, I ' 25mA
2000
Using Kirchhoff’s current law,
I I 2 I ' I Z I I 50 25 25mA
20. As , d 2Rh
d2 h2 3d h2
So, d h h2 9h1 h2 9 100 900m
d1 h2 d h1
21. Along horizontal
2 1 1
F1 1cos 450 2sin 450 F1
2 2 2
Along vertical
3
F2 1sin 45 2 sin 45 F2 3sin 45
2
F1 1
so, , .so, x 3
F2 3
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 5
SRI CHAITANYA IIT ACADEMY, INDIA 26‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐16_KEY &SOL’S
22. From the condition of equilibrium
f F cos 600
N mg F sin 600
1
For no movement of the block
M
F cos 60 F F cos 60 mg F sin 600
0 0
mg
F Fcritical 10 N
cos 60 sin 600
0
CHEMISTRY
31. Differ at C-4 configuration
32. Conceptual
33. Conceptual
34. The strength of nucleophile depends upon the nature of alkyl group R on which
nucleophile has to attack and also in the nature of solvent. The order of strength of
nucleophiles flows the order: Br CN ter butoxide methoxide
35. Mass number of element 81 i.e., p n 81
31.7
Let the number of protons be x. Number of neutrons x x 1.317 x
100
81
x 1.317 x 81or 2.317 x 81Or x 35
2.317
Symbol of the element 81 35 Br
36. Radiation coming from sun ore outer space have high energy or short wavelength,
which are allowed to enter by green house gases. However, radiation emitted by
earth is in infrared region, having, long wavelength, are reflected back by the
envelope of green house gases.
37. 3
A) Cr2 O3 2 Al Al2 O3 2Cr
1
B) Au 2CN H 2O O2 Au CN 2 2OH
2
2
2 Au CN 2 Zn Zn CN 4 2 Au
C) Statement is true
D) Ag 2 S 4 NaCN O2
2 Na Ag CN 2 Na2 S
2 Na Ag CN 2 Zn Na2 An CN 4 2 Ag
38. For mono electronic species energy depends upon principal quantum number only
39. Zinc rod dipped in blue copper sulphate solutions is oxidized to Zn 2 and Cu 2 are
reduced to Cu and get deposited on zinc rod.
40. OH
OH
41. Fluorine has high reduction potential due to low bond enthalpy high hydration
energy
42. 2CuSO4 2 Na2CO3 H 2O CuCO3 .Cu OH 2 2 Na2 SO4 CO2
43. Initially adsorption increases with increases in pressure at a particular temperature,
then get slow. After attaining equilibrium adsorption it becomes independent of
pressure.
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 8
SRI CHAITANYA IIT ACADEMY, INDIA 26‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐16_KEY &SOL’S
44. Conceptual
45. Conceptual
46. For strong electrolytes, the plot between m and C 1/2 is a straight line.
47. Conceptual
48. Conceptual
49. Conceptual
50. I) 1,1,1- trichloro II) 1,1,2- trichloro III) 1,2,2- trichloro IV) 1,2,3- trichloro
V) 1,1,3- trichloro
51. M 2 Ox
Re duction
M
Wt.of M 2Ox Wt. of Metal
Eq. of M 2Ox eq.of metal
Eq.wt.of M 2Ox Eq.wt.of Metal
4 2.8
x = n-factor of metal
2 56 x 16 56
2x x
4 2.8 1 1
On solving we get, 2x 6 x 3
56 8 x 56 14 2 x 20
Hence, the oxide is M 2O3 .
52. I,II,III,IV,V,VII
53. 20 102 200
1000 2m.mol ' s / l
20 80 100
54. 16σ Bonds are present
55. Functional groups are present carboxylic, alcohol, alkene, aldehyde, amine,
ketone,ether. Sec-amine
56. 13.6 Z eff2 13.6 Z 2 13.6 Z 2
Eionisation E En eV 2
n2 n 2 n12
13.6 12 13.6 12
E hv ; hv 13.6 0.85
1 4
2 2
13.6 0.85
h 6.625 1034 v 34
1.6 1019 3.08 1015 s 1
6.625 10
57. II,III,IV
58. III,IV,V
59. Total volume =100Ml
1.0 0.5
acid 10mL 0.1 salt 20mL 0.1
100 100
pH of acidic buffer = pK a log
salt 4.76 log 0.1 4.76
acid 0.1
60. γ form fcc Z 4 a 386 pm
ργ 4M / N A 386 2 290
3 3
MATHEMATICS
61. Since , are the roots of the equation
x 2 px q 0 p and a q.
Now, ( 1/ 4
) [( 1/ 4 1/ 4 ) 2 ]2
1/ 4 4
[ 1/ 2 1/ 2 2( )1/ 4 ]2
2 2
2 2()1/4 p 2 q 2(q)1/4
1/4
p 6 q 4q1/4 p 2 q 1/4 1/4 p 6 q 4q1/4 p 2 q
62. The total numbers of factors of xnyz…. is equal to the number of ways of
selecting one or more out of n identical quantities of one type and
remaining m distinct quantities. Hence, the required numbers of factors =
(n + 1)2m
63. F(x) is defined for
[x]2 [x] 6 0 ([x] 3)([x ] 2) 0 [x] 2 or [x] 3
But [x] 2 [x] 3, 4, 5,......
x 2 Domain of f ( , 2) [4, )
64. Let the roots of the given equation be 1 + ip and 1 – ip, where p R
product of roots
(1 ip)(1 ip) 1 p 2 1, p R (1, )
65. Given condition A 2 B 2 (A B)(A B)
A 2 B 2 A 2 AB BA B 2 AB BA .
66. Since a 1 b 1 c1 , a 2 b 2 c 2 and a 3 b 3 c 3 are divisible by k, therefore
100a1 10b1 c1 n1k
100a 2 10b 2 c 2 n 2 k
100a 3 10b3 c3 n 3 k
where n1, n2, n3 are integers.
a1 b1 c1
Now a 2 b2 c2
a3 b3 c3
a1 b1 100a1 10b1 c1
a2 b 2 100a 2 10b 2 c 2
a3 b3 100a 3 10b3 c3
(Applying C 3 C 3 10C 2 100C 1 )
a1 b1 n1k a1 b1 n1
a2 b2 n 2k = k a 2 b2 n 2 k1
a3 b3 n 3k a3 b3 n3
is divisible by k
(Since elements of 1 are integers, 1 is an integer)
67. 4!
6 ways and the
The four digits 3, 3, 5, 5 can be arranged at four even places in
2!2!
x 4/3 3 2z x 3
2z 1
lim 4
4
23/3
x 0
x 4/3
3 8z 4x 3 8z 2 3 8z 2 .z
75. In the neighbourhood of x = 0, f(x) = log 2 – sin x
g(x) = f(f(x)) = log2 – sin (f(x))
log 2 – sin(log 2 – sin x)
Since g(x) is differentiable at x = 0,
g ' (x) = – cos(log2 – sinx) (–cosx)
g '(0) cos(log 2)
76. f (x) x 3 x 2 f '(1) xf "(2) f "'(3)
f '(x) 3x 2 2xf '(1) f "(2)
f "(x) 6x 2f '(1)
f "'(x) 6
Now, f '(1) 3 2f '(1) f "(2)
f "(2) f '(1) 3 0 (1)
Again f "(2) 12 2f '(1)
f "(2) 2f '(1) 12 0 (2)
Again f "'(3) 6 (3)
From (1) and (2)
2f "(2) f "(2) 6 0 f "(2) 2 (4)
(1) gives f '(1) 2 3 0
f '(1) 5
f (x ) x 3 5x 2 2x 6 (5)
f (0) 6
f (1) 1 5 2 6 4
f (2) 8 20 4 6 2
f (3) 27 45 6 6 6
f (0) f (2) 6 2 f (1) (a) is false
f (0) f (3) 6 6 0
f (1) f (3) (1 5 2 6) 6 2 f (2)
f (1) f (3) 2 f (0) [ f (0) 6]
(4) is false
77. Let, f (x) x 3 3x a
f '(x) 3x 2 3 3(x 1)(x 1)
Now, f (1) a 2, f ( 1) a 2
The roots would be real and distinct if,
f (1)f ( 1) 0 (a 2) (a 2) 0 or 2 a 2
85. 4
r b c, c xi yj so c x i j
3
6
We can prove that 1 5 x . Four vectors possible.
5
Which are r 2i j , i j
2 11
5 5
86. y xt 2at at 3
CHEMISTRY
31) 1 32) 4 33) 2 34) 3 35) 4
36) 1 37) 1 38) 1 39) 1 40) 3
41) 2 42) 2 43) 1 44) 3 45) 3
46) 1 47) 1 48) 2 49) 4 50) 1
51) 298 52) 100 53) 14 54) 1 55) 3
56) 1 57) 2 58) 4 59) 10 60) 1
MATHEMATICS
61) 4 62) 2 63) 1 64) 2 65) 1
66) 3 67) 2 68) 3 69) 2 70) 2
71) 1 72) 4 73) 1 74) 2 75) 3
76) 4 77) 2 78) 2 79) 3 80) 2
81) 2 82) 8 83) 2 84) 1 85) 2
86) 2 87) 20 88) 2 89) 15 90) 1
SOLUTIONS
PHYSICS
1. 3b 3b 2
cos , Which gives 3b 2 2ab cos 0
2a 2ab
2 2 2
Given, P a 2 4b 2 4ab cos , And P Q
Equation (1) can be achieved if
2
P a 2 4b 2 4ab cos a 2 b 2 2ab cos
2
So, Q a 2 b 2 2ab cos Q a b
2. A 0 A 0 A MLT 4 given
0 0 0 1 / speed of light
2
ML2T 2
0 A ML T
1 2
0 A is the energy per unit volume.
L3
3. u and at are perpendicular vectors. Acceleration is constant. Equations of motion can
be applied.
At t 2sec, u 2a, at a 2 2 2 2a
2 2 1/2
2 1/2
Velocity at t 2sec v u at 2a 2 2a a 12
2
tan 1
at
tan
1 2 2a
tan
1
2
u
2 a
4. gx 2
Compare with y x tan 2
2u cos 2
3 4 3
tan ,cos ,sin
4 5 5
5. T mg
f
mg
For upper block to move along with block A ,
A
f1
4m g
6. Sphere just reaches the top of the wedge, It means relative velocity of sphere w.r.t
wedge is zero mu M m V
mu
So, V=horizontal velocity of sphere and wedge
M m
From conservation of mechanical energy,
1 2 1
mu M m V 2 mgR
2 2
1
u
2 M m m 2u 2
2
2gR M m 2
M m 2
gR u
m M
7. M L
L 2 R
R L / 2
MR 2 3 3 L2 3 L3
I x x1 MR 2 MR 2 L 2
4 8
2
2 2 2
8.
GM m GM m 2G M M 2GM
E 1
2
1 2
M1 M 2
d d d d
2
2
1 2Gm G M1 M 2
m e 2 M1 M 2 , e 2
2 d d
9. Equivalent spring constant of a wire is given by
YA Y 2 A Y1 A Y2 A
K Keq K1 K 2
L L L L
Y Y
Or Y 1 2
2
The system can be replaced as if suspended from a single wire of Young’s modulus Y.
1 stress
2
1
U stress strain volume AL
2 2 Y
2
1 Mg 1 M 2g 2L
AL
2 A Y A Y1 Y2
10. V V
f1 , f2 n , f 2 f1 and n is odd :
L 4L
5V 5
For n 5 , it is possible f 2 f1.
4 L 4
11. TB TA
The heat will flow C to B to maintain steady state. Applying condition formula to the
T T T TC TC T 2
sides AC andCB . a
a 2 AC CB a 2 a
T 3
On solving, C
T 2 1
n n n
sin max 1 cosC 1 .cos sin 1 2
n2 n2 n1
n n
max sin 1 1 cossin 1 2
n2 n1
13. At distance ' a ' apart, kinetic energy of the particles is assumed zero and at infinity
their kinetic energy will be maximum.
q1q2 1 q1q2
mVmax 2 2,Vmax
4 0 ma 2 4 0 ma
2V V V
I
2 R R 3R
VP V V IR VQ
VQ VP IR
V V
R
3R 3
17. 2 r 4a
4a
r
2
2 2
2a 4a I
M IA I .
18. At a distance r , an elements of thickness dr is considered. Number of turns in the
N N
element .dr .dr
b a b a
0 dN I 0 I N dr
dB
.
2r 2 ba r
b
NI b
B dB 0 in
a
2b a a
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 5
SRI CHAITANYA IIT ACADEMY, INDIA 27‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐17_KEY &SOL’S
19. di
VA 1 5 15 5 103 VB
dt
VA VB ( given)
di
4 103 A / sec.
dt
20. Let R1 R2
Current flows in large coil of radius R2
i
Magnetic field at centre 0
2 R2
0i
Flux linked with smaller coil R 21B R 21
2 R2
Mi
0
2
R 1
M / i
2 R2
M R 21 / R2
Hence, R1 R2 otherwise, R1 R2
21. qt 4 2
dq di
i 2t and 2
dt dt
At t 3sec, q 5c and i 6 A
q di
VA L iR VB
c dt
q di
VA VB L iR
c dt
5
0.5 2 6 1 8V
3
22. di
VL L
dt
Ldi VL dt
L i f i0 Area under VL t graph
1
4 i f i0 8 2
2
if 2A
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 6
SRI CHAITANYA IIT ACADEMY, INDIA 27‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐17_KEY &SOL’S
23. 1
E photon 13.6 1 eV 13.0eV
25
E / c mv (momentum conserved )
E 13 1.6 1019
v 4 m / sec
mc 1.67 1027 3 108
24. a v2 / r
Z2
so, a
1 / 2
Thus aZ 3
3 3
a1 Z1 2
8
a2 Z 2 1
25. q CV
dq dv 8
i C 2 4 A
dt dt 4
26. W U f Ui
1
Ui
4 0 a
2q 2q 2q q 2q 0
Also U f 0
So, W 0
27. 1 2
1 2 0
t 2
75 65 75 65
30
2 2
For second case,
55 45 55 45
30
2 2
1
Divide eqn 1 by eqn. 2 , 2
2
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 7
SRI CHAITANYA IIT ACADEMY, INDIA 27‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐17_KEY &SOL’S
t 4min ute
28. 1
Given Vsound Vrms
2
1 1
RT 2 3RT 2
M 2M
3
So,
2
C n1C p1 n2C p 2
But p
Cv n1Cv1 n2Cv 2
3 3 5R / 2 n 7 R / 2
2 2 3R / 2 n 5 R / 2
n2
29. PV since graph is a straight line
PV 1 constant
For the processes PV x Constant , molar heat capacity is
R R
Given by C
1 1 x
But here, 1.4 and x 1
R R
C 3R IR( given)
1.4 1 1 1
So, I 3
30. No change in temperature
So, n1 n2 i n1 n2 f
PV PV PV PV
1 1
2 2 1 2
RT RT RT RT
PV PV
P 1 1 2 2
RT
4 P0 3V 1.5P0 2V
5V
3P0 IP given
So, I 3
CHEMISTRY
31. At critical temperature slope of pressure volume curve is maximum and it is zero
32. H 2 A 2 NaOH Na2 A H 2O
4
Na2 A n NaOH 2n H 2 A
32 20
4
0.25 V 2 0.2 20
52
0.0769 V 32 ml
n Na2 A n H 2 A 20 0.2 4
33. 0.693 0.693
K1300 k k2320 k
20 5
k Ea 1 1 2.303RT2T1 k
log 2 Ea log 2
k1 2.303R x1 x2 T2 T1 k1
2.303 8.314 300 320 20
Ea log 55.14
20 10 3
5
34. On dilution number of ions decreases in unit volume hence specific conductance
decreases. But separation between ions also increases hence equivalent conductance
increases
35. i 1 1.25,T f K f .m.i i 0.633:
i 1 0.4650 C
2
36. a
Distance b/w two nearest Cl
2
a
Distance b/w two nearest Na
2
37. IF7 P.B.P., 0 , SO2 Bent , 0
CS 2 linear , 0 , SF4 See saw, 0
38. Due to electronegativity difference between F and H bond length is smaller.
39. IIA Cations have high hydrate formation nature due to their high charges.
40.
41. H
CH 3 CH CH C* CH 3
OH
n2
2n 22 4
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 9
SRI CHAITANYA IIT ACADEMY, INDIA 27‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐17_KEY &SOL’S
It exhibits both geometrical and optical isomerism
42. Cl CH CH NO2
In , double bond character in carbon chlorine bond is
maximum due to resonance and so the bond length is shortest
43.
O O
A dipolar resonance structure has aromatic character In the ring and would be
expected to make a major contribution to the overall structure
44. Lewis acids are the most common compounds used for initiation of cationic
polymerization. Some other lewis acids are SnCl4 , AlCl3 , BF3 , TiCl4
45. Weak bases are good leaving Groups
46. RNA controls the synthesis of proteins
47. Formaldeyde is more reactive for nucleophilic addition reaction
48. CH 3 CH 3
CH 3
ONa OCH 3
OH NaOH CH 3 I
NaI
49. OH OH
SOCl2
OH CH 2 OH Cl Cl
CH 2
In the case of OH group present on the aromatic ring, carbon - oxygen bond has
partial double bond character, hence, it is a strong bond and difficult to cleave.
50. O
CH3 C
Acetone contains methyl ketonic group and undergoes Haloform reaction
51. S 206.5 114.6 180.7 88.8
0
G 0 H 0 T S 0
H 0 271.8 298 88.8 1013 298.3
52. Coagulation value
Number of millimoles of electrolyte required
volume of colloidal solution (in litre)
10 0.5
1000 100
50
53. nh
The angular momentum
2
Kp atm
0.64
2
3
57. The number of optical isomers for Cr C2O4 3 is two
58. PbS , CuS , As2 S3 CdS are soluble in 50% HNO3 . Where as HgS , Sb2 S3 are
insoluble in 50% HNO3
59. Ho 67 4 f 11 6s 2
Ho 3 4 f 10
60. One hydrogen bonded H 2O molecule.
MATHEMATICS
61. a b b b.a b b.b a 2(2i j k ) 6(i j k ) 2i 8 j 8k
62. x 1 a x2
Right hand side is non negative x R such that a x 2 0
So left hand side x 1 0 x 1
x 1 a x2
1 2a 1
x 1
2
a x2 x
2
1 2a 1
the root x does not satisfy x 1
2
1 2a 1
So it is not a root and x satisfies the equation for a 1
2
63. AM GM
a1 a3 a5 ...... a2 a4 a6 ........
2
a1 a3 a5 ..... a2 a4 a5 ......
n 1
20
or
2
a a k for k 0
i 1
i i 1
n 1 n 1
100 ai ai 1 k ai ai 1
i 1 i 1
Hence S = 100
64. At point of maxima f ' x 0 and f " x 0
f " x x 2 f 2 x 0
Since the curve is x 2 y 2 a 2 and x 2 f 2 x 0
2 2
x1 y1 a 2
Point lies outside hyperbola
Hence 2 tangents
65.
1 1 2 x
I e x tan 1 x dx
1 x
2 2 2
1 x 1 x 2
f x
f ' x
1
I e x tan 1 x c
1 x2
Using e x f x f ' x dx e x f x c
66. n S 1003
x1 x2 x3 75
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 12
SRI CHAITANYA IIT ACADEMY, INDIA 27‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐17_KEY &SOL’S
xi 1
74
C72
PE
1003
67. hx
tan 30
y
y h x 3
h
tan 600 h 3 y
y
1 2h
y h x
3 3
1 0 0 0
0 ,
0 0 1
1 0 1 1
0 ,
1 0 0
0 1 1 1 1 0
0 , , ,
1 0 1 1 0
0 0 1 0 0 1
1 , , ,
1 1 1 1 0
1 1 0 1 1 1
1 0 , 1 1 , 1 1
72. Substitute y in equation of circle and put 0
x 2 ax b 2 x 2 ax b 2 0
2
x 2 1 a 2 x 2ab 2 2a b 2 2b 2 0
a 1 ab 1 a 2 b2 2b 2
2
Hence a b 2 a b a b 1 0
2
9,
i 1 i 1
2
45
x xi
2
2
S .D i
n n
9 3
4 2
tan x
1 2
dx
lim 0
form
x
x 12
2
1 x2
lim tan x
1 2
x x 2
2
lim 2
x
2
82. let x1 2 cos
y1 2 sin
x2 2 sin
y2 2 cos
P 2 x1 y1 x2 y2 x1 y1 x2 y2
2 2 cos sin 2 cos sin 2sin cos 2sin cos
2 4cos 2sin 2
4
2428
83. x2 y2
The product of perpendicular from the foci on any tangent of 2 2 1 is a 2 a b
a b
2 2
x y
Here 1
4 9
ac 4
4
x x dx
0
4 4
xdx x dx
0 0
86
2
84. 2 x x 1 2 x …………………(1)
x 1 2 x
0 2 x 1
x 1 0
x 1 0
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 16
SRI CHAITANYA IIT ACADEMY, INDIA 27‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐17_KEY &SOL’S
1 x 0
2 2 x 0
2 x 2, 1
from equation (1)
2 x 0 2 x
2 x 2, 1
1
x 1,
2
85. y x cos x
x
x 0
86. 2 3 4 1
1 1 1 6 4 3 13
I x x x x x 2 x3
2 3
1 2 3 0
2 3 4 12 12
87. Number of reflexive relations
2
2n n
2255
220
88. 2 6( x 2) 2(2 x 1) 10 x 10
f '( x) ( x 2)2/3 2 (2 x 1) ( x 2)1/3
3 3( x 2)1/3 3( x 2)1/3
x 1 is a point of maximum and x 2 is a point of minimum
No.of extremum points is 2
89. x 1 y 2 z 3
1 2 2
po int on the
1, 2 2, 2 3
plane
6 11 5
6, 8,13
Hence
Dis tan ce 25 100 100
15
90. If x x y then y 2 5y 6 0
2
y 2
6 y 1 0 x 2 x 6 0, x 2 x 1 0
x 3, 2, x , 2
Sum of non-real roots = 2 =-1
CHEMISTRY
31) 2 32) 2 33) 1 34) 3 35) 3
36) 2 37) 3 38) 4 39) 1 40) 2
41) 3 42) 3 43) 3 44) 2 45) 4
46) 4 47) 2 48) 1 49) 4 50) 1
51) 144 52) 17 53) 16 54) 2 55) 4
56) 6 57) 28 58) 1 59) 6 60) 5
MATHEMATICS
61) 4 62) 4 63) 1 64) 1 65) 3
66) 2 67) 2 68) 1 69) 4 70) 3
71) 2 72) 2 73) 3 74) 3 75) 4
76) 4 77) 3 78) 3 79) 1 80) 4
81) 7 82) 101 83) 36 84) 6 85) 9
86) 9 87) 5 88) 21 89) 9 90) 28
SOLUTIONS
PHYSICS
1. V=xyz
Where x,y and z are the three dimensions then
V x y z
V x y z
V x y z
or X 100 X 100
V x y z
0.1 0.1 0.1
X 100
5 10 5
5%
2. dx dy d 2x d 2 y
Given that c 0
dt dt 2 2
dt dt
3 2
Further z ax by
dz dx dy
3ax 2 2by
dt dt dt
dx dy
3acx 2 2bcy c
dt dt
d 2z dx dy
6acx 2bc 6ac 2 x 2bc 2
dt 2 dt dt
Now, acceleration of particleis
d 2x d 2 y d 2z
a i
j k
dt 2 dt 2 dt 2
(6ac 2 X 2bc 2 )k
3. From work energy thermo
KE Wnet
or K1 K1 Pdt
2
1 3
or mv 2 t 2 dt
2 2
0
2
t3
or v2 or v 2m / s
2
0
4. 4 j Component is perpendicular to velocity. So, it is radial (or normal) acceleration.
v2
an
R
v 2 (2) 2
or R 1m
an 4
5. Mass of the remaining portion is
2 R2
R p
2
Here p= mass per unit area
m1x1 m2 x2
R2 R2 R
R2 px . p.
2 2 2
R
or x
2(2 1)
6. I remaining I whole I removed
1 1 R 2 2R
2
or I (9m)( R) 2 m m
2 2 3 3
2
9M R
Here, m x M
2 3
R
Substituting In Eq.(1), we have
I 4 MR 2
7.
1 2 Gm Gm 2
2
3 mv 3
2 2 R d
1 2 1 2
v 2 Gm v Gm
R d R d
8. Using PV1 1 PV
1 1 (for the air bubble)
we have
4T 4 r
3
4T 4 3
P1 r P2
r 3 r 2 3 2
Solving this, we get
24T
P2 8 P1
r
9. V
n1
2 /1
V
/1
2n1
V
n2
2 /2
/2 V
2 n2
V
Now, n
2(/1 / 2 )
Substituting the values we get
n1n2
n
n1 n2
10. 5 3
1 means gasis monoatomic or Cv1 R
3 2
7 5
2 means gasis diatomic or Cv2 R
5 2
Cv (of the mixture)
3 5
(1) R (1) R
n Cv n Cv
1 1 2 2
2 2 2R
n1 n2 11
C p (of the mixture) Cv R 3R
Cp 3R
mixture 1.5
Cv 2R
i/2
13.
Intensity at the centre will be zero it path difference =
2
or ( 1)t or t
2 2( 1)
14. In equilibrium electrostatic attraction between the plates = spring force
q2
kx
2 0 A
(CE )2
k (d 0.8d )
2 0 A
2
0 A 2
E
0.8d 0.2dk
2 0 A
0 AE 2 4 0 AE 2
k
0.256d 3 d3
15. VMN 4 Volt on the basis of this currents in different resistors can be obtained.
4
A
3
22.
a /a R
TR / , TR / or T T
R R2
Mg T Ma T
/ 2kg M
or Mg Ma T M a
R2
Mg 2 x10
or a 2m / s 2
1 0.32
M 2 2 0.04
R
23. N m 2 A
N (0.4)m.g
Amax
2
m m 2
0.4 (10) 2 L
(6 / 1.5) M m
1m
1
Maximum KE KA2 3 J
2
24. Initially the rods are in parallel
Q (1 2 )
t R
Q A
t 1
q1L
100 0 (1)
R/2
Finally when rods areinseries
Q mL (100 0)
q2 L (2)
t 2 t 2R
From Eqs.(1) and (2)
q1 4
q2 1
dt
4
4
(4t )dt
4
4 t dt t2
2 2
4
2
2
2 dt 2 2
12 A2
irms 12 2 X 6
28. hc h c W
ev W V .
e e
h c W
V1
e 1 e
h c W
V2
e 2 e
Solving thesetwoequation, we get ,
h 12 (V1 V2 ) (0.6 X 0.4 X 1012 )(1.0)
e c(2 1) (3 X 108 )(0.2 X 108 )
4 X 1015V s
29. The diode is in reverse biasing, so no current flows through it
30. d max 2 Rh
CHEMISTRY
31. a n 3 : l 0 : m 0 3s 3 0 3
b n 4 : l 0 : m 0 4s 4 0 4
c n 3: l 1: m 0 3 p 3 1 4
d n 3: l 2 : m 1 3d 3 2 5
If two orbitals having same n l value, Priority will be more for lesser ‘n’-value.
3s 3 p 4s 3d a c b d
32. RT 1
PM dRT P d PT and d So, Straight line is formed, with
M T
T3 T2 T1
33. Bi2S3 K SP 108S 5 1.08 1073 S 5 1075 S 1015 M
34. 2C 3H 2 C2 H 6 H ? C2 H 6 7 / 2 O2 2CO2 3H 2O
2 394 3 286
H 1646 1560 86 KJ / mole
788
858
1646 KJ / mole
35. PCl5 PCl3 Cl2 PV nRT N
PV
RT
x x x 2.46 200 2.46
n
5 x x x 0.082 600 0.246
Total no.of moles 5 x 2 moles of N 2 Total no.of moles 10 moles
7 x
7 x 10 x 3 K p K c . RT
n
2 9
nPCl5 2moles CPCl5 Kp 0.082 600
200 400
3
nPCl3 nCl2 3moles PCl3 Cl2 54
200 0.082
3 3 4
KC
PCl3 Cl2 200 200 9 1.1 atm
PCl5 2 400
200
36. N2 3H 2 2 NH3
56Lt
10Lt 20Lt
46Lt of N 2 is left un reacted
4 So4 , H 2O
37.
CuSo4 .5 H 2 O Cu H 2 O
Zn Hg
Hcl
Cl
Cl2 / h
CH 3 CH CH 3 CH 3CH 2CH 2 Cl CH 3 CH 2 CH 3
Major % Pr opane
43. O
CH 3 CH 2 C CH 2 C H NaBH
4
OH
PBr3
Br H 3 PO3
MgBr
M g / d .E
Nu add n CO2 / H 3O
O
C OH
44. R CH 2 OH
R CH 2 Cl
SOCl2 NaCN
NaCl
R CH 2 CN
H 2 / Ni
R CH 2 CH 2 NH 2
i 0 alchol i 0 a min e
45. Compound “A” exhibits plane of symmetry but compound “B” do not exhibits any
symmetry. Hence A optically inactive
B optically active
46. Conceptual
47. Penicillin is a bactericidal antibiotic.
48. OH OH CH 2OH
CHO OH
1) CHCl KOH aq
3
PCC
2) H
A B C
49. Conceptual
51. E 0cell
RT
ln Kc
nF
E 0 cell E 0 cu / cu E 0 cu 2 / cu 0.52 0.16 0.36V
0.36
0.36V 0.025 ln Kc ln Kc 14.4
0.025
144 101
52. Fe0.93O Fe93O100
x 2 93 x 3 200 x 79
79 Fe 2 93 79 Fe2
14 Fe3 100 ? Ans: 17
Ans: 85% Fe 2 5x 5 17 85
53. 2.303 100 10
67% t 1 log t 1 log 3
0.693 100 67 3
2 2
10
t 1 0.48 1.6 t 1 x 101 16 101 1.6 Ans: 16
3
2 2
54. 20 1 1
200 ml 0.1M 20 m.moles moles 60 gm CH 3COOH
1000 50 50
1.2 gm acetic acid 0.6 gm wood charcoal
? 1gm
2gm
55. NO, N2O, CO Neutral Oxides
B2O3 , N2O5 , SO3 , P4O10 AcidicOxides
56. II, III, IV,VII, IX and X Compounds are aromatic.
57. Major product is ethene
58. (No of amino acids 4 and No of peptide bonds 3)
59. (Compounds 1,2,4,5,6 & 8-gives +ve Iodo form test)
60. ( i,ii,iii,iv,v are exothermic)
MATHEMATICS
61. z2 iz1 z1 z2 z2 , iz1,0 are collinear
arg iz1 arg z2
arg z2 arg z1
2
z iz1
z3 2 z3 z2 i z3 z1
1 i
z z
Arg 3 2 and z3 z2 z3 z1
z3 z1 2
BC AC and AB 2 AC 2 BC 2
AB 2 25 2 AC 2 25
1 25
Re quired area AC BC Sq.units
2 4
62. 1 sin 2 x Cos 2 x Sin 2 x 1 Sin 2 x Cos 2 x Sin 2 x
Sin 2 x 1 Cos 2 x Sin 2 x 1 1 0
Sin 2 x Cos 2 x 1 Sin 2 x 0 1 1
1 Sin 2 x 1 0 Cos 2 x 1 0 Sin 2 x 1 0
2 Sin 2 x
2 1 3, 2 1 1
A triangle can be constructed having its sides as 3, 1 and 2 is false
63. 3x y 4 z 3 1
x 2 y 3 z 2 2
6 x 5 y kz 3 3
1 2 2 7 x 5z 4
1 5 3 21x 20 k z 12
21 20 k 12
20 k 15 k 5
7 5 4
64. 12C2 10C3 23 63360
65. x 2 if o x 1
f x x x 0 if x 0
2
x if 1 x 0
x1, x2 A, f x1 f x2 x1 x2 f is one one
f x y, x A y A B f is on to
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 12
SRI CHAITANYA IIT ACADEMY, INDIA 28‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐18_KEY &SOL’S
66. A
y x3 y x
2
y 1
1
x1 x
1
y1
74. f 11 x g11 x 0 f 1 x g1 x c
f 1 1 g1 1 c 2 4 c
f 1 x g1 x 2 f x g x 2 x d
f 2 g 2 4 d
3 9 4 d d 2 f x g x 2 x 2
f 4 g 4 10
Sum of x values 0
80. dy dy x2
x 1 y 1 x 1 dx log e y 1
y 1
xc
dx 2
1 x2
x 0, y 0 log e 0 0 c log e y 1 x
2
x2
x
y 1 e 2
1 1
1
y 1 e 2 1 e 2 1
81. a 3 0, o
122 4 a 3 a 6 0
36 a 2 6a 3a 18 0
a 2 3a 54 0 a 9 a 6 0
a 9 or a 6 but a 3 least value of a is 7
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 15
SRI CHAITANYA IIT ACADEMY, INDIA 28‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐18_KEY &SOL’S
82. The coefficient of x 4 in
404 303 202 101
4co 1 x 4c1 1 x 4c2 1 x 4c3 1 x 4c4 in
4 4
1 x 101 1 101c x 101c x 2 ..... 101c x101 is 1014
1 2 101
83. E1 , E2 , E3 be the events that two headed coin, biased coin, unbiased coin
1
p E1 p E2 p E3
3
E be the event that head shows
1
E 1 1 4 4
p 3 p
E1 1 1 1 3 1 1 1 3 1 4 3 2 9
4 2
3 3 4 3 2
81 p 36
84. 2
v2 v1 4 p 1 3p2 1 2 p2 2 p 4 0 p 2 p 1 0 p 2 p o
2 3 p p 1 4 3 3 4 4
Cos 9
4 p 12 3 p 2 1 13 13 43 2 9
32
4
2 2
Tan Sec 2 Tan 2 1 169 3 2 33
4 3 3
169 2 3 4 4 3 48 9 24 3
165 3 2 57, 6
85. 1 17 9
Slope of BC , D 2, , Equation of SD is 2 x y
2 2 2
9 9
x 0 y 0, 0, 9
2 2 2
A
B D C
86. y ax 2 bx c
dy
2ax b 2a b 3
dx
1
1,0 a b c 0 4a 2 a , b 4
2
3,4 9a 3b c 0 2a 3 b 1
7
c 2a b 4c 1 4 14 9
2
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 16
SRI CHAITANYA IIT ACADEMY, INDIA 28‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐18_KEY &SOL’S
87. n
1 n
r 1 1 n n 1 n
Sn 1 2 3.... r
n n 3
r 1
r r 1
2 2 2 4
S20 15 115 15
5
20 20
88. 1 14
BE 2 49 81 64 7 m
2 2
h
Tan h 21m
BE
A Tan 3
4
9 h
E
4
B C
89. 2
x
1 2 x 2 dx
2
1
2
x3
2
Area x 2 x 3 dx x 2 3 x]21
3
1
8 1
4 6 1 3 9
3 3
y1
y x2 1
y 2x 2
1 0,1 x
x o
x1 1
x 2
y1
CHEMISTRY
31) 2 32) 2 33) 1 34) 4 35) 2
36) 4 37) 4 38) 2 39) 1 40) 2
41) 4 42) 3 43) 2 44) 2 45) 2
46) 4 47) 3 48) 2 49) 4 50) 3
51) 2 52) 3 53) 25 54) 20 55) 3
56) 9 57) 2 58) 4 59) 4 60) 7
MATHEMATICS
61) 4 62) 3 63) 4 64) 2 65) 4
66) 4 67) 2 68) 1 69) 2 70) 4
71) 2 72) 3 73) 3 74) 4 75) 4
76) 2 77) 2 78) 4 79) 1 80) 2
81) 18 82) 41 83) 4 84) 30 85) 6
86) 96 87) 3 88) 5 89) 80 90) 248
SOLUTIONS
PHYSICS
1.
1 m.6m 7
WD K , mgl 1 2 2 01 2 gl
2 m 6m 3
2. 2eV
hc
8eV
1
T2 2T1
If 1 is the wavelength corresponding to maximum intensity at T1 & 2atT2 :
Then
2 1 (by wein ' s displacement Law)
2
hc hc hc
16eV , 2eV K .Emax 14eV .
2 1 1
3. 4 4 1 4/3
I' I ( given) whereG 16, I '' I
4G 4G 5 4
16
3
1 1 5 i 4
I '' I , or I '' (5I ') I ' , G 4 X i G 16W
13 13 3 5 5
4
In sec ond case(i i ') X 16 i '
3
2X 4 4 i' 13i 12
Req , 4i 4i ' 4i i' i
24 3 3 3 13
1 1
i i ' i X 0.65mA 0.05mA
13 13
7. The total translational kinetic energy of all the molecules of a gas is given as
3 3
E nRT PV
2 2
Thus statement-1 is correct .In a gas ,molecule are in Brownian motion and travel
randomly in all directions and at every collision direction of motion changes so
velocity changes .Thus statement -1 and 2 are true but statement-2 is not explanation
for statement-1.
8.
Electric field due to lower part at B is= electric field due to full sphere –electric field
KQ 1 (4 / 3) R3 R
due to upper part E E E.
2 R 2 4 0 4R 2 12 0
20. In pulling case when force is applied at some angle to horizontal on a body then its
vertical upward component reduces the normal reaction so limiting friction will be less
in the case compared to the case of pushing because in case of pushing the vertical
component of force increases the normal reaction On body and the limiting friction
increases. So if is easier to pull a heavy object than to push so, statement-1is right and
of friction force also depends on the nature of surface. Therefore statement-1 &
statement-2 both are right & Statement-2 is not the correct explanation of statement-1.
21.
210 Ae 5004 3004 ,700 A 5004 3004 e . 3
10
22. Path of satellite after reducing velocity is as shown.
GMm GMm 1 2 GMm 2
E mv v .
5R 4R 2 10 R 5
The intensity through S3 Will be I 2 4 I 0 cos 2 I 0
2
22
I max 4 I 0 I 0 3 9
K .
I min 4 I 0 I 0 1 1
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 5
SRI CHAITANYA IIT ACADEMY, INDIA 29‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐19_KEY &SOL’S
24.
1 2 1 2 2 mgx kx 2 4
mv kx mgx v , v N 4.
2 2 m 10
25. For horizontal equilibrium of the block,
T1 sin 600 T2 sin 600 m 2r m 2 (1sin 600 )
T1 T2 m 21 ........(i)
For vertical equilibrium of the block
T1 cos600 T2 cos600 mg
T1 T2 mg 2mg ..............(ii)
cos 60 0
Dividing (i) by (ii)
TA
2 1
T1 T2 1 T2 21
or
T1 T2 2 g TA
1 2 g
T2
2
i.e., 4 1 1 2 10 g 10 9.8 32 196 14rads 1
4 1 2 g 31 3 50 10
26. a a
y tan x x 2 , compare y px qx 2 .q .
2u 2 cos 2 2u 2 cos 2
27. 1.02
Vs 2.04
0.5
3
iX 1 2.04 i 1.53
4
28. Heat lost =heat gain.
29. q q q
.
R 2 R 3R
30. 2
m
2
Psb Pc a Pc
0.5 0.0625P
c
2 4
m2 0.5 2
Also P Pc 1 a Pc 1 1.125Pc
2 2
% saving
1.125 pc 0.0625 pc X 100 94.4%.
1.125 pc
CHEMISTRY
31. Fact
32. The slope change in the Ellingham diagram is due to phase change of metal. And,
the higher values of G 0 generally show its inability to form oxide.
33. Amount of charge used =10×60×60=36000C=0.373F
Amount of cu 2 available =0.5×0.5=0.25 mole
Amount of charge required to deposit all cu 2 =0.5F
only cu 2 will be deposited(partially), zn 2 will not discharge
34. From
1 1 1
Rz 2
n2 n2
1 2
1 1 1 1
2 1 1 3 27 R
so R(2)2 R and R (3) 9R
1 (2) 2 ()2 2 (1)2 (2)2 4 4
2 R 4 4 4
2 1
1 27 R 27 27
35. a
p 2 (V b) RT
V
a
0(neglected )
V2
p(v b) RT
pv pb RT
pv RT pb
R
v T b
p
isobar is made at cons tan t pressurebetweenV ( y axis)and T ( x axis)
43.
and .
44. More the number of fused benzene ring more is the resonance energy. Angularly
fused phenanthrene has five canonical forms whereas linearly fused anthracene
has only four forms.
Anthrarene :
8 9 1
7
2
3
6
10 4
5
10 7
9 8
3)
Cr en Co NO2
3 6
Cr en NO2 Co(en) NO2
2 2 4
Co(en)2 NO2 Cr en NO2
2 4
Co NO2 Cr en
6 3
825.2 X
103 2 X 96487 X 4.315
825.2 X 103 832.682 X 10
3
298 298
7.483 X 103
25.1JK 1mol 1.
298
54. weight / M w 6.3 / 126
H 2C2O4.2 H 2O x X 102 20.
V ( L) 250 / 1000
55. The number of halogen/(s) forming halic (V) acid is
HClO3
HBrO3
HIO3.
56. O
C
O
O
C
C
Cr
C C
C O
O
O
57. Conceptual
58. 5d series have higher density than 4d series and d‐block have higher density than
s‐block elements
Ag, Au ii) Zn, Hg iii) Na, Cu iv) Ca, Co.
59. OH OH OH
OH + HCOONa
A is (C)
CHO
OH (D)
D
D
60. 7(carboxylic acid, anhydride, lactone, ether, ketone, amide and amine).
MATHEMATICS
61. R1 {ab 0, a, b R}.
Obviously R1 is reflexive symmetric but not Transitive
If a 2, b 0, c 3, ab 0; bc 0 but ac 0.
for R2 : a b does not imply b a.
62. sin x 0,cos x 1 x 0,2 ,4
7 7
sin x cos x 1 is possible when 5
or sin x 1,cos x 0 x ,
2 2
63. 2 4 2
e(cos x cos x .....) loge 2 2cot x 1,8
2
2cot x cot 2 x 0,3
t 2 9t 8 t 1,9
2sin x 2 2 1
sin x 3 cos x 1 3 cot x 4 2
64. I : m | a ib |2 ; n | c id |2
mn (| a ib || c id |)2 | (ac bd ) i(ad bc) |2
= e2 f 2
Where e=ac- bd & f=ad +bc I
T1 :| z1 z2 |2 (| z1 | | z2 |)2
Re( z1 z 2 ) | z1 z 2 | z1 z 2 0
65.
sin 2 x 2sin x 5 2sin 2 y (sin x 1)2 4 2sin 2 y
thisistrueif sin x 1and | sin y | 1 ,
sin x | sin y |
66. Total matches of boys=7×4=28ways
Total matches of girls=n×6=6nways
28+6n=52 n=4
67. 2403 2400.23 8(24.100 ) 8(1 15)100 8 15
8
Fractional part=
15
68. Statement 2 is a property of an A.P so it is true.
a1 a4 a7 a16 147,
(a1 a16 ) (a4 a13) (a7 a10 ) 147
3(a1 a16 ) 147
a1 a16 49.
a1 a6 a11 a16 (a1 a16 ) (a6 a11)
2(a1 a16 ) 98
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 13
SRI CHAITANYA IIT ACADEMY, INDIA 29‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐19_KEY &SOL’S
69. x y
1 passes through(2,3)
h k
2 3
1
h k
2 3
Locus: 1
x y
70. c (3,5) r 34 p 34 p 3 p 25.
s11 0 p 29
71. Tangent to y x 2 : tx y at 2 is tanget to y ( x 2)2
t2 2 2 t2
tx ( x 2) x (t 4) x 4 0
4 4
D 0 t 0 or t 4
y 4( x 1)
72. x2 y2
1 Q(2cos , 2 sin )
4 2
2cos 4 2 sin 3
R ( x, y ) ( , )
2 2
( x 2)2 ( y 3 / 2) 2
Eliminate ' ' : 1
1 (1 / 2)
1
e 11 / 2
2
73. lim sin 2 ( (1 sin 2 x) 2 )
x0
x4
options :
1 2 3 4
T T T T
T F T T
F T T T
F T F T
75. ( x 1)2 (2 x 5)2 ( x 2 3x) x 20 x 3
32 3 21
Average marks 2.8
20
76. 2a
a (sin 1 x)2 (cos 1 x)2 ( 2cos 1 x) 2cos 1 x
2 2 2
2a 2a
cos 1(2 x 2 1) 2 x 2 1 cos( )
2 2
77. a ab ab
2
1 0 0
A A I ab a ab 0 1 0
T 2
ab 0 0 1
ab a 2
a 2 1; ab 0
a3 b3 c3 3abc (a b c)(a 2 b2 c 2 ab bc ca)
a b c (a b c)2 a 2 2 ab
1
2 3abc 1 abc 1 / 3
or 2 3abc 1 abc 1
78. For infinite solution, D 0, D1 D2 D3 0
80. dy e0
( ) (1 log x) x c 1 log c
dx e 1
e e1/ e1
81. f ( x)
lim 4t 3 0
lim g ( x) x 2
x 2
( x 2)
dt ( )
0
6
4( f ( x)) f x 4 63
lim 3 1
x2 18
1 12
82. 2 0 1
2 41
A ( x 6)dx x dx xdx
6
3 2 0
83. 1
put y vx sin ( y / x) log x c
e
put x 1, y 0, c 0. y x sin(log x) A x.sin(log x)dx put log x t
1
1 1
e2t .sin t dt .e2 e2
5 5
0
84. b.c 10 | c | 4
a.(b c) a b c
| a (b c) || a || b c |sin .1
3
30
85. (a c).(b d )
9 6
|bd |
86. x 1 y 1 z 3
eq.of plane : 6 7 8 0 x 2y z 0
3 5 7
7 4 13
dis tan ce 4 6 PQ
6
87. p 1/ 10; q 9 / 10
n
9 1
p (atleast 1hit ) 1 (0.9) n 0.75
10 4
nmin 3
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 16
SRI CHAITANYA IIT ACADEMY, INDIA 29‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐19_KEY &SOL’S
88. let AM x
( MD)2 ( MC )2 64 x 2 121 (10 x)2 f ( x)( say)
f 1( x ) 0 x 5
f 11( x) 0
89. h
tan 450 BC h
BC
BD EF h x
y
sin 300 y 40
80
x
cos300 x 40 3
80
h y h 40
tan 750 2 3 h 80m
hx h 40 3
90. f ( x y) 2 x. f ( y) 4 y f ( x)
put y 2 2 x f (2) 42 f ( x) f ( x 2)
f 1( x 2) 16 f 1( x) 3.2 x.log 2
f 1(4) 16 f 1(2) 12ln 2.....................(1)
f ( y 2) 4 f ( y ) 3.4 y
f 1(4) 4 f 1(2) 96ln 2........................(2)
solving : f 1(2) 7ln 2 f 1(4) 24.31.ln 2
f 1(4) 14.24.31.ln 2 14 124
14 248 .
f 1(2) 7 ln 2 7
CHEMISTRY
31 4 32 3 33 3 34 1 35 1
36 2 37 1 38 4 39 3 40 4
41 3 42 2 43 2 44 1 45 4
46 4 47 4 48 4 49 1 50 4
51 6 52 3 53 9 54 7 55 108
56 5 57 3 58 9 59 9 60 3
MATHEMATICS
61 4 62 4 63 3 64 1 65 3
66 1 67 3 68 3 69 4 70 2
71 2 72 3 73 4 74 3 75 2
76 4 77 1 78 3 79 2 80 2
81 10 82 21 83 77 84 766 85 2
86 5 87 96 88 124 89 8 90 6
SOLUTIONS
PHYSICS
1. For minimum speed, observer is symmetric between the 2 positions
A x B
O tan 300
x / 2 2h tan 300 V
680
m / s So, option (1) can’t be
min
h 3
2. From momentum conservation equation, we have
j
u02 2 gH
u0 cos
I
Pi Pf
m u0 cos i m
u02 2 gH j 2m v ....... i
u02 sin 2
H ........ ii
2g
u cos u cos
From Equations (i) and (ii) v 0 i 0 j
2 2
Since both components of v are equal. Therefore, it is making 450 with horizontal.
3. V1 T
1
V2 T2
4. Velocity of light in vacuum CV
1
0 0
1
Velocity of light in the medium Cm
CV 3
Refractive index of the medium is n r r 2 3
Cm 0 0 2
5. Conceptual
6.
h
p h Graph is rectangular hyperbola.
p
7. R
Since
l1
R
Sl1
100 2.9cm 3
S 100 l1 100 l1 100 2.9 cm
The accuracy of measuring R can be improved if S and R are of the same order, i.e. S
should be changed to 3 .
8. Suppose straight length of the rod is l . The distance of the end B from O
OB 2 OA2 2 R l 2 2 R
2 2
B OB
2
B 2 B Bl 2
OA
2
Here V0 VB l 4 R 2 And V0 VB
2 2 2 2
Substituting these values in equation (i), we get
B 2 3
VA VB l 4 R 2 l 2 4 R 2 2 B R 2 .
2 2
9. v M 4i 5 j 8k , v 0 3i 4 j 5k Plane of the mirror is xy v I 3i 4 j
and for kv 2v v 2 8 5 11 v I 3i 4 j 11k
IZ MZ OZ
q
10. E E
q
E
q q
Kq Kq Kq Kq
E 0,V 0
x x x x
It is not necessary that if potential is zero then electric field is also zero.
11. X Q Q2 A2T 2
X 5YZ 2 Y .........
i X capacitance
Z2 V W ML2T 2
M 1L2T 4 A2
Z MT 2 A1 Y
F
X M 1L2T 4 A2 Z B 2
IL MT 2 A1
Y M 3 L2T 8 A4
12. V V1 V2
4 3 4 3 4 3
R R1 R2 3
R13 R23
3 2 3
13. 1 4 2
Maximum KE=TE- PEmin Or kA2 9 5 k 8 104 N / m
2 0.012
m 2
Time period T 2 2 s
k 8 10 4
100
14. When two capacitors with capacitance C1 and C2 at potential V1 and V2 connected to
each other by wire, charge begin to flow from higher to lower potential till they
acquire common potential. Here, some loss of energy takes place which is given by
C1C2
V1 V3
2
Heat loss, H
2 C1 C2
C
In the equation, put V2 0, V1 V0 C1 C , C2
2
C
C 1
Loss of heat 2 V 0 2 C V 2 H CV02
C 0 6
0
6
2 C
2
15. Currents in same direction attract
16. Mass of object remains same
W earth 9 g earth
Weight of object acceleration due to gravity
W planet 4 g planet
2 2
9 GM earth R planet M earth R planet
4 GM planet R 2 earth M planet R 2 earth
2
T2 400 32 5 400 22 1600 K
24. Ex
dV
6 8 y2 Ey
dV
16 xy 8 6 z Ez
dV
6 y 8z
dx dy dy
At origin x y z 0 so Ex 6, E y 8 and Ez 0 E E x2 E y2 10 N / C
Hence force F QE 2 10 20 N
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 4
SRI CHAITANYA IIT ACADEMY, INDIA 30‐01‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐20_KEY &SOL’S
25. t t
N No.e 1 8.e
t l n2
e 8 t 3 l n 2 .t 3l n 2
t1/2
t 3t1/2 3 1.4 109 4.2 109 Years
26. i
Using vd we get ;
ude ie nh 7 5 5
n udh ih ne 4 7 4
27.
V
K
28. 5 V
Potential gradient p
1000 1200
V p 6V
Vp 6
And R p 100
I 60 103
VP
L 1200 cm
1000cm
I 60 mA
G
5V 20
29. p
Electric field due to dipole on equatorial plane, E k 3
r
p
At point P, F p k 3 Q ............... i
y
p
At point P , F p k
'
Q ............... ii
y / 3 3
From
equation
(i) and (ii),
F p' 27 F p' 27 F
30. Both V and I are in the same phase. So, let us calculate the time taken by the voltage
to change from peak value to rms value. Now 220 220sin100 t1
1 220
or 100 t1 or t1
s again, 220 sin 100 t2
2 200 2
1 3 3
or sin 100 t2 or 100 t2 or t2 s
2 4 400
1
Required time t2 t1 s 2.5 103 s
400
CHEMISTRY
31.
Na2 B4O7 B2O3 NaBO2 3B2O3 Cr2O3 2Cr BO2 3
X Y
32.
1
; V
1
K .E n
33. Apply MO theory. For CO32 : BO :1+
No.of π-bonds 1
1 1.33
Total No σ bonds 3
34. S sys
V 10
2.303 nR log 2 2.303 1 8.314 log 19.14 J / k
V1 1
Ssurr 0; Stotal 19.14 J / K
35. Carbonions are stabilized by e with drawing groups
36. At high pressure ‘a’ is neglected due to repulsion between gas molecules.
P V b RT or PV RT Pb
37. Lattice energy Melting point
( L.E.) ( M.P.)
L.E . : LiF LiCl
L.E. : MgO NaCl
Lattice energy depends on the size of the ion. Smaller the size of anion or cation,
z z
higher the value of L.E. LE
d
38. The products are due to coupling of different alkyl groups. CH 3CH 2CH 2Cl is RCl and
CH 3 C HCH 3 is R ' Cl , the products will be RR,R’R’ and RR’.
|
Cl
39. In cyclopentadienyl anion, each carbon is sp2 hybridized
H H
H
: H
40. Cl O Na
623 K
NaOH
300 atm
Dow’s process
41. Xenates(+6), Perxenates(+8)
XeO3 NaOH Na HXeO4 2 HXeO4 2OH XeO6 Xe O2 2 H 2O
4
42. Factual
43. KOBr - Hoffmann’s bromamide degradation with stepping down of series.
LiAlH 4 Reduces amides to 10 amines with same no. of carbon atoms
44. Flocculating value
1
Flocculating power
According to Hardy-Schulze rule: Flocculating power : Sn 4 Al 3 Ba 2 Na for
negatively charged sol
45. T f KCl T f X 1
mKCl mx i X For trimerisation of 75% extent
iKCl i x 2
*
* *
* *
All marked carbon atoms of aspartame are sp
* 2
hybridized. Aspartame is methyl ester of dipeptide formed from aspartic acid and
phenylalanine.
59.
MATHEMATICS
61. n
5 3 4
n n
5.
5.5 3 4 9 9 9 000
lim n n
n n n
lim n 0
n 5 2 n 27.9 n n
5 2 0 0 27
27
9 9
2
62. 3
f x x 2 f 1 x x 2 5
3/5 3
Non – differentiable at x = 2
5 x 2
2/5
5
63. 750
750
400
tan 750
h
40
h 40 tan 750 h 40 2 3 mts
64. 1 5 7 11
2sin 2 3sin 2 0 sin 2 2sin 1 0 sin
, , , Sum 2
2 6 6 6 6
65. Clearly origin is equidistant to the vertices circumcentre 0,0,0 S , centroid
3 1 5 4 0 5 5 7
, , 3,3, 4 Centroid divides HS in the ratio 2:1
3 3 3
Let H , , OG
2OS 1 OH 3,3, 4 0 , ,
2 1 3 3 3
9, 9, 12 HS 92 92 122 306
66. 2
x2
x 1 x 1
2
f x , x 0 log e f x x 2 log 2 log x f 1 x 0 log e e 2 x
x 2 2 2 e
4
e
2 4
2
Local max.value e e
ee
2
e
67. We know that if f x f 1 x then f x x x 1 1 x x 2 x 0 x x 1 0
2
x 0, x 1
68. x y h 1 k 4 2 1 12 3
Line 1 x 3y 3 0
3 1 1 3 1 9
h 1 16 k 4 16 11 48 28
Image ,
11 28
, h ,k 4 k
1 5 3 5 5 5 5 5 5
69. 2 2
For no solution 2 3 5 0 18 5 2 12 20 2 2 2 12 0
4 6
2 6 16 0 8 2 0 2
70. x y z 1 (1) Required plane x y z 1 x 2 y 3z 0
1 x 1 2 y 1 3 z 1 0 (2) (1) and (2) are perpendicular
i a ib i i b ai i b ai
5 5 5 5
2
i
i
72.
2,3
0
78. 5 1 5 1 1 5 1 5
87 87 87 87
487 687 2 87 C1.5 87 C3.53 .....87 C87 .587
10.87 2 87 C3.53 ......87 C87 .587 =870+an expression divisible by 25
870 20
34 Reminder is 20
25 25
79. Given hyperbola are conjugate and quadrilateral formed by their foci is a square.
0,be2
x
ae1,0 0 ae2 ,0
0, be2
a 2 2 a b
2 2 2
2
x2 y 2 x2 y 2 b2 2
Now 2 2 1 and 2 2 1 e1 1 2 ; e2 1 2 ; e1 e2
2
:
a b a b a b a 2b 2
a 2 b2
e1e2
ab
2ae1 2be2 2ab a 2 b2 2 a 2 b 2
A
2 ab
80. R 2,3 , 3,3 , 2,3 , 3, 2 , 3, 4 , 4,3 , 4, 4
81. Given M 25, N 100, F 45, C 10, l 20
N
F
M l 2 c f 10
f
82. n
2r 1 n
1 1 1 440
Sn 2 2
1 n 1 21
r 1 r r 1
2
r 1 r
2
r 1 441 441
83. The required numbers contain
7!
1,1,1,1,1,2,3 42
5!
7!
1,1,1,1,2,2,2, 35
4!3!
Total no of ways 77
84. a b g a 2 b 2 c 2 ad be cf ag bh ci
c a d
A d e f A b
h AAT da eb fc d 2 e2 f 2 dg eh fi
T
e
g h f i ga hb ic gd he if g 2 h 2 i 2
i c
Given, a b c d e f g h i 9 a, b, c, d , e, f , g , h, i 0,1, 2,3
2 2 2 2 2 2 2 2 2
(i) One of them is 3, remaining are 0s 9 ways (ii) 2 of them are 2s, one of them is 1
and remaining 0s 9C2 .7C1 252 ays
iii) One of them is 2’s five of them are 1’s and remaining 0’s 9C .8C 504 ways 1 5
88. f x y 2 f y 4 f x put
x y
y 2 f x 2 2 x. 3 16 f x
f ' x 2 3.2 x log 2 16 f ' x
put x 2 f 2 y 4 f y 4 y f 2 f 1 2 y 4 f 1 y 3.4 y log 4
f 1 4 4 f 1 2 48log 22 f 1 4 4 f 1 2 96log 2 (2) From (1) and (2)
f 1 4 7 124 log 2
f 1 2 7 log 2 f 1 4 124 log 2 2 124
f 1 2 7 log 2
89. h 2 ab h 2 9 4 h 6 af 2 bg 2 9 f 2 4 9 f 2 4 f 2
h f 62 8
90. Applying R1 R1 R2 , R2 R2 R3
2 2 0
f x 2 0 1 4 2 cos 2x Max.value =4+2
sin x cos x 1 cos 2 x
2 2
6
CHEMISTRY
31 3 32 2 33 1 34 4 35 4
36 3 37 4 38 4 39 3 40 3
41 1 42 3 43 4 44 3 45 4
46 4 47 2 48 4 49 3 50 3
51 5 52 4 53 4 54 6 55 6
56 5 57 3 58 6 59 8 60 3
MATHEMATICS
61 3 62 3 63 1 64 4 65 2
66 3 67 3 68 1 69 1 70 1
71 1 72 2 73 1 74 4 75 3
76 4 77 1 78 2 79 4 80 2
81 3 82 15 83 8046 84 17 85 0
86 1 87 4 88 22 89 1 90 176
SOLUTIONS
PHYSICS
1. Acceleration = 0
2.
3.
1 2Gmm0 2Gmm0
5. m0v 2
2
3
2 2
8Gm 8Gm 8Gm 1
1
3 3
6. Buoyant force
11
FB R 3 g
24
A1 cos t
8.
9.
2 Rt
E
10. Current through inductor, I 1 e 3L
2R
A 5
13. Modulation index m 0.5
Ac 10
2 2000
Band width 2 f m 2000 Hz
2
14.
15.
t2 t1 20
17. Radius of gyration, RG a hbc c
21.
22. Let x be the amount of water and y be the amount of ice at the end of second minute
yLice x y Cwater T 30 60
400 y ( x y ) 4 2 1800 ……………….(1)
x y 4 6 30 60 …………(2)
Solving (i) and (ii)
1800
400 y 2 1800 , 400 y 1200 y 3g
6
30 120
Initial amount of ice 3 12 g
400
P P
23. W nR 400 n B nR 300 n D
PC PA
24.
4
I 0 3 100
25. 15.82% 16%
2 4 I0
26.
CHEMISTRY
31.
32. P(V b) RT
PV bP RT
Divide by RT
PV bP
1
RT RT
b
Z 1 P
RT
Slope b size of atom
33. Na ( g ) e Na ( g )
Na ( g ) e Na ( g )
Rest B, C and D are endothermic
34. A, B and C are correct options
35. n2
rn r
Z
r
R rn2 rn1 n22 n12
Z
He , R1 (32 22 )
r
2
Li 2 , R2 (42 32 )
r
3
R1 3 5 15
R2 2 7 14
36.
x – y = 10 – 6 = 4
53. Only CH3CHO will react with Fehling solution.
57. AB2 ( g ) A ( g ) B ( g ) B( g )
58.
2 NaClo3 2 NaCl 3O2
NaCl AgNO3 AgCl NaNO3
2 2
Moles of O2 moles of NaCl moles of AgCl
3 3
2 2 2
Moles of AgCl moles of O2
3 3 32
2 2
Moles of AgCl 143.5 gm
3 32
5.97
6
59. Seven chiral carbon atoms have hydrogen
60.
MATHEMATICS
61.
For one to 6, 3 black and 3 white and 7th ball is white
62.
63.
66.
67.
68.
69.
74.
75.
76.
77.
78.
79.
81.
82. Here focus chord is normal. Hence the focal chord is the major axis.
83. 6 3 9 4 12
(
Write general terms of 1 + x 2 ) (1 + x ) (1 + x )
84.
85.
86.
87.
88.
89.
CHEMISTRY
31 3 32 1 33 3 34 3 35 3
36 2 37 4 38 1 39 1 40 2
41 4 42 3 43 1 44 1 45 1
46 2 47 3 48 2 49 2 50 3
51 7 52 5 53 4 54 7 55 1
56 6 57 1 58 4 59 6 60 3
MATHEMATICS
61 1 62 4 63 1 64 2 65 2
66 4 67 3 68 4 69 4 70 1
71 1 72 1 73 2 74 4 75 3
76 1 77 3 78 2 79 3 80 4
81 66 82 4 83 2 84 5 85 4
86 8 87 3 88 2 89 5 90 8
SOLUTIONS
PHYSICS
1. Angular momentum of the system is conserved during standing about the axis of swinging.
2. Conceptual
3. Conceptual
4. Thermal expansion depends on shape and dimensions of configuration of given material.
5. Conceptual
6. Increase in speed of air will reduce pressure above B, Hence level will raise.
7. In initial state inductor keeps its path open.
8. Conceptual
9. For beats to be heard frequencies must be different
10. Conceptual
11. The current in the inductor decays gradually hence bulbs will glow even after battery is
disconnected.
12. modulus oƒ elasticity Y
V= VX VY
density P
In general for solids Y rider fly along X-axis
13. h
mv
14. Reading = kx which is same in both.
15. Conceptual
16. Conceptual
17. Low specific heat ensures quick/faster growth in temperature and high conductivity
leads to good transfer of heat.
18. Speed of light is more than speed of sound
19. Conceptual
20. Conceptual
21. Conceptual
22. Electrostatic field lines, gravitational field lines are not closed loops.
23. Fresnel distance = Z F a Z F2 1
2
a
24. Introducing plate decreases effective width between plates, hence capacitance increases
and energy decreases.
25. For maximum tension spring should either have maximum compression at the rate of
maximum elongation.
26. 20
s max N 20N Fnet 152 20 25N a 25 20 2.5 m s 2 Tan 53
2
2 15
27. PV constant
He, Ne are monoatomic, oxygen is diatomic. Hence different.
28. Conceptual
29. Pressure depends on the no. of collisions of molecules with walls.
30. For 1 LC , circuit is inductive hence, current lags behind voltage.
CHEMISTRY
31. For ideal binary solution Hmin 0 , G ve , S ve
Solubility in gL
1 k 1000 188
x y
51. 7 compounds
52. I to V factors influence the electronegativity of the atom of an element
53. In PF3 , OCl2 , N SiH 3 3 and SiH 3 2 O , the lone pairs delocalize in to the vacant d-
orbital of the surrounding atom in bond. Due to this reason the bond will get double
bond character and the effect of double bond character and the effect of lone pair at
central atom decreases. So the bond angles increases than expected
54. 7 statements are correct.
55. All are incorrect
56. n- function = 6
57. Equivalents of oxidizing agent must be same 5x=6y
58. SOLUTION: Conceptual, Modified question from NCERT.
OH
CH3
59. 2 XeF6 SiO2 2 XeOF4 SiF4
60.
MATHEMATICS
61. Conceptual
62. px qy qx py a a
.is of the form X Y
p2 q 2 p2 q 2 p2 q 2 p q2
2
k n 1 k
n
Ck
2
k n
3
k
n
Ck 1 k k 1 Ck 1 k 1 k k 1
k n 1
n n
2 n 1 k k 2 k n 1 2 n 1 k 2 k 3
2 2
k 1 k 1
2
n n n
n 1 k 2 n 1 k 2 k 3
k 1 k 1 k 1
n n 1 n n 1 2n 1 n n 1 n n 1
2 2
2 n
n 1 2 n 1 n 1 2n 1
2
2 6 2 2 3 2
n n 1 6 n 1 4 2n 1 3n n n 1 n 2
2 2
(i)
2 6 12
83. Use vector products
84. 13 12 x 5 y 1 13
x 2 y 3
2 2
Equation can be rewritten as So, e .
5 13 5
85.
2
I x sin 2 sin x cos 2 cos x dx 2 I 2 sin 2 sin x cos 2 cos x dx
0 0
2 2
I sin 2 sin x cos 2 cos x dx sin 2 cos x cos 2 sin x dx
0 0
2
2
2 I 2dx I
0
2
86. Let 120 L.H.S
1
sin120 sin 480 sin 720 sin 540
0
sin 72
1 sin 3 12 sin 54
0 0
sin 360 sin 540 cos 360 1
4 sin 720 8sin 360 cos360 8cos 360 8
87. Equation of normal is y = mx – 2am – am3 to the curve y2 = 4ax.
1 m m3 m2 1
a= y mx passes through (c, 0) then m c 0
4 2 4 4 2
Remaining normals are perpendicular.
m2 1
Product of the roots of equation c 0 will be 1 .
4 2
1
c
2 1 1 3
1 c so 4c = 3
1 2 4 4
4
88. If x (0, 1)
Then – 1 x + y < 0
And if x [1, 2)
0x+y<1
Required area 4 .1. 2 sin 2 sq. units
1
2 4
1
1 2 3
0
–1
–1
x+y=1
x+y=0
x + y = –1
89. Roots are 2 w, 2 3w 2 3w2 2 w w2 , 2 3w and 2 3w2 are conjugate each other
2w is complex root, then other root must be 2w2 (as conjugate root occur in
conjugate pair)
2 w w2 2 1 3 which is real.
Hence least degree of the polynomial : 5.
90. on putting log3 x t, we get 2t t a 0 …(i)
2
If t 0, then 2t t a 0 …(ii)
2
If t 0, then 2t t a 0 (iii)
2
If Eq. (i) has four roots then Eq. (ii) must have both roots positive and Eq. (iii) has
both roots negative. Now, Eq. (ii) has both roots positive, if D 0
a/20
1 8a 0, a 0
1
a 0, on taking intersection.
8
Again, Eq. (iii) has both roots negative, if D 0, a / 2 0.
1
We again get a 0, 8 K 8
CHEMISTRY
31) 1 32) 1 33) 4 34) 4 35) 1
36) 2 37) 1 38) 1 39) 3 40) 4
41) 3 42) 1 43) 1 44) 3 45) 1
46) 1 47) 2 48) 2 49) 2 50) 3
51) 4 52) 4 53) 36 54) 9 55) 9
56) 500 57) 25 58) 2 59) 6 60) 22
MATHEMATICS
61) 2 62) 3 63) 2 64) 1 65) 1
66) 1 67) 3 68) 1 69) 1 70) 1
71) 1 72) 4 73) 1 74) 2 75) 3
76) 4 77) 1 78) 1 79) 3 80) 1
81) 71 82) 5 83) 9 84) 0 85) 12
86) 2000 87) 24 88) 25 89) 128 90) 1
SOLUTIONS
PHYSICS
1 1 1 2 L
1. Lp
Lp L L L 2
1.8 104
Where L is inductance of each part, 0.9 104 H
2
L 0.9 104
Lp 0.45 104 H
2 2
6 1 1 1 2
Resistance of each part, r 3 Now ,
2 rp 3 3 3
L 0.45 104
Time constant of circuit, p 3 105 s
rp 1.5
2. When the spherical conductors are connected by a conducting wire, charge is
redistributed and the spheres attain a common potential V.
1 QA 1 C AV 4 0 RA V
Intensity E A or E A
4 0 RA
2
4 0 RA2 4 0 RA2 RA
V E R 2R 2
Similarly EB A B
RB EB RA R 1
3. If final temp is T
Cv 4T0 T 0 0 Cv T T0
PV0 0 PV
4 RT0 RT0
4T0 T 8T0
T T0 4T0 T 4T 4T0 8T0 5T T
4 5
8
T0
Tf 2
Final pressure In left Pf Pi 5 P0 P0
To 4To 5
8
T0
Force 0 0 A 0
8 8P 2 P 6P A
In right Pf 5 P0 P0 ,
To 5 5 5 5
A sin B cos
4. Z ; Dimensions of A and B would be same as two quantities can be added
A B
only when they have same dimensions. So from given equation, we can say that Z is
dimensionless.
5. The acceleration of ball during upward motion is g a , where a is the acceleration due to
u
resistive force. The time of accent, t1 1
ga
v
The acceleration during descent g-a and time taken is t2 ...... 2
ga
The time taken can also be written as
u2
2h ga u2
t2 t22 ....... 3
ga ga g a g a
0
B 2 2M cos 60
4 d 3
A B 0.5 0.01
9. Error in AB= AB 0.25 0.075 0.08
A B 2.5 0.10
AB 0.25 0.08 m
10.
mv
d 2qB 1 T m
sin 45, t
r mv 2 8 4qB
q2
11.
b bx
tan y mx c y b
f f
12. For potential to be made zero both capacitor must have equal charge and positive plate of
one must be connected to –Ve plate of other
120C1 200C2
3C1 5C2
P 100
13. ig 3 P Vi ig 3 ig 1.36 A
V 200
14. For process (2) U 0 (isothermal zero) so 1 & 2 options are wrong so 4th option correct
V
15. i neAU d neAe E neAe
l
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 3
SRI CHAITANYA IIT ACADEMY, INDIA 02‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐32_KEY &SOL’S
1.5 10 1.6 10 1 cm 0.14 2
16 19 2
6.72 107 A
10 cm
16. Applying loop law to the outermost loop,
VBE I B RB Vcc 0
VBE 5.5 10 5 5 105
0.5V
bt ln 2 20
A0
17. A A0 e 2 m A A0 e10 2 2
A0 e ln 2
2
18. f f 2 f1 220 Hz. These many number of beats are formed but cannot be heard.
19. Applied emf e e0 sin t
1
L
Produced current I I0 sin t where tan C
R
If res then tan 0 0 current lags behind e. But in given graph, ‘I’ leads
2
ahead of e. So ‘1’ is wrong statement
20. WNC TE
If WNC 0, then TE PE KE is conserved. Work done by non conservative force can be +
ve or – ve or zero.
2
3R
21. I Ab I disc I plate M
2
2
1 MR 2 3R 31
(From Parallel Axis Theorem) MR 2 M MR 2
4 12 2 12
22.
V 20 V
V 5 0 V 20 V 2 V 5 0
2 2
30 15 15 10 5
4V 20 10 0 V V,I A 2I 5 A
4 2 2 2
23. 64 T 2 rl r 10 m 1mm
4 3
power
24. F ('c'is speed of light)
c
60 F
F 2 107.Pressure =Force/area =
3 10 8
4 R 2
25. 20VSD 16MSD 5VSD 4MSD
1MSD 1mm
LC 2 101 mm
no.of divisions on vernier scale 5
2
30
10
gT 2 20 9
26. l m
4 2
4 10 16
CHEMISTRY
31. Alkali metal hydrides are ionic hydrides due to more difference in electronegativity. So
their fused hydrides can conduct electricity due to movement if ions in liquid state.
32. The intense blue colour is due to charge transfer between Fe(II) and Fe(III) in out but side
of the coordination sphere.
33. Oxidation states of Co in (A) is + 3, (B) is – 1 (C) is + 2 and (D) is 0.
34. Internal energy of CD molecule is less than AB since C – D bond distance is smaller tan
A–B
35. Quartz contain three dimensional diamond like structure in which all the atoms form
strong covalent with all the neighbouring atoms.
36.
O
HOS OOH
O
Contain four S – O and one O – O bonds
37. The coordination isomers of same complex compound have same coordination numbers
and have same empirial formula
38. Primary pollutants include ammonia, sulfur dioxide, nitrogen dioxide and carbon
monoxide. Secondary pollutants include ground-level ozone, acid rain and nutrient
enrichment compounds. So, the correct option is O3 .
39.
Nitriles are selectively reduced by DIBAL–H to imines followed by hydrolysis to
aldehydes similarly, esters are also reduced to aldehyde with DIBAL–H.
h
40.
mv
According to Einstein’s theory of photoelectric effect :
1 2h v v0
hv hv0 KE hv hv0 mv 2 2h v v0 mv 2 v2
2 m
1
h 1
v v v0 2 1
1
v v0 2 v v0 2
41.
42. STotal C p ln
T1 T2 C ln
T1 T2
p
2T1 2T2
43. Co Vitamin B12
Zn Carbonic anhydrase
Rh Wilkinson catalyst
Mg Chlorophyll
44.
45.
49. COCH 3 is present it will show both 2, 4-DNP & iodoform test. Due to steric inhibition
of resonance. I.P of ‘N’ is not involved in delocalization so coupling reaction will not
take place.
50. A2 g B2 g
2 AB g ______ 1
K1
6 AB g
3 A2 g 3B2 g ______ 2
K2
3
1
Reaction(2) = - 3 × reaction (1) K 2 K 2 K13
K1
51. H 2SO 4 H 2 NCONH 2 H 2 NSO 3 H
Sulphamic acid NH 2SO3H can react with nitrite ion liberating N 2 gas, so used to remove
from the mixture of NO 2 and NO 3 before testing for NO 3 by brown ring test.
H 2 NSO 2 OH HNO 2 N 2 H 2SO 4 H 2 O
55. H 2O s H 2O l H 2O l H 2O g H 2O g
1kg 1kg 1kg
at 273 k at 273 k at 373 k at 273 k at 383 k
S S1 S 2 S3 S 4
334 373 2491 383
4.2 ln 2 ln 9.267 kJ Kg 1 K 1
273 273 373 373
2n 3
56. n1T1 n2T2 , n 300 n T2 , 300 T2 T2 500 K
5 5
57. Apply law of equivalence 25 N 30 0.1 2
30 0.2 6 1.2
N HCl 0.2
25 5 5
1.2
For the 2nd titration VHCl 30 0.2
5
6 5 30
VHCl 25 ml
1.2 1.2
58. 2A + B products
Rate = K[A]x[B]y
r = K[A]x[B]y ______(i)
0.3 = K[A]x[B]y - - - - (1)
2.4 = K[2A]x[2B]y - - - - (2)
0.6 = K [2A]x[B]y - - - - (3)
From (1), (2) & (3)
x = 1, y = 2
Overall order = 2 + 1 = 3
Order w.r.t A = 1
Order w.r.t B = 2
59.
60.
MATHEMATICS
ln 2 ln 2
0 0
1 ln 2
f ' ln 2 3 2 e 2 x f x 2 e 2 x f x dx 13
4 0
62. Conceptual
63. Conceptual
64. The line can be written as y mx and curve as x 2 y 2 4
Let C(h, k) be a point on the circles and A 3,1 be given point, then
h2 3
3
h 3 2 3
k2
m k 3m 2
3
Now, this point (h, k) lies on the circle
2
3 2 3 3m 2 4
2
9 2 12 12 3 9m 2 2 4 12m 4
9 1 m 2 2 12 3 m 12 0
3 1 m 2 2 4 3m 40
2
16 3 m 4 3 1 m 2 4 0
2
3 m 3 1 m2 0
2 3m 2m 2 0
2m 2 2 3m 0
m 0, 3
65. Conceptual
2
abcd a 2 b2 c2 d 2
66.
4 4
8 e 2 16 e2 64 e2 16e 64 4e2
16 4
16
5e2 16e 0 0e
5
1 1 2 3
67. 2e ..... 2eS
x 3! 5! 7!
70. K T t V t C
dt 2
KT 2
At t 0,V I C I
2
KT 2
Scrap value V T V t T C I
2
71. OAB APO AP BP r cot and AB 2r cos .
2 2 2
Perimeter of APB, L 2r cot cos
2 2
dL
r cos ec 2 sin 0
dr 2 2
2
for all , .
3 3
L is maximum when and then OP r cos ec 2r.
3 2
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 11
SRI CHAITANYA IIT ACADEMY, INDIA 02‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐32_KEY &SOL’S
So, the co-ordinates of P are 2r cos 45, 2r sin 45 .
72. q 2and p 3
ln x ln x
73. x
0
2
t 2
dt
2x
74. Let origin be centre of larger circle and O ' be the centre of smaller circle.
Equation of (1) : x 2 y 2 2
5 7
Equation of (2) : x 2 y 2 1
2
A ,
4 4
x A xC y yC
xB , yB A xC2 yC2 2
2 2
2
7
2
5
xC yC
4 2 4 1 AC
7
2 2 2
75. Ortho-centres of triangles formed by three tangents and corresponding normals to a
parabola are equidistant from axis of parabola.
76. PQT QT PT QP PQ
PQ is symmetric PQP 1 QPP 1 Q
P 1 PQP 1 P 1Q QP 1 P 1Q
P Q
1 T T
QT P 1 P 1Q
77. Conceptual
78. Consider statement 2.
p n n 7 n is divisible by 7. n N
p 1 1 1 0 is divisible by 7.
7
n 1 n 1 =7m, m N and n 7 n 7 p.
7
p N
n 1 n7 n7 n 1 7m
7
n 1 n7 1 n7 n 7m
7
n 1 n7 1 7 m P
7
n 1 n7 1 is divisible by 7. n N
7
82. lim
t 2
2 1
1 1
x
1 1
t 2 2 1 2
2
2 1
t t t t
Now x 1 6 k has four distinct solutions if k 0, 6
Number of integral values of k is 5
83. Conceptual
84. Second curve is parabola with focus 3, 3 and directrix x y 2 0 equation of axis is
x y 0 and foot of directrix 1, 1
Vertex = 2, 2
Shortest distance = 0
85. Let first term of G.P. be a then
t1 t2 ...... t109 t1 t2 ...... t100 12
t101 t102 ...... t109 12
1 200 1 10
a t1 t1
t1 9 t1 3
3 3
a2 1 10 2000
Area of PQR t1 2
2 t1 3 27
87. x 75600 24335271
Let divisor is 2a1.3b1.5c1.7 d1 and 2a2 .3b2 .5c2 .7 d2
Product of divisors = 26.33.51.71
a1 a2 6 3 ways b1 b2 3 4 ways
c1 c2 1 2 ways d1 d 2 1 2 ways
3 4 2 2
Total way N 24
2
88. k
Cr k Cr 1 k 1 Cr
n
1 1
89. 2 lim L 2 lim
r 1 n 2r 3r
n n r
1 1 1
n n n
1 1
1 1/ 2 4 9/2
2 dx 2 dx
0
1 x1 2 x1 3 x 0
1 x 1 2 x 1 3 x
1
1 3 128 lim 2 L 128
2 ln 1 x 2 ln 1 2 x ln 1 3 x ln 2 4 ln 3 3ln 4 ln en 1.58
2 2 0 81 81
90. x2 2x 4 2 x x 2 3x 2 0
1
1 1
3x 2 x3
2 3 x x dx 2 x
2
2
2 3 2
1
3x x 2
3 1 3
8 5 2 1
2x 2 4 6
2 3 2 2 3 3 6 3 6
CHEMISTRY
31 1 32 3 33 1 34 1 35 3
36 2 37 1 38 2 39 3 40 1
41 4 42 4 43 2 44 1 45 1
46 3 47 2 48 1 49 3 50 2
51 19 52 5 53 222 54 6 55 2
56 4 57 5 58 10 59 8 60 3
MATHEMATICS
61 2 62 2 63 3 64 3 65 1
66 1 67 3 68 2 69 1 70 4
71 1 72 3 73 3 74 4 75 4
76 3 77 4 78 1 79 3 80 3
81 3 82 8 83 3 84 4 85 8
86 2 87 7 88 1 89 7 90 2
SOLUTIONS
PHYSICS
1. Condition for light to transmit is sin C 1 / and V g r
2. The electric field due to P, S, Q and T = 0 (charge). So, charges due to U and R will
only be added up. i.e. -,+,+,-,+,-
3. According to Lenz’s law, induced emf are in a direction such as to attempt to
maintain the original magnetic flux when a change occurs. When the switch is
opened, the sudden drop in the magnetic field in the circuit induces an emf in a
direction that attempts to keep the original current flowing. This can cause a spark
as the current bridges the air gap between the poles of the switch. (The spark is more
likely in circuits with large inductance).
4. dQ 5(T1 T2 ) KA dQ 2 (T1 T2 ) KA dQ (T1 T2 ) KA
i1
dt AB 14l dt BE 7 l dt BC 14l
dQ (T1 T2 ) KA
dt CH 7l
5. BC, CD and BA are the known resistances. Thus the unknown resistance has to be
connected between A and D.
6. z
should be dimensionless, hence MLT 2
k
/ ML1T 2 P , Hence M 0L2T 0
7. Gm A m B m A rA 42 m BrB 42
m A rA m B rB TA TB
rA rB 2 TA2 TB2
rA rB
mA mB
C
8. L D
M 1
f 0 e
9. d 3 5
l 1 cos 2 2d cos or or
cos 2 2 2
10. Conceptual
11. 1 T
Fundamental frequency f
2l
1 T 1 stress 1 2.2 1011 102
178.2Hz
2l AP 2l 2 1.5 7.7 103
12. The temperature goes on decreasing with time (non-linearly). The rate of decrease
will be more initially which is depicted in the second graph.
13. Loss of energy is maximum when collision is inelastic as in an inelastic collision
there will be maximum deformation.
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 03‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐34_KEY &SOL’S
1 Mm 2 1 Mm 2
KE in COM frame is Vrel KEi V KEf 0 Vrel 0
2 M m 2 M m
1 Mm 2 M
Hence loss in energy is V f
2 M m Mm
14. A A0e kt 0.9A 0 A 0e5k and A0 A0e15k solving 0.729
15. dy 1 x2 1 1
mg sin mg cos tan tan , x 1 y m
dx 2 2 2 6
16. L
aL2 bL3
2
F ax bx dw Fdx W ax bx 2
dx W
2
3
0
17. P, i.e It is an isothermal process (T = constant), because
PM
RT
P 1 PM
WAB RTA ln A RTA = 0 ln(2)
PB 2 0
18. f 15 10
For M1 ; v= 30cm
f 5 10
For M 2 =
10 10 5cm m v 5 1 h i 1.5 cm
2
10 10 10 2 h 0
19. vA 2
2ˆ
E 30x i dV E.dx dV 30x 2dx VA V0 80 Volt
v0 0
20. Item No. Power
40 W bulb15600 Watt
100 W bulb 5500 Watt
80 W fan 5400 Watt
1000 W heater 11000 Watt
Total Wattage = 2500 Watt
So current capacity
P 2500 125
i 11.36 12 Amp
V 220 11
21. A1 N1 N0e t1 , A 2 N 2 N0et 2
A 0 N 0 24000dps.
22. Object is at centre of curvature, hence image will also be at centre of curvature.
23. m m 2r l 0.003 2 0.005 0.06 4
4%
2 m r 0.3 0.5 6 100
lr l
24. 1 T1 1 T2
T2 T1 / 4
2
For rotational equilibrium,
T1x T2 L x x L / 5
T1 T2
B O D
25. de B x .dx
3L
2L L
e B xdx
2L
x 5BL2
2
26. 2 3 2R
MR 2 Mr 2 r
5 2 15
27. Heat is extracted from the source in path DA and AB is
3 P V 5 2P V 13
Q R 0 0 R 0 0 P0V0
2 R 2 R 2
28. 120C1 200C 2 6C1 10C 2 3C1 5C 2
29. E 0 CB0 3 108 20 109 = 6 V/m
30. Net force on any one particle
GM 2 GM3 GM 2 1 1
0 GM 2 0
cos 45 cos 45
2 4 2
2R 2 R 2 2
2
R 2 R
M
u
u
450
M M
450
u u
M
This force will be equal to centripetal force so
Mu 2 GM 2 1 2 2
R
2
R
4
u
GM
4R 1 2 2
1 GM
2 R
2 2 1
CHEMISTRY
31. Acidic strength order:
R C OH R OH R C CH
32. When we are moving from left to right in a periodic table acidic character of oxides
increases (as well as atomic number of atom increases)
X Y Z (acidic character)
X Y Z ( atomic number)
33. Conceptual
34. Conceptual
35. In fact products of reaction D are CH3 3 C I C2H 2OH it follows SN1
mechanism
36. SBC 0; q 0; Scyclic SAB SBC SCA 0 (state function)
SAB SCA SAC
37. Formic acid can reduce Tollens reagent but not acetic acid. All carboxylic acids
liberates CO2 from NaHCO3
38. Terylene (Dacron) is a polyester polymer of ethylene glycol and terephathalic acid.
39. P CH 3CHCl CH 3 and S CH 3CO CH 3
40. H 3 PO4 is a tribasic acid and H 3 PO3 is a dibasic acid
41. H 3 BO3 is a weak monobasic Lewis acid .
4 LiNO3 2 Li2O 4 NO2 O2
SiCl6 2 is not known, but SiF6 2 is known.
42. German silver: Cu 50% Zn 30% Ni 20%
43. Conceptual
44. 1 1
Resistivity K ohm1cm1
K 18.5
K 1000 1 1000 1 49 1000
c 49 c 0.507
N 18.5 15 0 18.5 15 348
%of ionization 50.7%
45. Conceptual
46. 120
t93.75% 4 t50% 120 min t50% 30min
4
0.693 0.693
K 2.31 102 min 1 Amount left after 120 minits is 0.125
t1 30
2
mole/liter. Rate K R 2.88 103 M min 1
6.023 1023 4
47. 3
3
a NA 2.75 660 1010
Z
M 119
Number of formula units per unit cell =4No. of unit cells
52. C : H 4 :1
Mass ratioC : H : O =12 : 3 : 16Mole ratio
C : O 3: 4
C : H : O = 1: 3 : 1Empirical formula = CH 3O Molecular formula = C2 H 6O2 (
5
saturated acyclic organic compound) C2 H 6O2 O2 2CO2 3H 2O
2
2 mole 5 mol Mole of O2 required = 5 moles
53.
4.41 1019
hc
E W K .Emax K .Emax E W
6.63 1034 3 108
4.41 1019 2.22 1019 J 222 1021 J
9
300 10
54. S2O32 is oxidized to SO42 ionHence answer is 6
* *
O Cl
NH CH
N
C Cl
O
O
56. Acetylene, benzene, cyclobutadiene, cyclooctatetraene forms only glyoxal by
ozonolysis
NH2 NH 2
57. NO 2
Br Br
NH4HS Br2/H2 O
Br NO 2
NO 2 NO 2
Br Br
Br Br NaNO 2+ HC l
NH 2
Br Br
H2 O N 2Cl
Br2
Br Br Br Br Br
Br
Sn CuBr
HCl HBr
NH2 NO 2 NO 2
58. CH 2 CHO
CH 3
CHO
CH 3 CH 3
O / m / p O / m / p
59.
60. T f K f Molality i
i 3
MATHEMATICS
61. 2
Det value tan x 2x tan x x 0 tan x 2 x and tan x x
Draw the graphs In the given intervals 2 solutions possible
62. M 4k I k N
63. f x is continuous in x R b 0,a 1
g ' x x 1 x 1 g x x 3 3x 1
64. f f x x
65. 45r r
Tr 1 45Cr 4 5 7 10
For rational terms r = 0, 10, 20, 30, 40 No. of irrational terms = 46 – 5 = 41
66. p q p q
67. dy xy 1
dx x 1 x 1
I .F e x x 1
G.S is y.e x x 1 e x c
1
0, 1 C 0 y
x 1
68. 1 n1n2
2 2 2
n11 n2 2 x1 x2 2
n1 n2 n1 n2
69. a b sin
f log is odd function
a b sin
70. n s 216
5 5 5 125
p x 0 . .
6 6 6 216
1 5 5 3! 75
p x 1 . . .
6 6 6 2! 216
1 1 5 3! 15
p x 2 . . .
6 6 6 2! 216
1 1 1 1
p x 3 . .
6 6 6 216
1 75 2 15 3 1 108 1
Mean x1P X x1
216 216 2
71. Conceptual
72. m n
sin 2 , cos 2 , mn 2,m n 3
s t
CHEMISTRY
31 4 32 4 33 1 34 2 35 2
36 4 37 2 38 4 39 1 40 1
41 3 42 2 43 4 44 4 45 1
46 1 47 2 48 1 49 4 50 1
51 2 52 1 53 2 54 2 55 3
56 3 57 2 58 2 59 1 60 3
MATHEMATICS
61 3 62 3 63 3 64 3 65 3
66 2 67 3 68 2 69 1 70 3
71 1 72 2 73 3 74 3 75 2
76 1 77 3 78 2 79 4 80 1
81 8 82 5 83 1 84 12 85 4
86 200 87 192 88 2 89 1 90 11
SOLUTIONS
PHYSICS
1. Conceptual
2. f
m 0
fe
3. 3/2 5 3
3/2 PV
= constant P =constant P 2V 2 = constant
nR
PT
3
R
PV 5 = constant C Cv for a process PV x = constant
1 x
5R R 5R R
C 5R
2 1 3 2 2/5
5
4. For non-uniform circular motion the total acceleration will be the resultant of radial
and tangential. So it need not be directed towards the centre but for the radial
acceleration we need a variable force as the acceleration is always directed towards
the center.
5. The nuclear force favors parallel spin. So the nuclear force between the protons will
be stronger but the protons are also going to repel each other. So in order to find the
net force we need to have numerical values to compare them.
6. F 0i1i2
, Using the concept, parallel currents attract and opposite connects repel,
2 d
Force acting on wire i2 will be highest followed by i3 and then i1
7. V AL dh 1 dL
Vin water g V wax g ,Vout Ah , 2cm / hr
2 2 dt 2 dt
8.
4M
M 2 M
B1 0 3 B0 B2 0 . 3 3 3 0 3 B0
4 R 4 2 R 4 R
3
60 3
Bnet 2 B0 cos 2 B0 . B0 3
2 2
9. hc 1242eV nm 1242
Using, E eV 59 KeV
0.021nm 21 103
10. Conceptual
11. Fact Based
12.
2
An r 2 r0 n 2 r02n4
A
n n n n4 4 n n .
A1
13.
First block ‘Q’ will move and P will move with ‘Q’ so by FBD taking ‘P’ and
‘Q’ as system F 9 0 F 9N
When applied force is 4 N then FBD
Gm GM GM
OB 3
2 R
3
8 R3
16. 1 R
T1 2 2
1 1 g
g
R
2 GmMx R R
T2 F2 F2 mw22 x T2 2 T3 2
2 R 3 g g
17.
E||
tan tan 2cot tan 1 2
E
18. AB isothermal PAV A PBVB ……..(i)BC Adiabatic
PBVB PCVC ……..(ii) CD Isothermal PCVC PDVD ………(iii)
DA Adiabatic PDVD PAV A ………..(iv) From (i), (ii), (iii) and (iv)
VB VA
VC VD
19. 1 q
By the principal of superposition, we have V .
4 0 r
2 q 2 q 2q 1
V A . . V A 1
4 0 L 4 0 5L 4 0 L 5
20.
2 1 sin i
In ABC ; sin (i) = In xyz;sin r 2 .
d d sin r
21.
CHEMISTRY
31. Graphite is polymer
32. Hydrogen is lighter than air
33. Be is anomalous due to its small size
34. Compare bond order
35. Water acts as Lewis base towards H 2 S .
36. P4 reacts with air, lithium also reacts with water
37. Addition polymerization
38. S is not present
39. More substituted
40. Al does not show +2 oxidation state
41. In aqueous solution Cu in unstable.
42. No elimination
43. Electron deficient hydride donor reagent
44. Steric hindrance
45. NCERT XII part-I page no 9
46. NCERT XII Part-I page no 134
47. NCERT XI part-I
48. water is formed during the reaction and concentration of electrolyte decreases
æ -0.02 ö æ -0.03 ö
DH = ççç ´ 94÷÷÷ - çç ´ 94÷÷÷ = -2 kcal / mol
è 0.47 ø èç 1.410 ø
59. Total number of nodes = n-1
60. 1-n
Half life is proportional to (a0 )
MATHEMATICS
61.
lim
(
f x2 + x + 1 ) æ0 ö
çç form÷÷ As. f (x) is differentiable then apply
x0 f ( x 4 - x 2 + 2 x + 4) - f ( 4) çè 0 ÷ø
(2 x + 1) f '( x 2 + x + 1) f '(1)
L ' Hospital rule lim = =4
x0 (4 x3 - 2 x + 2) f '( x 4 - x 2 + 2 x + 4) 2 f '(4)
62. 2
Let h = 2t12 &12 = 4t2 We know t2 = -t1 - t1 = -1 or -2
t1
h = 2 or 8
63. Focus is foot of perpendicular drawn from vertex on latus rectum i.e. (4, 3)
and equation of the directrix is x + y + c = 0
1+ c
i.e. =3 2 c = 5 or -7
2
\ equation of the directrix is x + y + 5 = 0 \ equation of the required parabola is
2 2æ x + y + 5 ö÷2
( x - 4) + ( y - 3) = ççç ÷ x 2 + y 2 - 2 xy - 26 x - 22 y + 25 = 0
è 2 ÷ø
Compare with x 2 + y 2 - 2 xy + px + qy + r = 0
p = -26, q = -22, r = 25 \ p + q + r = -23
64. dy
y 2 = 2cx + 2c3/2 ...............(1) 2 y = 2c
dx
dy
y =c ................(2) from (1) and (2)
dx
dy æ ydy ö÷3/2 æ ö æ ö3/2
2
y = 2 y ( x) + 2ççç ÷ çç y - 2 x dy ÷÷ = 2çç dy ÷÷ y1/2
dx è dx ÷ø èç dx ÷ø èç dx ÷ø
æ dy ö÷ æ dy ö÷3/2 1/2
çç y - 2 x ÷ = 2çç ÷ y
èç dx ø÷ èç dx ø÷
on squaring degree = 3order = 1
65. 1/2 1024-r
( ) ((7) ) will be
r
1024 1/8
Statement – 1 : General term = Cr 5
integer. if r is multiple of 8
r = 0,8,16,24,............,1024
Number of integral terms = 129.
10! a 2 b 3 T 6
Statement – 2 : General term = 2 3 5 for rational terms
a!b !g !
a = 0,2,4,6,8,10 b = 0,3,6 g = 0,6
Hence possible sets = (4,6,0),(4,0,6);(10,0,0)
Hence, there are s rotational terms.
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 7
SRI CHAITANYA IIT ACADEMY, INDIA 04‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐35_KEY &SOL’S
10! 2 10! 5
\ required rdom = 2 5 2 = 12632 .
4!6! 10!
Statement – 3 : tr +1 , the (r + 1) in the expansion of
10 100-r 1/8 r
(51/6 + 21/8 ) ( )
is tr +1 =100 Cr 51/6 ( )
2
100 - r r
As 5 and 2 are relatively prime, tr +1 will be rational if and are
6 8
both integers. i.e if 100 – r is a multiple of 6 and r is a multiple of 8. As
0 £ r £ 100 , multiple of 8 upto 100 and corresponding value of 100- r
r = 0, 8, 16, 24, ……….., 88, 96
100 – r = 100, 92, 84, 76,…….., 12, 4
Out of 100 – r, multiple of 6 are 84, 60, 36, 12
\ there are just four rational terms
number of irrational terms is 101-4=97
66. 3
1 1 æç 2 1 ö÷ æ 1ö
g ( x) = x + 2 f ( g ( x )) = x + 6 = ç x + 2 ÷÷ - 3çç x 2 + 2 ÷÷÷
2 6
x x çè x ø èç x ø
3
f ( g ( x)) = ( g ( x)) - 3g ( x) f ( x) = x3 - 3x f '( x) = 3x 2 - 3
67. f ( x) = cos x + cos-1 (sgn ) x + nx f ( x) = cos x + cos-1 (1) + nx " Î (0,2p )
p 3p
= cos x + nx "x Î (0,2p ) \ f ( x) is not differentiable at x = 1, ,
2 2
68. xh yk h 2 k 2
Let middle point of chord be (h, k) T = S1 + = +
3 4 3 4
2h h 2 k 2
Chord passing through (2, 0) = +
3 3 4
(h -1)2 k2
2
( x -1) y2
+ =1 + =1
1 4 1 4
3 3
69. 6! 5!
A, I
P, P, L, C , T , N ways = .7 C5.
, A, I , O & = (45)7!
2! 2!2!
5 6
70. 2
2 2 å di2 æç å di ÷ö 125 æç 5 ö÷
2
25 1 49
Let xi - 5 = di x s =s = -ç ÷ ÷÷ = - ç ÷÷ = - =
d
n ç
çè n ø 10 çè10 ø 2 4 4
71. \ VA = 0 (Null matrix) (log a ) x + (log b) y + (log c) z = 0
(log b) x + (log c) y + (log a ) z = 0 (log c) x + (log a ) y + (log b) z = 0
which is homogenesis system of linear equations in x, y and z. x, y, z ¹ 0
log a log b log c
system possesses non trivial solutions. D = log b log c log a = 0
log c log a log b
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 8
SRI CHAITANYA IIT ACADEMY, INDIA 04‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐35_KEY &SOL’S
log a + log b + log c = 0 OR log a + log b + log c
a, b, c, are distinct
log a + log b + log c = 0 a b c = 1 b3 = 1 ( b2 = ac)
1
b =1 ac = 1 c= System become(log a) x – (log a )
a
z = 0 - (log a) y + (log a) z = 0 -(log a) x – (log a) y = 0 x - z = 0
a b g
y-2= 0 x- y = 0 x= y=2 a : b : g = 1:1:1 + + = 3
b g a
72. é x 1 1ù
ê ú
Here A = 4 where A = ê 2 x 3ú , then
ê ú
ê x -1 2 ú
ë û
73. z1 z1 4, z2 z 2 9, z3 z 3 16
16 z1z2 9 z1z3 4 z2 z3 z3 z 3 z1z2 z2 z 2 z1z3 z1 z1 z2 z3 96
z1 z2 z3 z1 z 2 z 3 96 z1 z2 z3 4
74. The plane containing the given line is
(2 x + 3 y + 5 z + 1) + l (3x + 4 y + 6 z + 2) = 0
(2 + 3l ) x + (3 + 4l ) y + (5 + 6l ) z + (1 + 2l ) = 0
3
This plane is parallel to y – axis 3 + 4l = 0 l =-
4
A point on y – axis is the origin. perpendicular distance of the origin from
the
2
plane x - 2 z + 2 = 0 is
5
75. 1 1 1 1
S = + + + + .............
15 35 55 75
æ1 1 1 1 ö æ1 1 1 ö
= çç + + + + ........÷÷÷ - çç + + + .......÷÷÷
çè15 25 35 45 ø çè 25 45 65 ø
1 æ1 1 1 ö k 31k
= (k ) - çç + + + ...........÷÷÷ = k - =
32 çè15 25 35 ø 32 32
76.
x2 + 1
=4 x2 = 7 x2 + y2 = 5 7 + y2 = 5 y2 = - 2
2
\ ( x2 , y2 ) º (7, -2)
x + 1 y3 + 2
x3 = 4 3 + =5 4 + y3 = 10 - 3 = 7
2 2
y3 = 3 \ ( x3 , y3 ) º (4,3)
79. ( 2
n-1)
3
n-1) =38
Statement-1 : adj (adjA) = A adj (adj (adj ( A))) = A (
2
( ) (
Statement-2 : A-1.adj B-1 .adj 2 A-1 = ) 1 1
.
A B2
. 2 A-1
1 1 64 64 64 8
= . = = =
A B 2 A2 3 2
A B 8´ 9 9
3n A + B = 2n A + B A + B = 0
80. 2
n (nx - ny ) = e x y (1 - nx ) ...........(1)
diff. w. r. to x.
1 æ 1 1 dy ö÷
.çç - ÷
(nx - ny ) çè x y dx ÷ø
2 æ 1ö 2 æ dy ö
= e x y çç- ÷÷÷ + (1 - n x)e x y çç x 2 + y.2 x÷÷÷ ..........(2)
èç x ø çè dx ø
Put x = e in (1), (1) n (1 - ny ) = 0 y = 1 Now put x = e, y = 1 in (2)
2 2
æ1 ö ee 1 + ee
then (2) çç - y '(e)÷÷÷ = - y '(e) =
çè e ø e e
I =ò
(1 - t 2 ) dt
=ò
( 2 - t 2 ) -1
dt
2
t -2 (t - 2)
2
1 t- 2 1 cos x - 2
= -t - n = -cos x - n
2 2 t+ 2 2 2 cos x + 2
82. Let c = l a + mb
take dot by b
2
( ) ()
0 = l a .b + b = -l + 5m
l - 5m = 0 ..........(1)
2
again a . c = 7 l a + m a .b = 7 ( )
3l - m = 7 .........(2)
5 1
solving (1) and (2) l = , m =
2 2
5 1 3i 5
2
(
) (
\ c = -i + j + k + 2i + k = - + j + 3k
2 2 2
)
2 2 1
c = ´ 35 = 5
7 7
83. Equation of chord is
x -5 y -3
= =r
cos a sin a
Point (5 + r cos a,3 + r sin a ) of chord is one of its end point
2 2
2(5 + r cos a ) - 3(3 + r sin a ) = 6
(5, 3) is midpoint of chord iff sum of roots = 0
20cos a -18sin a = 0
cos a sin a 10
= tan a = = m
9 10 9
\ p - q =1
84. 9cos12 x + cos 2 2 x + 1 = 6cos6 x cos 2 x + 6cos6 x
2
( )
-2cos2 x = 0 3cos6 x -1 - cos 2 x = 0 3cos6 x = 1 + cos 2 x = 2cos 2 x
2 2
cos x = 0 or cos 2 x = cos x = 0,cos x =
3 3
2
cosx = 0 has 4 soltuions. cos x = has 8 soltuions.
3
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 11
SRI CHAITANYA IIT ACADEMY, INDIA 04‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐35_KEY &SOL’S
Hence total 12 solutions
85.
ABC = 900 BC = 2 5 AB = 9 + 1 - 5 = 5
AC = 5 Power of point AB 2 = AD. AC AD = 1 CD = 4
86.
h 3h 2 1
tan q = & tan 2q = tan 2q = 3tan q =3 tan q = or
d d 1 - tan 2 q 3
p p
q= h = 50 3.tan = 50 CD = 4h = 200m
6 6
87. 1 1æ 1 1 ö÷
Tn = Tn = ççç - ÷÷
n (n + 2)(n + 4) 4 èç n (n + 2) (n + 2)(n + 4)ø÷
1æ 1 1 ö 1æ 1 1 ö÷ 1 æç 1 1 ö÷ 22
T1 = çç - ÷÷÷ T2 = çç - ÷ T3 = ç - ÷ = 192
4 çè1.3 3.5 ø 4 çè 2.4 4.6 ø÷ 4 çè 3.5 5.7 ÷ø S
1 æ 1 1 ö 11
S¥ = çç + ÷÷÷ =
4 çè 3 8 ø 96
88. a x 0 x a b 1 -1 1
b y 0 ´ y b c + cos q cos q sin q = 2
c z 0 z c a -sin q -sin q cos q
89. 1 1+ y 1 1
y= x= equation whose roots are , are
2 x -1 2y 2a -1 2b -1
æ1 + x ö÷2 æ1 + x ö÷
a çç ÷ + ç ÷ + c = 0 absolute term of a above equation is ' a '
èçç 2 x ø÷
b
çè 2 x ÷ø
C
C = a =1
a
90. y = sin-1 (sin 6) - tan-1 ( tan8) + cos-1 (cos6) = 6 - 2p - (8 - 3p ) + 2p - 6
= 3p - 8 a = 3, b = –8
CHEMISTRY
31) 3 32) 1 33) 1 34) 2 35) 3
36) 1 37) 1 38) 3 39) 2 40) 3
41) 2 42) 3 43) 4 44) 4 45) 3
46) 2 47) 1 48) 2 49) 2 50) 2
51) 125 52) 6 53) 6 54) 2 55) 2
56) 5 57) 8 58) 4 59) 5 60) 2
MATHEMATICS
61) 4 62) 2 63) 1 64) 2 65) 2
66) 4 67) 2 68) 1 69) 2 70) 3
71) 4 72) 2 73) 2 74) 2 75) 3
76) 1 77) 3 78) 4 79) 3 80) 1
81) 150 82) 6 83) 2 84) 5 85) 1
86) 4 87) 1 88) 16 89) 7 90) 90
SOLUTIONS
PHYSICS
1. For a projectile, horizontal component velocity remains constant.
2. In magnetic field speed remains same, where as in electric field speed may increase or
decrease depending on the direction of field.
3. it’s periodic but not SHM as acceleration is not directly proportional to displacement.
4. In case of capillary tube of insufficient length,
hR = constant.
5. In helical path, velocity is never parallel to axis.
6. F weight of the body.
B
7. i1 i0 1 e t /T1 i2 i0 e t /T2
if T1 T2 the i1 i2 2i0
8. ib
20
10 A
2
p vi 200W
9. 1 1
1 dR dR1 dR2
R R1 R2 R2 R12 R22
10. Error is –ve, so correction is +ve.
d 2.4cm 6 5 0.01 cm = 2.51 cm
11. eV0 h , slope
h
c
12. Difference in PE is same. So PE increases by 27.2 eV.
13. N N 0 0.9 in 5 days
N N 0 0.9 in 20 days
4
14.
t
2 A
g A0
H1 H 2
15. I xH and x
C I 2 H 2 T1
T I1 H1 T2
16. In the case, zener diode is not operated in break down region, so current through it is
zero.
17. According to law of conservation of linear momentum S-1 is correct.
Kinetic energy can be increased by internal force also.
Eg: Explosion.
18. A
Ao
3n
19. tan i &
c
20. If temperature increased, volume need not increase
21. i io
Rsh
Rg Rsh
22. 2 KP KP
E1 3 & E2
2r
3
r
C2
O2
O
O1C1 O2C2
29. Electro
static filed is conservative. So work done by filed is independent of path. So
C. dr should be proper integral which does not change path but only depends on limits.
i.e xdy ydx
30.
at , x
4 4
2
I I o cos 2 4 I2 o
CHEMISTRY
31. Eit
W
96500
32. Mw
i). MnO4 Mn 2 acidic Ew
5
Mw
ii). MnO4 MnO2 neutral Ew
3
Mw
iii ). MnO4 MnO4 2 basic Ew
1
1 1 1
Ratio is : : 3: 5 :15
5 3 1
33. Graham’s law of diffusion.
34. 1 100 1 100
ln x ln
k 1 k 10
35. 1 1
RZ 2 1 for lyman line.
4
36. CO2 H 2O HCO3 H
When conc. of CO2 decreases then position of equilibrium moves back ward, then H
conc. decreases pH increases
37.
B O
OH
O B
O
B O
HO .8H 2O
O B - Na
OH
42. Poling
43. S8 and S6 structures in NCERT.
44. Axial and Equatorial bond lengths are different.
45. Priority
Lowest set of locants rule and alphabetical order of name of substitutents.
46. Conjugate base of I,II, and III:
HC C (II) (III)
(I) Negative charge
on sp C atom Aromatic Anti-caromatric
acidic character : II >I >III
47. Group stabilise the carbanion character on carbon
OH OH
m
53. CrO2Cl2
54. U 3 1.5R 100 2 2.5R 100 1900cal
1.9K cal
55. Cu 2 & NO2
56. Paracetamol, Aspirin, Morphine, Heroin, Codeine
57. CONCEPTUAL
58. Et
Me * H
Me * Br
Et
Number of isomers 2n 22 4
(n is the number of chiral C-atoms)
59. A, B, C , E and F gives positive response.
60. Bond breaks between oxygen and carbon of alkyl group
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 5
SRI CHAITANYA IIT ACADEMY, INDIA 05‐04‐23_ Sr.Super60_NUCLEUS & ALL_BT_ Jee‐Main_GTM‐36_KEY &SOL’S
MATHEMATICS
61. 2 2
n
cos 5 sin 5 1 0
We have,
sin 2 cos 2 0 1
5 5
2 n 2 n
cos 5 sin
5 1 0
n5
sin 2n cos 2n 0 1
5 5
62. Centre 2, 6 . Substituting in L 2 k 7 6 k 1 4 k 5
2k 6k 4k 14 6 20 0
Hence, every member of L passes through the centre of the circle
Cuts at 900 .
Hence, S-1 is true and S-2 is false.
63. Conceptual
64. Required area = Area of rectangle OABC – Area of curve OBCO
/ 4
tan y dy log cos y 0
/ 4
4 0 4
65. Given equation is
dy x y x y
sin sin
dx 2 2
dy x y x y
sin sin
dx 2 2
dy y x
2sin cos
dx 2 2
y x
cosec dy 2 cos dx etc
2 2
66. Let u x 1, v y 1, w z 1 and p t 1
u, v, w, p 0 and u v w p 24 .
So, required number of solutions is
24 41
C41 27 C3 .
67. The contra positive of “If x A B, then x A and x B” is
“If x A or x B, then x A B” .
68. Put x = y find point and tangent equation
69. s 1 2 4 . tn1 tn ------1
s 1 2 4 . tn1 tn ------2
1-2
0 1 1 2 .. tn
Find tn , sn tn
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 6
SRI CHAITANYA IIT ACADEMY, INDIA 05‐04‐23_ Sr.Super60_NUCLEUS & ALL_BT_ Jee‐Main_GTM‐36_KEY &SOL’S
70. x 2 y 1 z 3
2 2 1
x 2 2 y 2 1 z 3
Put in the given plane
Find Q, P 2, 1,3 find PQ
71. 1
e
x x 1 1
x 1 2 e x x dx
x
f x x f x dx
72. 3 5
log 2 x log 2 x log x 2
2
4 4
3 2 5 1
a a where a log 2 x
4 4 2a
3a3 4a 2 5a 2 0
a 1, 2, 1/ 3 x 2,1/ 4, 21/3
73. By Lagrange’s Mean Value Theorem, c 1, 6 such that
f 6 f 1 f 6 2
f c 2
6 1 5
74. V ax a 2 V x
75. f x f x
1
log x
x
Solve Linear D.E
76. Find centre r 2 154 find r
77. Let x1 , x2 , x3 R be the roots of f x 0
f x x x1 x x2 x x3
f i i x1 i x2 i x3
f i x1 i x2 i x3 i 1
x
tan 45 find x + y
10
80. As the slope of incident ray is
1
so the slope of reflected ray has to be
1
.
3 3
89. a r 7Cr
b 7 r Cr
7
nCr 2n
r nCr n2n1
90. b c 5 3
a .b 0 find ,
CHEMISTRY
31) 1 32) 1 33) 2 34) 1 35) 1
36) 1 37) 4 38) 2 39) 2 40) 1
41) 4 42) 3 43) 4 44) 2 45) 2
46) 2 47) 3 48) 4 49) 3 50) 4
51) 5 52) 78 53) 4 54) 24 55) 336
56) 1 57) 2 58) 18 59) 45 60) 2
MATHEMATICS
61) 4 62) 3 63) 3 64) 1 65) 3
66) 4 67) 1 68) 1 69) 4 70) 4
71) 2 72) 2 73) 1 74) 4 75) 4
76) 3 77) 1 78) 3 79) 3 80) 3
81) 1 82) 6 83) 2 84) 9 85) 0
86) 17 87) 16 88) 105 89) 7 90) 10
SOLUTIONS
PHYSICS
1. Conceptual
2. Conceptual
3. Conceptual
4.
v 340
f ' f , f ' 640 100
v vs cos 340 cos
3
340
f ' 640 f ' 680 Hz
100 3
340
3 5
5. Conceptual
6. Conceptual
7. The bar is at equilibrium. The net force from night or left of a section of BC is 70
KN.
F
70 103 1
AY 1 2 1011
3.5 107 m
8. 1
F Area
C
C1
Effective area R 2 , F R 2
22 2 1 1
F 21 102 . F 42 1013 N
7 110 3 108
9. 1 1 1
v 200 40
v = 50 cm
d = 50+4=54cm
So, 1 sin 0 kt02 sin t0
2
0 sin
k
11. Compare the given equation with standard equation
E y E0 cos t kx 2 10
2 v 2 10 v 106 Hz
2
k 102 or 102 or 200 m
12.
For first diffraction minimum a sin a
sin
For first secondary maximum, we use
3 3 1 3 sin 3 3 3
a sin ' sin ' sin 30o ' sin 1
2 2 a 2 2 4 4
13. u = velocity of water through the hole = 2 gh
R = rate of mass flow = Au [A = area of the hole]
F = reaction force on the wall R u 0 Au 2
For cylinder to just move
d 2 2 w
2 2
w Au 2 gh d
4 hg
14. General equation of traveling wave is
y f ax bt f x vt
y e
ax 2 bt 2 2 ab xt e ax bt
2
b
So, the wave will be traveling along –x axis with speed
a
15. By conservation of angular momentum of the body about O
mv sin 30o R mv ' R h
vR v
R h h R
2 4
m2 m1 g sin 30o
3.46 103 Pa sec
vA
17. As all the points on the periphery of either ring are at the same distance from point
P, the potential at point P due to the whole ring can be calculated as
GM
V , where x is the axial distance from the centre of the ring. This
2 2
R x
expression is independent of the fact whether the distribution of mass is uniform or
non-uniform
GM G 2 M GM 1 2
So, at P,V
R 2 R 5 R 2 5
18. v
c
v
1
c
v=c
19. Acceleration when block B is in the liquid
3m
m A g 3mg g
m g mB g upthrust 2
a1 A
m A 3m m A 3m
Acceleration when block B is outside of the liquid.
3mg m A g
a2
m A 3m
3 9
Given a1 a2 m A g mg 3mg m A g m A m
2 4
20. Output of the gates are marked as y, y1 and y2 .
A NAND gate gives low output when both the inputs are high, otherwise it gives a
high output. Now the truth table.
21. 0.25
Least count cm 5 104 cm
5 100
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 4
SRI CHAITANYA IIT ACADEMY, INDIA 06‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐37_KEY &SOL’S
u BI ' AI ' 2 R
nR
2R
2 n R
n 1 n 1
and v = R For second surface
2 1 2 1 1 n 1 n 1 n n 1 n 1
v u R v u R R 2 n R R
(2 – n) – n (n – 1) = (n – 1) (n – 2) N = 4/3
27. Let ground state energy (in eV) be E,
E
Then from given condition, E2 n E1 204 eV 1 E1 204 eV
4n 2
1
E1 1 204 eV .... i
4n 2
And E2 n En 40.8 eV
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 5
SRI CHAITANYA IIT ACADEMY, INDIA 06‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐37_KEY &SOL’S
E1E 3
1 40.8 eV E1 40.8 eV
4n 2 n 2 4n 2
1
1 2
From (i) and (ii) 4n 5 n = 2
3
4n 2
Now from equation (ii)
4
E1 n 2 40.8 Or E1 217.6 eV . And E1 13.6Z 2
3
E 217.6
Therefore Z 2 1 16 Z = 4
13.6 13.6
28. 1 1 1 3 1 1
u 50m
v u f 25 u 10
7 1 1
and for final position of the object u 25m
50 u 10
Therefore, the shift in object 50 25 25 m
25
Speed m / s 3 km / hr
30
29. v
Fundamental frequency of open pipe f0
2
v
Third harmonic of the closed pipe fc 3
4
v v v
Given 3 100 Or 200 Hz
4 2 2
30.
Shift X 1 t . Shift due to one plate X1 1 1
Shift due to another plate X 2 2 1 t , Net shift X X 2 X1
X 2 1 t ...... i
And also X 5 .... ii
5
Hence 5 2 1 t t 8 106 m t 8 m
2 1
p
S1
S2
D
screen
CHEMISTRY
31. Ga has similar Ionisation enthalpy as Al because of inert pair effect ( or completely
filled d-orbital in Ga).
32. Butylated hydroxy anisole (BHA) is an antioxidant. It is added to butter to increase its
shelf life from months to years. BHA reacts with O2 present in air in preference to butter.
So both the assertion reason are correct.
33.
Strength of ligand F NCS NH 3
2 dt dt
6 10 K 0.1 0.1
3 x y
3 1 x 1
2 3 x 2
So, order with respect to A = 1
Order with respect to B = 2
(4) (3)
2
x 0.2 7.2 102
2
0.2 0.1 1.2 10
6 0.2
x
4
x = 0.3M
5 4
2
y 2.88 10 1
0.2 7.2 102
y 2 4 0.22
Y = 0.4M
35. Conceptual
36. 2 N 2O5 g 2 N 2O4 g O2 g
41. High leaving tendency corresponds to high reactivity towards hydrolysis. Hence order is.
42. Due to the larger acid dissociation constant (Ka) sulphuric acid acts as an acid and HNO3
acts as a base.
43.
44. Conceptual
45. 1)
F
Cl F
2)
F F
Xe
F (Pentagonal planar and non-polar)
F F
3)
P
(Non - planar and non - polar)
Cl Cl
Cl
OH HIO4 NaBH4
48. When red phosphorus is heated under high pressure, a series of phases of black
phosphorus is formed.
49. Due to high screening effect
50. P K H . X 1 bar K H
0.2
K H 277.78 bar 2.78 10 7 Pa
1000
0.2
18
51. C:H=4:1
C:O=3:4
Mass ratio
C : H : O = 12 : 3 : 16
Mole ratio
C:H:O=1:3:1
Empirical formula CH 3O
Molecular formula C2 H 6O2
(saturated acyclic organic compound)
5
C2 H 6O2 O2 2CO2 3H 2O
2
2 mole 5 mol
Moles of O2 required = 5 moles
52. (Given atomic masses C = 12, K = 1.0 , O = 16.0, Br = 80.04 )
6.1
Moles of benzoic acid = moles of m-bromo benzoic acid.
122
6.1
So, weight of m-bromo benzoic acid = 201g 10.05 g
122
actual weight
% yield 100
Theretical weight
7.8
100 77.61% 78%
10.05
53. I 2 H 2O 2OH 2 I 2 H 2O O2
2 MnO4 6 H 5 H 2O2 2 Mn 2 8 H 2O 5O2
2 MnO4 3H 2O2 2 MnO2 3O2 2 H 2O 2OH
HOCl H 2O2 H 3O Cl O2
PbS s 4 H 2O2 aq PbSO4 s 4 H 2O s
54. Let M be the molar mass of the element
Volume of the unit cell a 3 290 1010 cm 24.4 1024
3
OH
In amides, nitrogen lone pair is involved in conjugation
58. OH
OH
Phenolpthalein
59. Resonance energy 5 28.8 99 45 Kj / mol : Expected enthalpy – actual enthalpy
60. 1
Effective number of atoms of X 4 4 3.5
8
Effective number of atoms of Y 4 1 3
Effective number of atoms of Z 8 4 4
3 4
2.
7
2
MATHEMATICS
61. 3 2i sin 1 2i sin
Let z
1 2i sin 1 2i sin
2
, ,
3 3 3
2
Sum of values of .
3
62. Here, xH 2 2 x sec 1 0 has roots 1and 1.
2sec 4sec2 4
1 , 1
2 1
2sec 2 tan
2
Since, , ,
6 12
2sec 2ta
i.e. IV quadrant
2
1 sec tan and 1 sec tan as 1 1
and x 2 2 x tan 1 0 has roots 2 and 2 .
2 tan 4 tan 2 4
i.e. 2 , 2
2
2 tan sec
and 2 tan sec as 2 2
Thus, 1 2 2 tan
63. Key idea use n th term of APi.e., an a n 1 d , if a, A, b are in
Ap , then 2 A a b and n th term of G.P.i.e., an ar n 1.
It is given that, the terms a,b, care in GP with common
1
Ratio r, were 0 and 0 r .
2
So, let, b = ar and c = ar 2
Now, the terms 3a, 7b and 15c are the first three terms
Of an AP, then
2 (7b) = 3a + 15c
14ar 3a 15ar 2 as b ar , c ar 2
14r 3 15r 2 as a 0
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 11
SRI CHAITANYA IIT ACADEMY, INDIA 06‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐37_KEY &SOL’S
15r 14r 3 0
2
15r 2 5r 9r 3 0
5r (3r 1) 3(3r 1) 0
(3r 1) (5r 3) 0
1 3
r or
3 5
1 1
as, r 0, , so r
2 3
Now, the common difference of AP = 7b-3a
= 7ar - 3a = a 3
7 2a
3 3
2a
So, 4th term of AP 3a 3 a
3
64. Given Boolean expression is
~ p ~ q
~ ~ p v ~ q p q ~ p q
pq
65. 1 1
6
Given binomial is x 1 log10 x
x 12
Since, the fourth term in the given expansion is 200.
3
2
1 2 1
C3 1 log10 x 12 200
6
x x
3 1
21 log10 x 4
20 x 200
3 1
21 log10 x 4
x 10
3 1
log10 x 1
2 1 log10 x 4
applying log10 both sides
6 1 log10 x log10 x 4 1 log10 x
7 log10 x log10 x 4 4 log10 x
t 2 7t 4 4t let log10 x t
t 3t 4 0
2
t 1, 4 log10 x
x 10, 104
Since, x>1 x = 10
66. 1' P, 2' A, 1R, 3' L, 1E
4 diff : 5c4 5
Total = 22
67. Since, the system of equations has infinitely many
Solution, therefor D D1 D2 D3 0
Here,
1 1 1
D 1 2 3 1 2 9 1 3 1 3 2
1 3
1 1 1
And D3 1 2 3 1 2 27 1 9 1 3 2
1 3
13
Now , D=0
5 0 5
And D3 0 13 0
13
13 5 8
68. We have, f x ax 2 bx c
Now, f x y f x f y xy
Put y 0 f x f x f 0 0
f 0 0
c0
Again, put y = -x
f 0 f x f x x2
0 ax 2 bx ax 2 bx x 2
2ax 2 x 2 0
1
a
2
Also, a + b + c = 3
1 5
b0 3 b
2 2
x 5x
2
f x
2
n 5n 1 2 5
2
Now, f n n n
2 2 2
10
1 10 2 5 10
f n n n
n 1 2 n 1 2 n 1
1 10 11 21 5 10 11
.
2 6 2 2
71.
72.
73.
76.
77. Conceptual
78. Given equation is
79.
80. Key idea standard deviation is remain unchanged, if observations are added
or subtracted by a fixed number
we have,
abc 1
82.
83.
84.
85.
CHEMISTRY
31 2 32 1 33 1 34 2 35 4
36 3 37 3 38 1 39 1 40 4
41 4 42 4 43 1 44 4 45 3
46 3 47 2 48 4 49 3 50 3
51 6 52 9 53 6 54 4 55 4
56 95 57 10 58 68 59 5 60 16
MATHEMATICS
61 2 62 4 63 1 64 2 65 3
66 1 67 1 68 2 69 4 70 1
71 2 72 3 73 3 74 3 75 1
76 1 77 4 78 4 79 1 80 2
81 97 82 2 83 0 84 16 85 2
86 24 87 0 88 602 89 12 90 4
SOLUTIONS
PHYSICS
1. Z 0 0 0 K
K M L T , Z , P
2 2
K ML T
1 2 M 0 L2T 0
P ZP LML T
2. P, Q and R forms the sides of a right angled triangle in which
P A 2
tan 300 P
Q 3
3. The component of velocity perpendicular to inclined plane at the point of projection
and the point of collision with the plane remains same, i.e, v sin
v sin 10
Given 10 10
v 20m / sec
sin sin 300
4. T T
v A2 y2 dh
0
2 A2 y 2
For h to be maximum, dy
h y or y0 g / 2
2g
10. k a
ax2 bv2 k bv2 k ax2 v 2 x 2 Compare with v2 A2 2 2 x2
b x
k
2 2
a k A k
2 and A2 2 A b
b b 2 a a
b
11. GMm
Before collision, PE. mv After collision, velocity will be zero. The
r
wreckage will come to rest. The energy will be only the potential energy.
GM 2m 2GMm 1
P.E Ratio
r r 2
12. Speed is more near the mean position and it is less near the extreme positions in SHM .
Time taken by the particle to go from 0 to A / 2 will be thus less then the time taken
to go from A / 2 to A. SoT1 T2 .
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 3
SRI CHAITANYA IIT ACADEMY, INDIA 07‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐38_KEY &SOL’S
13. V Vin If A is cross-section of the block, L is its thickness and out of L, h is inside
water, then V AL, Vin Ah AL Ah h L 0.90 5 4.5 m 4.5 m of ice
will be submerged in water. Level of water in hole 5 4.5 0.5 m below top of ice.
Length of rope required is 0.50 m
14. Due to Doppler effect, apparent frequency changes. Intensity depends on frequency on
and amplitude. So intensity also changes
15. Intensity amplitude it is non linear physical quantity. The intensities cannot added
2
directly
16. I I 0 I 0 2 I 0 .I 0 cos 2 I 0 given
n 2 2
So, cos 0 n 1 for S2 Pto be min imum x x
2 2 4 2
x 1m x S2 P S1P 1 S2 P S1P 1 x 1 metre
17. K KCP / Cv KCP
Q
1 CP / Cv 1 CP Cv
K nCP T K Q K Q K
Or 1 K W
nCP T nCv T Q U W W
18. R
CP , dQ nCP dt , dU nCv dT
1
Q
dW dQ dU n CP Cv dT nRdT , dQ Q, ndT
CP
RQ 1 Q 1 1
dW nRdT RQ given 1.5
CP R 3 3
19.
D sin i R sin r ' R sin 900 r R cos r
R
tan r , c sin 1 R sin 1 tan r
D D
A A
4,1 4,1
2, 2
yi x j . dxi dy j dzk
2, 2
ydx xdy
4,1 4,1
d xy xy 2,2 0
2, 2
WAB 0
22. VE 0 and VD 0 VB 2V and VC 10 2 12V
VA 12 6 6V and VAVB 6 2 4V VC VD 12 0 12V
12
Current through 3 resistar 4 A
3
23. Resistance in upper branch is 10 and in lower branch 5 . Thus, if current in lower
2 H 1
branch is i, current in upper branch is i / 2 Now H 4 i / 2 4 H 5 i 2 5 4
H5 5
H 10
Or H 4 5 2cal / sec
5 5
24. mv 2 1 m 2ev0
Bqv 1 ev0 mv 2 2 R
R 2 Bq m
25. In critical condition, torque on loop is equal to gravitational torque about an axis
M B MB sin 900 r 2iBx
tangent to the loop, mgr Bx is contributing a torque,
mg 7 11 10
i 2A
rBx 22 3.5 5
26. di
V AB iR L 10 2R L And 6 2R L on solving, R 4
dt
27. 8
Motional emf e BvL 4 2 1 8V Current through connector i 2A
22
CHEMISTRY
31. 1 1 n 2 22
n1 2 , n2 6 v R 1 R
2 2 n 2 4n
2
2 HCl
Pt 4Cl PtCl4 H 2 PtCl6
41. Acidic strength order, acidic strength stability of conjugate base
O COO COO COO
NO2 CH 3
DCl CH 3 C CHD2
CH 3 C CH CH 3 C CHD Cl CH 3 C CHD
M .R , I
H O C CH 2 CH C 2 NH CH C 2 OCH 3
Sp 2 Sp Sp
CH 3 CH 2
Sp 2
Sp 2 Sp 2
Sp 2 Sp 2
Sp 2
52. 4
53. The reaction that takes place is NaCl AgNO3 AgCl NaNO3
143.5g of AgCl is produced from 58.5g NaCl 14g of AgCl will be produced from
58.5 14
5.70g NaCl This is the amount of NaCl in common salt;
143.5
5.70
% purity 100 95%
6
54. PCl3 Cl2
Given : M Mix 62.M H 2 124 For PCl5
M P C l 5 M M ix 2 0 8 .5 1 2 4 0.681 68%
2 1 . M M ix 124
MATHEMATICS
61. If the lines a1 x b1 y c1 0 and a2 x b2 y c2 0 meets the axes is concyclic
points then a1a2 b1b2
62. Sol : A x1, y1 be any point on parabola y 2 4 x and B (h,k) is its image
1/3
sec cos n tan 2 . n sec 2 tan 2 n nm2
1/3
from (1) & (2) similarly sec2 m n2m eliminate
X i i
77. f x 12 22 ..... 52 11
i f 15 3
M .D from X
fi xi X 18 2 5 3 2 41 5 4 16
fi 3 15 15
78. log e 2
log e 2 1
A1 e x e x dx e x e x
0 2
0
e
A2 2 log e x dx 2 x logx x 1 2 A2 4 A1
e
1
79. f x f x 3 f x 6 f x 9 Replacing x with x + 3
f x 3 f x 6 f x 9 f x 12 Adding we get f x f x 12
x 12
Now g x f t dt g | x f x 12 f x 0 x g x is a constant
x
function
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 9
SRI CHAITANYA IIT ACADEMY, INDIA 07‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐38_KEY &SOL’S
80. for no solution or infinitely many solutions
1 1
2
1 1 0 1 2 0 1,1, 2
1 1
but for = 1, there are infinite solutions when = -2, we have
2 x y z 3, x 2 y z 3 x 2 y 2 z 3 adding 0 = - 9,
which is not true no solution.
81. Tr 1 100cr (51/6 )100 r (21/8 ) r As 5 and 2 are relatively prime, Tr+1will be rational
100 r r
if and are both integers 100-r is a multiple of 6 and r is a multiple of
6 8
8, 100-r is multiple of 6 if r = 4, 12, 20… 100 of which 12, 36, 60, 84 are divisible
by 6. Hence, there are just four rational terms. no. of irrational terms is 101 – 4 =
97.
82. r 2 i r2
i i 2
Z = re Then (e e ) 1
12 3
r 2 cos 2 3 r 2 3
r2 3 max value of |z| = r = 3
3 3 1 cos 2
83. 100! 50 50
We have 100 c50 The exponent of 7 in 50! is 7 1 8
50!50! 7 72
100 100
And the exponent of 7 in 100! 14 2 16 ,Thus, exponent of 7 in
7 72
100
C50 is 16 2 8 0
84. x
x 2
i
400 80
i 1
n 16 hence, least possible value of n = 16.
n n n
85. sin 1 sin 3 3 sin 1 sin 4 4 sin 1 sin 5 5 2 sum 2
86. Conceptual
87. Differentiating x 2 2 y 2 y c, 2 x 4 yy1 y1 0 2 x 4 y 1 y1
1 2 xdy 4dy 2dx
Replacing y by , 4 y 1
y1 dx 4 y 1 x
1
ln 4 y 1 lnx 2 ln c1 4 y 1 c1x 2 y cx 2 ,4c c1.
4
88. 3 3 3
By observation Sn n S11 S9 11 9 1331 729 602
89. 1 1 1
By R3 R3 100 R1, det A1 4 6 8 2
0 0 1
Adj 2 A 4 Adj; A
det A1
1
det A
det A
1
2
43. A
2
3 1
4 . 42 16
4
and 2 A 2 A 4 Adj 2 A 2 A 12
3
90.
a 2 b2
e ae 16 9 7
2
a
Foci 7, 0 lies on a circle with centre 0,3
r 7 9 4
CHEMISTRY
31 2 32 3 33 2 34 3 35 1
36 4 37 1 38 4 39 3 40 3
41 1 42 1 43 3 44 2 45 4
46 4 47 4 48 4 49 4 50 2
51 1001 52 16 53 2 54 2 55 5
56 58 57 25 58 3 59 3 60 1
MATHEMATICS
61) 2 62) 3 63) 2 64) 2 65) 1
66) 1 67) 4 68) 2 69) 4 70) 2
71) 1 72) 1 73) 1 74) 2 75) 2
76) 4 77) 2 78) 3 79) 4 80) 2
81) 65 82) 28 83) 64 84) 1 85) 6
86) 166 87) 4 88) 481 89) 51 90) 2
SOLUTIONS
PHYSICS
1. The least count of screw guage is smallest length which can measured accurately
1
with it as L.C is 0.001cm hence measured value should places i.e 5.320cm
1000
2. GM G 2M 3GM
Vm Vshall
R R R
3. a
F
mass of rod
M T M 2
2 g a
480 20 12 8 10
a 12 4 12
20 12 8
192 N
2m / sec 2
4. mgl 1 1 mgl 1 1 mgl 25 4 21mgl
W 2 2
2 n1 n2 2 4 25 2 100 200
5. Conceptual
6. Volume disc = volume of sphere
4 2
r12 t r23 I sp mr2 2
3 5
r 4 2 r
2
2 mr12
r12 1 r23 m 1
6 3 5 2 5 4
3
r2 1 1 mr12
r1 8 5 2
r I
r2 1
2 5
7. The adiabatic relation between and v for a perfect gas is
V r 1
RT
Again from standard gas equation V r nRT V
Putting in e.q.(1) we got
T1 2 300
T2 130.6 K
T2 1420 C
8. VD D 1 2
R r R
2
15 103 m3 5 min 5 60sec
15 103 1 1
Rate of flow A V , 103 104 v
5 60 20
V 0.5
2
103 0.5 102
R 0.55 10 4 5500
3
10
9. 1 1 1 1 1 1.5 1 1 1 2 1.5 1
f f1 f 2 f3 60 12 12 12
1 1 16 8
1 2 1 2, 2 1 3 , 1 1.60
5 5 5 5
10. 4
r1 r1
Qr E 1 q 1 Qr1
4
q r 3 , dq 4 r 2 dr. , q 4 r 2 dr. , q 4 r 2 dr
3 0 0
R4 4 0 r12 4 0 R 4 r12
4Q r 4 Qr 4 1 Qr14
q 4 1 14
R 4 R 4 0 R 4
11. Conceptual
12. 0 A 1 1 1
Cef C1 C2 C3
3 d d b d 2b
0 A
3d d b d 2b
d b d 2b d d 2b d d b
0 A
3d d b d 2b
3d 2
6bd 2b 2
n1 n2 shortest 1 1
2
5 5
2
2 3 36
17. 180
1e
A
0
A1
180
A2 A3
176 172
He4 He4
72 73 2 71 2 69
18. Conceptual
19. i i1 i2 a b sin wt
T
T I rm2 a b sin wt dt
2
0
T
a 2 b 2 sin wt 2ab sin wt dt
0
T T T
T I rmg 2 a 2 dt b 2 sin 2 wt 2ab sin wtdt
0 0 0
1 cos 200t
T T
T I rmg 2 a 2T b 2 dt 2ab sin wtdt
0
2 0
T 1 sin wt T cos wt
T
T I rmg 2 a 2T b 2 2 ab w
2 2 w 0 0
2 T
a T b 0 0
2
2
b2
I rmg 2 a 2
2
1/2
2 b2
I rmg 2 a 2
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 4
SRI CHAITANYA IIT ACADEMY, INDIA 08‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐39_KEY &SOL’S
20. Ma
Am 20 2
0.67
Ac 30 3
21. V 2
i 1A
R 2
22. I1 B1 T2 0.8 20
I 2 T1 B2 0.4 5
0.8 0.8 20
I2 0.4 5
4 I 2 0.4
I 2 0.1
23. W L 2 fL
Q 0
R R
2 3.14 107 2 104
6.28
4 3.14 103
6.28
2 103
2000
24. d sin n
d 2
2d sin n
n2
no.of max imus 2n 1
2 2 1
4 1
5
25. x 2 at 2 2bt c, diff w. r. t ' t ', 2 x
dx
2at 2b 0
dt
dx 2at 2b at b
v , Again diff w. r. t ' t '
dt 2x x
d dx
x at at b
a dt dt a 1 a x 3
2
x x3
a xn
n3
26. Conceptual
27. 10 5 2 1 10
di di
3 0, 10 20,
di
2 A / C
dt dt dt
F r
12t 3t 2 1.5 18t 4.5t 2
18t 4.5t 2
I 4.5
4t t 2
w t t
, dw dt , dw dt ut t 2 dt
dw
dt 0 0 0
t3 t3
w 2t 2 , w 0; 2t 2 t b
3 3
d t3
6 6
36
w d w dt , 2t 2 dt radi 18 rad
dt 0 0
3 2
29. For pariticle ' A ' For particle ' B '
X A 3t 2 8t 10 YB 5 8t 3
VA 8 6t i VB 24t 2 j
a A 6i a 48ti
B
At t 1 sec
VA 8 6t i 2i and VB 24 j
VA VA VB 2i 24 j
Speed of B w. r. t A, V 22 242
4 576 580
V 580 m / s
30. V iR, I mole
Vmole
, PZ VZ I Z I Z
2
0.2
R 10
V 14 10 4
I Z I mole , R max ,R 20
I max 0.2 0.2
CHEMISTRY
31. 1
H 2C2O4 l O2 g H 2O l 2CO2 g
2
1 3
n 2 In Bomb Calorimeter 'V ' is constant
2 2
Z M 8.75 0.312 90
E 122.85KJmol 1 Enthalpy of combustion
m 2
3 8.3
H E n.RT 122.85 300 126.6 KJ / mol
2 1000
32. T f i k f m 0.558 i 1.86 0.1 i 3 1 n. If 1 i n ; n 3
no.of ions n 3 formulae Cocl3 .5 NH 3 or CO NH 3 5 Cl Cl2 x5
33. AgNO3 KI AgI I KI AgNO3 AgI Ag
excess excess
The preferential adsorption of common ion on AgI particles provides ve and ve
charge.
34. 5
I 2 0 H I O3
MW MW
EW of I 2 n factor of I 2 10 x
n factor 10
o
S8 H 2 SO4
MW
EW of S8 n factor of S8 48 y x y 10 48 58
48
35. Conceptual
36. 3.a
Diamond cubic DC Radius of atom, r ; Z eff 8
8
3
4 4 3.a
8 r3 8 3 8
PF 3 3 0.34 hcp ; radius of atom r a ; z 6
3 3 eff
a a 16 2
4 4
height 4r
2
; Base area 6 3.r 2 6 r3 6 r3
3 3
3 P.F 3
3
0.74
a 24 2r 3 2
volume of unit cell 24 2r 3
37. (1)
N aO H C H 3 C O O H C H 3 C O O N a H 2 O
50 m l , 0.1 M 50 m l , 0.1 M 0
5m Eq 5m Eq 0
0 0 5m Eq
5
C H 3 C O O N a Salt
0.05 M
100
1
for salt hydrolysis P H Pkw Pka log C
2
1 1
for univalent salt 14 4.74 log 0.05 14 4.74 2 0.7 8.72
2 2
2.5
(2) NaOH OH
2.5 102 M
100
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 7
SRI CHAITANYA IIT ACADEMY, INDIA 08‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐39_KEY &SOL’S
For base,
P OH log OH log 2.5 102 log 2.5 2 4 2 1.60
(3) For buffer solution
P H Pka log
S 4.74 log
2.5 4.74
A 2.5
38. Conceptual
39. Conceptual
40. CH3
H
1 6 1 5 3.8 2 1 3
2 Chloro 3-Methyl butane is major
41.
HO H
H H
C2H5
Br H
2-Chiral carbon so it has 4 optical Isometal
45. Pinacol, pinacolone rearrangement
46. Cannizzaro reaction is self oxidation and self reduction reaction
47. Carbyl – Amine reaction
48. Alitame is 2000 times more sweeter than sucrose
49. When carbondioxide passes in to insoluble carbonates they are convert in to soluble
bicarbonates
50. Statement II : The corssed arrow symbolizes the direction of the shift of electron
density in the molecule.
51. Equalent conductance 0
1 0 1 0
. .
n n
Where n and n are charge on each ion
1 1
189 160 143 S cm 2 eq 1 x
3 2
Molar conductance at infinite dilution 0 . 0 . 0
Where and are the number of ve and ve ions
0 Al2 so4 . 0 Al 3 . 0 so 2 2 189 3 160
3 4
57.
% N 1.4
N1V1 N 2V2
w
58. 13 8
BO 2.5
2
59. K 2 SO4 , Al2 SO4 3 24 H 2O, x 2, y 2, z 3, p 24
24
3
2 2 3 1
60. 25
1.25
20
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 9
SRI CHAITANYA IIT ACADEMY, INDIA 08‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐39_KEY &SOL’S
MATHEMATICS
61.
L.H .L Lt f x Lt 10 x 2 1
x 3 x 3
R.H .L Lt f x Lt 2 e x 3 2 e 0 1
x 3 x 3
f 3 1 f is continuous at x 3
f 3 h f 3
Lf 1 3 Lth0
h
2
10 3 h 1 1 6h h 2 1
Lth0 Lth0
h h
6h h 2 h6 h
Lth0 Lth0
h 1 6h h 2 1 h 1 6h h 2 1
6
3
2
f 3 h f 3
Rf 1 3 Lth 0
h
Lth0
2 eh 1 Lt
eh 1 1
h 0
h h
f is not differentiable at x 3
f 1 3 f 1 3
4 5w334 3w365 4 5 w3 w 3 w3 w2
62. 111 121
4 5w 3w2
1 3 1 w w2 2w
1 3 0 2w
1 2w 1 1 i 3 i 3
63. y 3x 2 touches ellipse ; m 3, c 2
c 2 a 2 m 2 b 2 4 9a 2 b 2
9a 2 b 2
AM GM 9a 2b 2 9a 2 b 2 6ab
2
4 6ab
2 3ab
2 2
ab ab
3 3
xe
sin x
cos x dx esin x sec x tan xdx
and p ax 2 bx c q 4 x 2 6 x 1 ap 4, bp 6, cp q 1
ap 2 8 and ap 4 p 2, a 2 b 3
c 1, q 1 f x 2 x 2 3 x 1, g x 2 x 1
f 2 g 2 15 3 18
68. k 2, k 2 3k 5
2 2 2 2 k 2 2 2k 2 6k 10
k 2 10k 6
Let f k k 2 10k 6
f 1 k 0 2k 10 0 k 5
f 11 k 2 0
f 5 25 50 6
Maximum value
19
69.
100 100 100
3400 34 81 1 80
lim n ak 3 1
n k 1 k
2
2 2
74.
sin 1 x sin 1 y
2
sin 1 x cos 1 y sin 1 1 y 2
x 2 y 2 1
2
2
1 x y4 4 1 x2 y 2 2 x2 y2 2 1 x2 y 2
x2 x2 y 2 y 2 1 x2 y 2 1 x2 y 2
75. a11
1 b 1 abc a b c 2
11 c
0 abc 2 a b c
1 abc 1
abc 2 3 abc 3 abc 3
3
1
Let abc 3 x
x3 2 3 x x3 3 x 2 0
2
x 1 x 2 0 x 2 0
1
x 2 abc 3 2 abc 8
76.
cos2
3
2 1
sin x 2 2
4
1 2sin x
1
4
1
sin 2 x 1 4sin 4 x 4sin 2 x
4
1 1
sin 2 x sin 4 x sin 2 x
4 4
sin 4 x 0 sin x 0
3 , 2 , , 0, , 2 , 3 ,
Number of solutions 7
77. dx x 2 y 3 dx 1
x 2 y2
dy y dy y
1
y dy 1
I .F e G.S is x I .F Q. I .F dy c
y
f 1 1 cos 2 tan 1 2 1 2 4 2 ln 2
2
1 1 2 4
coscos ln 2
2 5
1 2
12
ln 2
25
a 2 b 2 625 144 481
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 15
SRI CHAITANYA IIT ACADEMY, INDIA 08‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐39_KEY &SOL’S
89. Intersection of two lines B 1, 2
Let C h, 4 2h
AB AC AB 2 AC 2
2 2
25 1 6 h 1 4 2h
26 36 h 2 12h 9 4h 2 12h
5h 2 24h 19 0
19
h ,1
5
19 18
C ,
5 5
18
6 1 19 / 5 1 2 5
, ,
3 3
54 3
,
15 15
51
15 15 51
15
90. Let the lines be y m1 x and y m2 x
2c 1
m1 m2 m1m2
7 7
Given that m1 m2 4m1m2
2c 4
c2
7 7
CHEMISTRY
31) 3 32) 4 33) 4 34) 2 35) 3
36) 1 37) 2 38) 2 39) 1 40) 4
41) 3 42) 4 43) 1 44) 4 45) 3
46) 3 47) 2 48) 3 49) 2 50) 4
51) 9 52) 3 53) 15 54) 1440 55) 481
56) 1 57) 18 58) 60 59) 195 60) 8
MATHEMATICS
61) 2 62) 2 63) 1 64) 3 65) 3
66) 3 67) 1 68) 3 69) 2 70) 3
71) 4 72) 3 73) 1 74) 2 75) 4
76) 2 77) 1 78) 1 79) 1 80) 4
81) 96 82) 15 83) 87 84) 8 85) 269
86) 2 87) 9 88) 1 89) 8 90) 1
SOLUTIONS
PHYSICS
1. Consider the expression for the energy of a photon E hv to get the dimensions of h as
those of ( energy time ). Again the expression for the force 𝐹 acting on a charge 𝑞
moving with velocity 𝑣 in a magnetic field is qvB sin . This gives the dimensions of
qB as those of (force/velocity). Use these to determine the dimensions of the quantity
under consideration, noting that n is a dimensionless quantity.
2.
1
Applying Kirchhoff's second law for closed loop AP2 P1DA , we get
10 I1 2 I 5 0 2 I 10 I1 5 ......(i)
Applying Kirchhoff's second law for closed loop P2 BCP1P2 ,we get
2 1( I I1) 10 I1 0
I 11 I1 2 .........(ii )
or 2 I 22 I1 4 .........(iii )
1
Subtracting eq. (iii) from eq. (i), we get 32 I1 1 or I1
A 0.03 A from P2toP1
32
3. Here, 2 F and 3 F capacitors are connected in series.
1 1 1 6
Their equivalent capacitance is or CS F
Cs 2 3 5
Net voltage,V 16V 6V 10V
The equivalent circuit diagram as shown in figure below.
10. Using Gauss's theorem for spherical surface of radius r outside the sphere with the
r
1 r 1 r
0
ε0 0 R
α
charge q Eds ρ(r)dV E4πr 2 q 4πr 2 dr
ε 0 r
E4πr 2
q 2παR 2 4παr 2
ε0 2ε 0
The intensity E does not depend on R if
q 2παR 2
0 or q 2παR 2
ε0
11. Efficiency of a perfect engine working between 300 C and 27 C
T 270K
(i.e., T2 270 K and T1 300 K ) ηengine 1 2 1 0.1
T1 300K
Since efficiency of the refrigerator (ηref . ) is 50% of ηengine
ηref . 0.5ηengine 0.05
(Using (i))
If Q is the heat transferred per second at higher temperature by doing work W, then
W W 1kJ
ηref. or Q1 20kJ
Q1 ηrec. 0.05
( as W 1kW 1s 1kJ)
Since ηref . is 0.05, heat removed from the refrigerator per second, i.e.,
Q2
Q1 ηref . Q1 Q1 1 ηref .
20kJ(1 0.05) 19kJ
12. 3/2
2 nI 2 nIr 2 Bh h2
As Bc 0 and Bh 0 so 1
4 r 4
2
r h 2 3/2
Bc r 2
5 e1000V /T 1 e 1000V /T 6mA
Differentiating eqn. (i), we get
1000 (1000V /T ) 1000
dI e dV (6)(0.01) 0.2mA
T 300
17. 2GM k
Centripetal force is provided by gravitational force F m; F mk is some
Lr r
constant.
mv 2 km
So,
r r
v cons tan t
2 r
T T r
v
18. Terminal velocity v viscous force upwards = weight of sphere downwards or
4
6 rv r 3 ( ) g
3
For gold and silver spheres falling in viscous liquid,
vg g 19.5 18 2 v g 0.2
or vs 0.1 ms 1
vs s 10.5 1.5 9 1 2 2
19. BE of deuteron (1 H 2 ) 2 1.1MeV 2.2 MeV BE of helium atom
(2 He4 ) 4 7 MeV 28 MeV 1H 2 1 H 2 2 He4 Energy released
Energy released BE of helium 2 BE of deuteron
28MeV 2 2.2MeV 28MeV 4.4 MeV
23.6MeV
20.
Here, m 100 g 0.1kg , v 900ms 1 de Broglie wavelength,
h
mv
6.63 1034 Js
7.4 1036 m
1
0.1kg 900ms
21. If 𝐹 is the upward force applied, 𝑎 is the net upward acceleraton and 𝑚 is the mass of
each link. Then, F 5mg 5mg or F 5m( g a)....(i ) . If N is force of interaction
between the top link and link immediately below it, then
ma F mg N
N F mg ma 5( g a ) m( g a )(U sin g (i ))
N 4m( g a ) 4 1 (10 2) 48 N
22. Here, m 0.1 kg ; L 1m; A 4.9 107 m 2 ; 140 rads 1
Let l be the extension in wire when mass is suspended from one end of wire. Then
mg L
Y
A l
When mass attached at the end of wire executes SHM, its angular frequency,
g g
or l . Substituting this value of l in eq. (i), we get
l 2
mg L mL 2
Y
A (g / 2) A
0.1 1 (140)2
4 109 Nm 2
4.9 107
Sec: Sr.Super60_NUCLEUS & ALL_BT Page 7
SRI CHAITANYA IIT ACADEMY, INDIA 09‐04‐23_ Sr.S60_NUCLEUS & ALL_BT _ Jee‐Main_GTM‐40_KEY &SOL’S
23. According to Wien's displacement law,
mT cons tan t
(m ) A TA (m ) B (TB )
T ( ) 1500nm TA
or A m B or 3
TB (m ) A 500nm TB
According to Stefan's Boltzmann law, rate of energy, radiated by a black body
E AT 4 4 R 2T 4[ Here, A 4 R 2 ]
2 42
E A RA TA 6cm 4
(3) 9
EB RB TB 18cm
24. As P V diagram is a straight line passing through origin, therefore, P V or PV 1 =
constant
In the process PV x constant, molar heat capacity is given by
R R
C
1 1 x
where x 1 here and 1,4 for diatomic gas.
R R 5 R
C R C 3R
1.4 1 1 (1) 2 2
25. For the equilibrium of a small part of semicircular arc subtending an angle of d at the
centre,
d
or ,2T sin BIr0d (dl r0d )
2
T 1.5
B 1T
Ir0 (10)(0.15)
1
26. For an adiabatic process, TV 1 cons tan t TV
i i T f V f 1
Substituting the given values, we get
1
1 v
TiVi aTi i a 32 1
32
7
For diatomic gas,
5
7
1
a (32) 5 (32)2/5 (2) 2 4
CHEMISTRY
31. For the unpaired electrons of carbon n 2, l 1, m 0, 1, s ½
32. In PCl2 F3 , F atoms are present in axial as well as equatorial positions. So it is
unsymmetrical and the dipole vectors are not cancelled. Therefore it's dipole moment is
non zero. Other molecules have zero dipole moments.
33. 3RT
The highest velocity is Crms which is and the velocity possessed by the highest
M
2 RT
fraction of molecule is Cmp which is
M
34. 4 KO2 2CO2 2 K 2CO3 3O2
35. PO2 0.5 atm
1 1
KP 2
PO2 0.5
36. Volume Area thickness
Mass Volume density
80 0.005
Mass of Ag to be deposited 10.5 0.42 g
10
Ewt i t
Amount deposited
96500
108 3 t
0.42 t 125.1sec onds
98500
37. Rate K [ X ]2[Y2 ]1 overall order 2 1 3
38. Conceptual
39. Conceptual
40.
41. 1000
Moles of water 55.5
18
55.5
Mole fraction of water 0.982
55.5 1
PA 0.982 92.5; PA 90.8torr
42. The electrophiles that can attack a benzene ring are
C H 2 CH 2Cl , PhCH 2CH 2 , PhCH
43. Conceptual
44. Conceptual
45.
50. Conceptual
51. 1 K 1
Since it is an amphiprotic salt pH P a1 P a2 (7 10) 8.5
K
2 2
52. Due to identical terminal groups, the number of isomer is three.
53. Number of s-electrons with s 1 4
2
Number of p-electrons with s 1 6
2
Number of d-electrons with s 1 5
2
54. 3 3
EK nRT (1)(2)(480) 1440cal
2 2
55. M eq of MnO4 M eq of Fe2 or ,V N mole 1000
961.2
or ,V n M 0.9612 1000 or ,V 5 0.4 961.2 or ,V 480.6 mL
2
56. Moles of
240 0.2 360 0.2 2
H 0.192 Moles of NaOH required 0.192
1000 1000
V 0.16
0.192 or ,V 1200mL 1.2 L
1000
57. n 3
1 1 142
Pt P0 P0 17.75
2 2 8
58.
MATHEMATICS
61. f ( x) f ( y) ( x y) xy
x2 y 2 x2 y2
f ( x) f ( y ) f ( x y ) xy
2 2
2 2 2
x y ( x y)
f ( x) f ( y) f ( x y)
2 2 2
2 2
x y
Let g ( x) f ( x) , g ( y ) f ( y )
2 2
g ( x) g ( y ) g ( x y )
Let y o g ( x) g (o) g ( x)
g (o) o put y x g ( x) g ( x) o
x2
g ( x) odd function g ( x) kx kx f ( x)
2
x2
f ( x) kx f ( x) is quadratic hence it’s into and many-one
2
62. a1 a2
Let A
b1 b2
Aadj ( A) A adj ( A) I 4
a1 b2 0
Aadj ( A) A I
0 a1 b2
(a1 b2 )2 4
63. np 2 npq 1
1 1
q , p n4
2 2
p( x 1) 1 p( x 0) p( x 1)
64. P( E F G c ) P ( E F ) P ( E F G )
P( E G F c ) P( E G ) P( E F G )
65. 4 f 3 f 1 xf 3
4 f 1( x) x xdx
x2 x2
4 f ( x) c c0 f ( x)
2 8
66. 2 2
2 3 1 2 3 1 dy
x y 0
3 3 dx
dy dx
Now replace by and then solve the differential equation to get orthogonal curve
dx dy
76. 10
0
4cos36 5 1,cot 7 6 4 3 2
2
77. h( x) ( f (a ) f ( x))( g (b) g ( x))e x
h(a) h(b) 0 c (a, b), h '(c) 0
78. Either m 1, m ' 1or m 1, m ' 1
79. Coefficient of x674in(1 x)674 x674 ( x 2)674 2274
CHEMISTRY
31 2 32 2 33 1 34 1 35 4
36 2 37 3 38 2 39 4 40 4
41 3 42 2 43 3 44 4 45 4
46 1 47 3 48 2 49 1 50 1
51 2 52 10 53 5 54 74 55 148
56 75 57 5 58 8 59 5 60 10
MATHEMATICS
61 2 62 1 63 1 64 1 65 4
66 3 67 3 68 3 69 2 70 2
71 2 72 3 73 2 74 4 75 4
76 2 77 2 78 2 79 2 80 1
81 8 82 2 83 6 84 1 85 10
86 8 87 1440 88 5 89 5 90 21
SOLUTIONS
PHYSICS
1. bt
From A A0e 2 m
b120
6 12e 21 6 12e b60
1 60b ln 2
e ln 2 60b b .
2 60
0.693
Or, b 1.15 102 kg s 1
60
2. Amplitude of vibration at time t 0 is given by
A A0e0.10 1 A0 A0
A 1
Also at t t , if A 0 e0.1t
2 2
t 10 ln 2 7 s
3. TL
Coefficient of performance 2
W TH TL
d 2
263 263 d 2 263 dW 263
dt 35
dW 298 263 35 dt 35 dt 35
dt
d2
263 watt
dt
4. H mL 5 336 103 Qsin k
Qsin k T
sin k
Qsource Tsource
T
Qsource source Qsin k
Tsin k
Energy consumed by freezer
T
woutput Qsource Qsin k Qsin k source 1
Tsin k
Given : Tsource 27 0 C 273 300 K ,
Tsin k 00 C 273 273k
300
Woutput 5 336 103 1 1.67 105 J
273
5. Heat is extracted from the source in path DA and AB is
3 P V 5 2P V 3 5 13
Q R 0 0 R 0 0 P0V0 2 P0V0 P0V0
2 R 2 R 2 2 2
Sec: Sr SUPER 60,ELITE,TARGET&LIIT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 25-03-22_Sr SUPER 60,ELITE,TARGET&LIIT_Jee-Main-GTM-02_KEY &SOL’S
6. Efficiency of engine
T 1
1 1 2
T1 6
T2 5
…………. (i)
T1 6
T 62
When T2 is lowered by 62K, then . Again, 2 1 2
T1
T 62 1
1 2 ……….. (ii)
T1 T1 3
Solving (i) and (ii), we get,
5
T1 372 K and T2 372 310 K
6
7. When final image is formed at infinity.
Length of the tube v0 f e
15 v0 3 v0 12cm
1 1 1
For objective lines
f0 v0 u0
1 1 1
u0 2.4cm
2 12 u0
8. 1 1.22
Minimum angular separation
R.P. d
1.22 5000 1010
0.3 106 rad
2
9. The direction in which the first minima occurs is (say). Then e sin or e
or, sin when small
e
Width of the central maximum 2b e 2b. e
e
10. Position of first minima = position of third maxima i.e.,
1 1D 2 3 1 2 D
1 3.52
d 2 d
11. 1 I 1
I ' cos 2 or cos 550
2 6 3
12. No light is emitted from the second Polaroid, so P1 and P2 are perpendicular to each
other
900
P1 P2
Let the initial intensity of light is I 0 . So intensity of light after transmission from
I I
first Polaroid 0 . Intensity of light emitted from P3 I1 0 cos 2
2 2
Intensity of light transmitted from last Polaroid i.e. from
I I 2 I
2
P2 I1 cos 2 900 0 cos 2 .sin 2 0 2sin cos 0 sin 2 2
8 8
13. The situation is as shown in the figure. As the point O lies on broad, side position
with respect to both the magnets. Therefore,
A B C
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 0
1 0 1 0
0 1 1 0
1 1 1 1
21. Efficiency of Carnot engine
T 1 T T2 1 9 T1 10 T
n 1 2 i.e., 1 2 1 w Q2 1 1
T1 10 T1 T1 10 10 T2 9 T2
10 1
i.e., 10 Q2 110 Q2 Q2 90 J
9 9
22. B
Magnetic field in solenoid B 0 ni ni
0
B Ni
(Where n number of turns per unit length)
0 L
100i
3 103 i 3A
10 102
23. Erms 755
1 1 2
The average total energy density 0 E02 0 2 Erms 0 Erms
2
2 2
2
8.85 1012 755 5.027 106 J / m3
24. 96
No. of electrons reaching the collector, nC 1010 0.96 1010
100
n e
Emitter current, I E E
t
n e
Collector current, IC C Current transfer ratio,
t
I n 0.96 1010
C C 10
0.96
I E nE 10
Q1 Q W
W=1200 J
Q2 Q
300
Q1 T1
For Carnot engine
Q2 T2
Q 1200 900
Q 300
Q 1200 3Q
Q 600 J .
CHEMISTRY
CH 2OH CH 2OH
31. 5
H H H H H H
4 1
HO OH H 0 OH H OH
3 2
H OH H OH
D glu cos e D glu cos e
Maltose.
6 6
CH 2OH CH 2OH
5 5
OH H H H OH
4 1 4 1
0
H OH H H OH H H
3 2 3 2
H OH H OH
D Galactose D glu cos e
Lactose
32. h1 h0 K .E1
h 1 0 K .E1
h2 h0 K .E2
h 2 0 K .E2
1 0 1 K 2
2 0 K 1 0 0 1
2 0 K K 1
33. 1 poise 101 kg m 1s 1
1 poise 101 pa sec
Viscosity coefficient 1.2 103 pascal sec
1 millipoise 103 poise 1.2 103 10 poise
103 millilpoise = 1 poise 1.2 103 10 103 12 milli poise
34. ice water
more
volume less
water
On increasing pressure, equilibrium shifts forward
35. 673K
CO g H 2O g CO2 g H 2 g
catalyst
This reaction is called water gas shift reaction.
36. Global warming and acid rain
37. I – Freon (12) CCl2 F2 is one of the most common ions in industrial use.
Cl
Cl C
Cl
CH
II) Cl Cl
III) When CCl4 is released into the air it rises to the atmosphere and depletes the
ozone layer
IV) CH 2Cl2 is used as a solvent.
38. Vitamin K deficiency increases blood clotting time.
39. H 2O D2O
Dielectric constant 78.39 78.06
OH
Chloramphenicol
52. Dissolved oxygen can reach 10 ppm
53. Conceptual
54. y 3 z 5 x 0.2
a 0.2
5 3
5 0.2
0.2
15
1
0.2
75 1 74
55. x 143 m.mol L1
y 5 m. mol L1
56. 12 WCO 2
%c 100
44 Worg
12 0.55
100 75
44 0.2
57. Bakelite, nylon6,6 are not addition polymers
58. It gives octa acetyl derivative
59. NCERT
60. HOOC CH 2 4 COOH
H 2 N CH 2 6 NH 2
MATHEMATICS
61. Use the property
~ p q p ~ q
Hence (2) is correct option
62. Statement : p q
Contra positive of statement Nq Np
63. .
p Nq q Np q p Nq q
Np q
F T F T
T F F T
F T F T
F F F F
a) p q pq p Nq Np q
T T T F
T F T F
T F F F
F F T F
Clearly ‘a’ is ans
64. ~ p q ~ p ~ q (By De’Morgan’s law)
A is a tautology. Also R is true. R is correct explanation for A.
65. Write down the truth table.
66. n 1
Mean x
2
n 1 n 1 n 1 n 1
2 3 ..... n
2 2 2 2
MD
n
n 1 n 1 n 1 n 1
2 ....
2 2 2 2
n
n 1 n 1 n 3 n 1 2n 2 n 1 n 1
.... n
2 2 2 2 2 2 2
n
n 1 n 1
1
2 n 3 n 1 n 1 2 2 2
1 2 ..... terms
n n 2 2 n 2
A a B
r
C
/2
H
P
A B
BC
In ABC ,sin H r sin cos ec
AC 2
74. Let l be the length of the ladder, then AD BE l
E
y
wall
C B x A
CE
In BCE ,sin CE l sin
BE
BC
And cos BC l cos
BE
CD
In ACD,sin CD l sin
AD
AC
And cos AC l cos
AD
x2 y2 sin 2 xy
Option (3) is correct.
75. P
Q
B c A
Let P.Q be objects. A.B observation point. When PQ subtend maximum angle at
A. AB is tangent to circle passing through P, Q, A.
Let APB
1800
180
2
From PQA & BQA
PQ AQ AB AQ
&
sin sin sin sin
c sin sin
PQ
sin sin
c sin sin 2c sin sin
cos cos
sin sin
2 2 2 2
76.
20 m 20 m
450
300
x 20 m p
20 1
tan 300
20 x
3
20 3 20 x x 20 3 1
77. EF 28.5
From BFE ,cot 600 , EF
28.5 3
BE
From BDE ,cot 300 , BE 28. 3
28.5
BF BE EF
28.5 1 2 57
28.5 3 28.5 3 28.5 19 3
3 3 3 3
D
28.5
1300 600
B E
1.5 1.5
A C
78. A 1,2,3,.....,100
Sec: Sr SUPER 60,ELITE,TARGET&LIIT Page 13
SRI CHAITANYA IIT ACADEMY, INDIA 25-03-22_Sr SUPER 60,ELITE,TARGET&LIIT_Jee-Main-GTM-02_KEY &SOL’S
And B C 3k 1: k event
B C 7,13,19,......,97
So, A B C 7,13,19,.......97
16
Sum of all elements 7 97 832
2
79. 0 x y 1
is symmetric
0 y x 1
Let 0 x y 1 ……….. (i)
1,2 R and 2,3 R satisfying the equation (i)
But 1,3 R not satisfied
Hence 0 x y 1 is symmetric but not transitive relation
80. p q r q p
~ p q r q p
~ p q r q p q
~ p q p q ~ p q r p
t p q r p
~ p q r p
p q r p
81. 2, 3
4, 1
82. A1 1,1 2,2 3,31, 2 2,1
And A2 1,1 2,2 3,31,2 2,1 2,3 3,1 3,2 1,3
83. Given, n1 20,1 5, x1 17 and
n2 20, 2 5, x2 22
We know that,
2
n112 n2 22 n1n2 x1 x2
n1 n2 n1 n2
2 2
20 5 20 5 20 20 17 22
20 20 20 20 2
1000 400 25 25 125
25 31.25 5.59
40 1600 4 4
84. Sum of frequencies
2
x 2 x x 2 x 1 2 x x 1 60
2 x 2 x 2 x 2 1 2 x 2 x x 1 60
2 x 2 7 x 60
2 x 2 7 x 60 0
2 x 2 15 x 8 x 60 0
x 2 x15 4 25 15 0
2 x 15 x 4 0
15
x,4
2
15
x [inadmissible] x I
2
xi fi di xi 3 fi di fi di2
0 2 3 6 18
1 4 -2 -8 16
2 16 -1 -16 16
A=3 25 0 0 0
4 8 1 8 8
5 5 2 10 20
Total fi 60 fi di 12 f i di2 78
fi di 12
Mean A 3 2.8
f i 60
2 2
fi di2 fi di 78 12
13 0.04 1.26 1.12
fi f i 60 60
85. xi
Given, n 100, x 40, 10 and x 40 40
n
xi
40 xi 4000
100
Now, Corrected xi 4000 30 70 3 27 4030 100 3930
3930
Corrected mean 39.3
100
xi2 2 xi2
Now, 2 40 100 1600
n 100
xi2 170000
Now, corrected
2 2 2
xi2 170000 30 70 32 27 164939
164939 2
Corrected 39.3 1649.39 39.3 39.3
100
3km
30 0 600
B1 A1 O
3
For OB1, B, OB1 3km
tan 300
As a distance of 3 1 2 km is covered in 5 seconds.
Therefore the speed of the plane is
2 3600
1440 km / hr
5
88. R 2,3 , 3,3 , 2,3 , 3, 2 , 3,4 , 4,3 , 4,4
89. 28 2 x 22 40
Eng
11-x x 12-x Mat
2
3 12
5
Eco
2 x 10 x5
A
90.
9
90
4 8E
Tan 13
B 7 C
CHEMISTRY
31) 1 32) 1 33) 1 34) 1 35) 1
36) 3 37) 2 38) 1 39) 3 40) 3
41) 4 42) 3 43) 1 44) 4 45) 2
46) 3 47) 2 48) 1 49) 3 50) 2
51) 68 52) 2 53) 434 54) 65 55) 0
56) 2 57) 6 58) 28 59) 5 60) 3
MATHEMATICS
61) 1 62) 3 63) 4 64) 2 65) 1
66) 2 67) 3 68) 3 69) 2 70) 2
71) 1 72) 2 73) 1 74) 2 75) 1
76) 1 77) 4 78) 1 79) 3 80) 1
81) 41 82) 0 83) 18 84) 576 85) 132
86) 7 87) 9 88) 2 89) 3 90) 54
SOLUTIONS
PHYSICS
1. Particle velocity v p is related o the displacement of the particle from the mean
position as
v
v p 2v A 2 y2 v p 2 A 2 y 2
2 2 2 3
0.1 0.1 0.05 jm / s
0.5 50
Since the wave is sinisodial moving in positive x-axis the point will move parallel to
y-axis therefore options (c) and (d) are ruled out. As the wave moves forward in
positive X-direction, the point should move upwards i.e. in the positive Y-direction.
2. Since r .p 0
E must be antiparallel to p Ê is parallel to ˆi 3jˆ 2kˆ
3. Potential energy of a dipole is given by
U P.E PEcos
[Where angle between dipole and perpendicular to the field]
1029 103 cos 450 0.707 10 26 J 7 10 27 J
4.
Equivalent capacitances in series combination C1 is given by
1 1 1 CC
1
C1 1 2
C C1 C2 C1 C 2
For parallel combination equivalent capacitance
C11 C1 C 2
For parallel combination
q 10 C1 C2
q1 500 C
500 10 C1 C2
C1 C2 50 F ………. (i)
For series combination
C1C2
q 2 10
C1 C2
CC
80 10 1 2 from equation ……… (ii)
50
C1C 2 400 ……… (iii)
Let R be the resistance of the whole wire potential gradient of the potentiometer
wire
dV I R 60 R
AB mv / m
d AB
dV 60 R
VAP AP 1000mV VAP 50R mV
d AB 1200
Also, VAP 5V (for balance point at P)
VAP 5
R 100
50 103 50 10 3
8. v
+q
10000
106 2 [as R out 10,000 R in 100 ] 100
100
19. Given: modulation index m = 80% = 0.8
E c 14V,E m ?
E
Using, m m E m m E c 0.8 14 11.2V
Ec
20. As we know, average power Pavg Vrms I rms cos
V I 100 20
0 0 cos
2 2
2 2 cos 450 450
1000
Pavg watt
2
Wattless current I I rms sin
I 20
0 sin sin 450 10A
2 2
21. Densit of wire, 9 103 kg cm 3
Young’s modulus of wire, Y 9 1010 Nm 2
Strain 4.9 104
Stress T / A T
Y Y Strain 9 109 4.9 104
Strain Strain A
Also, mass of wire, m A
m
Mass per unit length, A
Fundamental frequency in the string
1 T 1 T 1 9 1010 4.9 104
f
2 2 A 2 1 9 103
1 1
49 101053 70 35Hz
2 2
22. dV
E 8X 8
dX
23. Time Constant, T= RC
2
1
Impedance Z= R , Given Z= R 1.25
2
C
2
1 2 2 2
R 1.25 R RC 1000 ms RC 4ms
C 500
24. A m 60 m
sin sin
2 2
, 2
sin A / 2 sin 60 / 2
60 m
A 60 o
for an equilateral triangle
2
45o m 30o
The condition is for minimum deviation. In this case the ray inside the prism
becomes parallel to base. Therefore the angle made by the ray inside the prism with
the base of the prism is 0o
25. In Youngs double slit experiment, intensity at a point is given by
I I 0 cos 2 ..... 1
2
Where , phase difference,
2
Using phase difference, path difference
We know, 200V
V2 V 2 100 100
Power P = R bulb 20
R P 500
This would be possible only when R = 20 is in series with the bulb resistance
R bulb 20 because in that case both resistances will share equal p.d of 100 V each.
29. For obtaining secondary minima at a point path difference should be integral
n
multiple of wavelength d sin n sin
d
d 6 105
For n to be maximum sin 1 , n 100
6 10 7
Total number of minima on one side = 99
Total number of minima = 198.
30. The observer and source are moving towards each other. The image of the source
serves as source of reflected sound .
The frequency of sound reflected from the wall
Vs 5ms1 Vs 5ms1
v v0 342 5
v' v v ' 200 206 Hz.
v vs 342 5
Frequency of beats = v ' v 206 200 6 Hz.
CHEMISTRY
31. In fifty minutes, the concentration of H 2O 2 decreases from 0.5 to 0.125 M or in one
half-time, concentration of H 2O 2 decreases from 0.5 to 0.25 M. In two half-lives,
concentration of H 2O 2 decreases from 0.5 to 0.125 M or 2t1/ 2 50 min, t1/ 2 25 min
0.693
k min 1
25
d O2 1 d H 2O 2 k H 2O 2
Or 6.93 10 4 mol min 1
dt 2 dt 2
32. According to Kohlrausch’s law,
eq Na 2SO4 eq NaCl eq K 2SO4 eq
KCl
123.7 152.1 147.0 1cm 2eq 1 128.8 1cm 2 eq 1
33. According to Dalton’s law, p x A p 0A x Bp o B Or 2 3
550 p 0 A p o B
5 5
or 2p 0 A 3p o B 2750 ...... i When 1 mole of B is added to it,
2 4
560 po A p o B
6 6
or 2p o A 4p o B 3360
From Eqs (i) and (ii), we get
po A 460 mm
34. Given, angle of diffraction ( 2 )= 90o , 45o
Distance between two planes,
0
d 2.28 A, n 2
Bragg’s equation is n 2d sin
2 2 2.28 sin 45o
1.612
35. MZ
Mass of one unit-cell (m)= Volume density = a 3 d a3
N 0a 3
Mz 58.5 4
m g
N0 6.02 1023
1 6.02 10 23
Number of unit cell in 1 g 2.57 1021
m 584 4
36. As coagulating power is inversely proportional to coagulation value, the ratio of
their coagulating powers will be
Coagulating power of AlCl3 Coagulation Value of NaCl 52
= = 559 :1
Coagulating power of NaCl Coagulation Value of AlCl3 0.093
37. Conceptual
38. XeF4 oxidises potassium iodide.
XeF4 4l 2l2 4F Xe
XeF6 oxidises hydrogen like other xenon fluorides.
39. As the size of the halogen atom increases from F to l, the bond length of H – X
increases. This increase in bond length decreases the bond strength and thus the
thermal stability. Therefore, the order is
Sec: Sr.SUPER60, ELITE,TARGET&LIIT Page 8
SRI CHAITANYA IIT ACADEMY, INDIA 20-05-22_ Sr.SUPER60, ELITE,TARGET&LIIT _ Jee-Main_GTM-13_KEY &SOL’S
HF HCl HBr Hl
40. N
P
Group 15
As Valence
=5
Sb Electrons
MCl3 has sp3 hybridized M-element with one lone pair.
Lone pair and bond pair repulsion decreases bond angle. However, the bond pair of
electrons are much farther away from the central atom in SbCl3 than they are in NCl3
. Thus, lone pair causes even greater distortion of PCl3 , AsCl3 and SbCl3 . Hence, bond
angle decreases from NCl3 (Maximum) to SbCl3 (minimum)
41. II is most reactive as it produces an aromatic carbocation while IV is less reactive as
it produces a non-resonance stabilized carbocation.III is least reactive than I as
former involve an anti-aromatic carbocation.
42.
The very first reaction in the above road map looks like Kolbe’s reaction which
results to salicylic acid as :
The salicylic acid with acetic anhydride[ CH3CO 2 O ] in the presence of catalytic
amount of conc. H 2SO 4 undergoes acylation to produce aspirin as:
In the last step, formaldehyde is oxidised and the other aldehyde is reduced giving
the desired product.
MATHEMATICS
i 2 r
61. 20
ar e
a1 a3 a5 e e 3 e5 e e 3 e5
a r e r a 7 a9 a11 e 7 e9 e11 e6 e e 3 e5 0
a13 a15 a17 e13 e15 e17 e13 e15 e17
62. Given equation can be rewritten as
2
2 2 5x 12y 17
x 1 y 3
13
Here, focus is (1,3), directrix is 5x – 12y + 17 = 0
5 36 17 14
the distance of the focus from the directrix
25 144 13
14 28
Latusrectum 2
13 13
63. n
2
x k
k 1
0
64. 5
As 1 2x 2 3 2 x 2,
2
5/2
2x 2 3 dx 0 x 0, 2
2
Co-ordinates of point P and Q are 4 5cos ,3 5sin and 4 5cos ,3 5sin
4 3,3 4 & 4 3,3 4 1,7 & 7, 1
69
67. C3r 1 69C3r 69C r2 1 69Cr 2
r 2 3r or r 2 3r 70
r = 0, 3, 7, -10
Valid values of r = 3 or 7.
68.
3
69.
No of ways of getting sum 10 is = coefficient of x10 is x x 2 ......x 6 27
27 1
Probability
216 8
70. xdy ydx
x 2
xe x e x 1 dx
y
xe x x c x 1 y e 1 c 0
x
y x 2 ex 1
71. e2x e 2x e 2x 1
2 2x 2
x e dx x . 2 2x. 4 2 8 c 4 2x 2x 1 e c
2 2x
1
f x 2x 2 2x 1
4
1
Min value of f(x) is
8
72. A tangent to ellipse is
x y
cos sin 1
3 2
It intersects x = 3 and x = -3 at points
2 1 cos 2 1 cos
P 3, &Q 3,
sin sin
The circle with PQ as diameter is
2 1 cos 2 1 cos
x 3 x 3 y y 0
sin sin
4
x 2 y2 5 y0
sin
It is a family of circles passing through the intersection of the circle x 2 y 2 5 0
and the line y = 0, which is 5,0
73. Since E1 E 2 E1 E 2 & E1 E 2 E1 E 2
Sec: Sr.SUPER60, ELITE,TARGET&LIIT Page 14
SRI CHAITANYA IIT ACADEMY, INDIA 20-05-22_ Sr.SUPER60, ELITE,TARGET&LIIT _ Jee-Main_GTM-13_KEY &SOL’S
1
P E1 E 2 E1 E 2 P 0 4
74. 1 1
P A B P A .P B 3K 2 K
3 3
P(exactly one of A, B occurs) P A P B 2P A B
75. 30 30
S r C r 30 r 29C r 1
2 30
r 1 r 1
30 30
S 30 r 1 C r 1 29 Cr 1
29
r 1 r 1
30
S 30 29 28Cr 2 229 30 29 228 2 29
r 1
76. Since, z 2z 3z 18z 12 0 n 2 n 1 3 n 2 18 12 0
2 n 1 n2
n 1 2 n 1 1 3 n 3 1 18 1
n 1 n 1 1 n 3 1
2 3 1 18
1 1
1 2 ....... n 1 2 1 2 ...... n 2
3 1 2 ...... n 3 18
1 ......
2 n 1
2 1 ..... 2 n 2
3 1
2
..... 18
n 3
As n & 1
1 2 3 1
18 3
1 1 1 1
1 2
1 &
3 3
77.
1 x2 1
2
e x 2x x 3 1
e 2x
2 2 2 2 2
3 x 2
3 x 3 x
dx 1
2
e x 2x x 3
2
ex
Hence, 3 x 2
2 2 3 x2
x
n
78. Let E a b c a b c
n
2 4 n 1
E 2 n C0 a n n C2 a n 2 b c n C4 a n 4 b c ....... terms
2
n 1
The number of terms in the expansion will be terms
2
n is odd
Sec: Sr.SUPER60, ELITE,TARGET&LIIT Page 15
SRI CHAITANYA IIT ACADEMY, INDIA 20-05-22_ Sr.SUPER60, ELITE,TARGET&LIIT _ Jee-Main_GTM-13_KEY &SOL’S
n 1
Hence, the number of Distinct terms are: 1 2 1 4 1 ....... terms i.e.
2
2
n 1
2
79. The equation of a straight line which is at a unit distance from the origin is
x cos ysin 1 1
Differentiating w.r.t. x
dy
cos sin 0 2
dx
On eliminating from (1) and (2), we get
dy
sin y x 1
dx
dy
y x cos ec 3
dx
dy
Also, Slope cot {using(2}
dx
2
dy
cos ec 1 cot 1 4 2
dx
2 2
xdy dy
From (3) and (4), we have y 1
dx dx
80. The value of the number xyz is 100x + 10y + z, where as x and z can be any two of
the digits 1 to 9. But y can only be any one of the digits 1, 4, 9.
Total value of the 3 digit numbers so formed is
V 100 1 2 3 .... 9 .9.3 10 1 4 9 .9.9 1 2 .... .9.3
V 121500 11340 1215 134055
10 r r
81. 10
.
2 35
Tr 1 Cr .2
r 0,10
Sum 10C0 .25.30 10C10 .20.32 32 9 41
82. cos2 x
2
I e cos 2n 1 xdx ecos x cos3 2n 1 x dx
3
0 0
cos2 x 2
e cos 2n 2n 1 x dx e cos x cos3 2n 1 xdx I
3
0 0
Hence 2I 0 I 0
x x x x
83. x t
f x x e f x t dt x e
2 t 2
f t dt x e .e f t dt x e
2 x t 2 x
e f t dt
t
0 0 0 0
x
f 1 x 2x e x .e x f x e x e t f t dt 2x f x f x x 2
0
x3
f x x c f 0 0
2
3
x3
f x x
2
f 3 9 9 18
3
f 3 9 9 18
84. The number of ways to fill the three even places by 4 consonants 4P3
After filling the even places, remaining places can be filled in 4 P4 ways.
So, the required number of ways 4 P3 4 P4 576
Hence, 576 is the correct answer.
85. Required ways 12 6 1. 6 7 6
7 6 1
Required probability
12 132
86. dy
y 3cot x sin 2x
dx
1
Integrating factor e
3cot dx
e 3log sin x
sin 3 x
1 sin 2x
y. 3 3 dx 2cot x cos ecx dx 2cosecx c
sin x sin x
y f x c.sin 3 x 2sin 2 x
f 3 c2c 5
2
f 5 1 2 1 7
2
87.
Area 2 x x 2 dx
2
88. cos 4x 1
Let I dx
cot x tan x
2cos 2 2x 1
I 4
sin x cos xdx I cos 2xsin 2xdx sin 4x dx
cos 2 x sin 2 x
1 1
I cos 4x c A &B R ; SoA 2
8 8
89. Any point on circle x y 4 is 2cos ,2sin
2 2
2
z z
54
1 z2 1 2
1
z
z (where is an imaginary cube root of unity)
S = 54
CHEMISTRY
31) 2 32) 2 33) 3 34) 1 35) 1
36) 2 37) 4 38) 1 39) 2 40) 4
41) 3 42) 2 43) 4 44) 4 45) 4
46) 2 47) 4 48) 3 49) 3 50) 1
51) 3 52) 8 53) 462 54) 6 55) 4
56) 3 57) 30 58) 2 59) 3 60) 8
MATHEMATICS
61) 3 62) 3 63) 3 64) 1 65) 4
66) 3 67) 2 68) 1 69) 1 70) 1
71) 2 72) 4 73) 3 74) 1 75) 3
76) 3 77) 3 78) 3 79) 4 80) 4
81) 1 82) 5 83) 3 84) 6 85) 1
86) 0 87) 13 88) 1 89) 11 90) 10
SOLUTIONS
PHYSICS
1. Conceptual
2. Conceptual
3. L L 1 1 1/2 1 1 1 dL
t dt L dL dL dt dL 0.01
5 300 52 300 2 5 20 300
1 1 15
dL 0.01 dL 0.01 dL 3
20 300 300 16
dL 3 1 15
100 100 1%
L 16 20 16
2
4. Given, g 10 m / s
2
Equation of trajectory of the projectile. y 2 x 9 x ...(i )
In projectile motion, equation of trajectory is given by
gx 2
y x tan 0 ...(ii )
2v02 cos2 0
By comparison of Eqs. (i) and (ii), we get
tan 0 2 ...(iii)
g g
2
9
2
v02 ...(iv)
and 2 v cos 0 0 or 9 2 cos 2 0
From Eq. (iii), we can get value of cos and sin
1 2
cos 0 sin 0 (v)
5 and 5
5
2
0
1
v02
10 5
10 5
2 25 5
2 1 9 2 9 v0 9 or v0 3 m / s ...(vi )
2
1
From Eq. (v), we get 0 cos 1
5
5. Components of velocity at an instant of times t of a body projected at an angle is
vx u cos g xt and v y u sin g y t
Here, components of velocity at t 1s , is
1
vx u cos 60 0 0 as g x 0 10 5 m / s and v y u sin 600 10 (1)
2
5 3 10 Vy 10 5 3 m / s
Now, angle made by the velocity vector at time of t 1s
Vy 10 5 3
tan tan 2 3 or 150
Vx 5
2
Radius of curvature of the trajectory of the projected body, R v / g cos
2
5
2
10 5 3 v 2
vx2 v y2 and cos 150 0.97 R 2.77 m 2.8 m
10 0.97
6. The given situation is shown below.
h
O M B
u 2 sin 2
Here, range, OB 2h tan
g
u 2 sin 2
u 2 sin 2 2h tan g
and h 2 2 tan 2cot
2g h u sin
2g
2 cos u 2 sin 2
sin h
1 cot 2 2g
u2 h h tan 2
or
2 g sin 2 4 cot 2
2
1 4 cot 2
1
u 2 tan 2 u 2 tan 2
2 2
gh 2 gh 2
7. Conceptual
8. Conceptual
9. Let acceleration of mass m relative to wedge down the plane is ar . Its absolute
acceleration in horizontal direction is ar cos 600 a (towards right.) Hence, let N
be the normal reaction between the mass and the wedge. Then
N sin Ma m( ar cos 60 0 a )
M m a 2 M m a
or ar
m cos 600 m
10. T1 mg
2T2 T2 2T1 T1
F m m m
T2
T2 2T1 mg
or T2 2 mg mg (Putting T1 mg )
or T2 3 mg
Now, F 2 T2 mg
or F 6 mg mg (Putting T2 3 mg )
or F 7 mg
Sec: Sr.S60, ELITE ,TARGET & LIIT Page 3
SRI CHAITANYA IIT ACADEMY, INDIA 25-05-22_ Sr.S60, ELITE ,TARGET & LIIT _ Jee-Main_GTM-15_KEY &SOL’S
11. Conceptual
12. Let, N1 = normal reaction at A and N2 = normal reaction at B
3N1 mg N 2 3
ma 3 N1 3N 2 mg N1 N 2 mg 3
2 2 2 ma
2 2 2 2 2
3 N1 3 N 2 3mg
2 2 2
From Eqs. (i) and (ii) , we have 3N1 2mg ma , 3 N 2 mg ma
Since cylinder does not loose contact at B, so
N2 0 a g amax g
13. Conceptual
14. F s 1/3
i.e. acceleration a s 1/3
dv
or v Ks 1/3 or v 2 s 2/3
ds
or v s1/3
Now, P F .v
or P s 1/3 , s1/3 or P s 0
i.e. power is independent of s.
15. Conceptual
16. Fnet mg sin 0 x (mg cos )
a g sin 0 g cos x
m m
dv
v. g sin 0 g cos x
dx
0 X max
mg v
1 2
mv v 2 gR sin cos 1
mgR cos maR 1 sin
2
dv
v is maximum when 0 450
d
18. Apply work energy theorem
19. Apply work energy theorem
20. In equilibrium, (with respect to cylinder)
Net
mg
2mg
tan
mg
or tan 1 (2)
Maximum angular displacement 2 2 tan 1 (2)
21. Conceptual
22. Conceptual
23. 4 4 3 4 3
G . R3 G 2 2 R R
EQ
3 3 3
2 2
2R 2R
4
G R3
3
EP 2 EQ / E P 15 / 4 3.75
R
24. kg
Density of wire, d 9 103 3
9 103 kg / m3
cm
Strain in the wire, 4.9 104
N
Young’s modulus of wire is Y 9 1010 2
m
Lowest frequency of vibration in wire will be f 1 T
2L M / L
T T T T
Now,
M / L V / L LA. A
L
T T Y
But =stress Y strain Y
A M /L
So, from Eq (i), frequency will be
1 T 1 Y 1 9 1010 49 10 4
f 35 Hz
2L M / L 2L 2 1 9 103
25. Conceptual
26. Conceptual
27. Conceptual
28. Conceptual
29. Conceptual
30. Conceptual
CHEMISTRY
31. Formation of NaCl is an exothermic reaction.
32. 1 (mv )2
2 ( mv)1
33. [ClF2O ] sp 3 ,[ClF4 O ] sp 3 d 2
34. C2 H5OH 2Cr2O72 2CO2 4Cr3
Eq. of Cr2 O72 eq of C 2 H 5 OH
8.0 .05 6 10 8.0 .05 46 0.0092
W 6 .0092 % 100 0.092%
1000 46 /12 1000 12 10
35. As per Le Chatelier’s principle, equilibrium moves in forward direction.
36. 1
C ( graphite) O2 ( g ) CO( g ); H ve Is not a combustion reaction
2
37. V2
S 2.303nR log
V1
38. De-excitation of electron from 5th orbit to 4th orbit gives first line in Brackett
series.
39. HI n H I n
Acidic basic
Red Blue
H I n
Ka
HI n
75
Red from 75% blue from 25% H 3 10 5 9 105
25
When 75% blue and 25% red, then
25
H 3 105 1 105 change is H 9 105 110 5 = 8 105
75
40. Localised electron pair on nitrogen.
41. 2 2
1 * 4 4 * 1
3 -2S and 3 -3R
42. Most stable alkene is the major product.
43. BeF2 Soluble in water due to grater hydration energy of Be+2 , as compared to L.E
44. A3 ion further can not lose electrons so it cannot act as reducing agent.
45. H3C H
(X)
optically active.
H3C H
(Y)
optically inactive.
Sec: Sr.S60, ELITE ,TARGET & LIIT Page 6
SRI CHAITANYA IIT ACADEMY, INDIA 25-05-22_ Sr.S60, ELITE ,TARGET & LIIT _ Jee-Main_GTM-15_KEY &SOL’S
46. For lead, (+2) is more stable due to inert pair effect
47. As BOD values increases, pollution increase.
48. As the electronegativity of central atom increases, bond angle increases.
49. Friedel Crafts alkylation is generally not preferred for the preparation of alkyl
benzenes because
electrophile undergoes rearrangement giving mixture of products and poly
alkylation takes place
as alkyl group is activating
50. More hyper conjugations.
51. I, III and IV
52. 2S4 N4 4N2 ( g ) S8 ( g )
53. H
G O at equilibrium hence H T S and T
S
54. Borax- Na 2 B4 O 7 ·10H 2 O and Kernite- Na 2 B 4 O 7 ·4H 2 O
55. a, b, e, g
56.
, ,
57. 1 1 P2V2
PV
58. q ms T
59. i, ii , iii.
60. KCN HCN
Volume = ‘x’ ml volume = 10ml
Molarity = 5 Molarity = 2m
P H log Ka log
salt
Acid
5 x /(10 x )
9.6020 log 5 1010 log
20 /(10 x)
x
9.6020 9.3010 log
4
x
log 0.3010 log 2
4
x 8ml
MATHEMATICS
61. Lines are y 1 tan x 1 and y 1 cot x 1 multiply and compare
2
sin 2
a2
n
62.
lim tan 1 r 2 r tan 1 r 2 r
n
r 1 2
63.
Let g x e x f x As g '' x 0 so g ' x is increasing
So, for x 1 / 4, g ' x g ' 1 / 4 0
f x f x e x 0 f x f x in 0,1/ 4
64. ST 2 AS 2 AT 2 2 AS . AT . cos and AS . AT
1
bc
2
65. Use half angle formulae and Heron’s formula
66. Y
6 3
,
6 3 2 yx
0,
2
0, 3x 2 y 6
,
6 3 6 5 dA 3
Area of rectangle
0
2 2 d 5
3 3 9
AMax Sq units
5 2 10
67. Since f '' x 0
f ' x is always increasing.
g ' x 2 f ' 2 x 3 3x 2 6 x 2 6 x f ' 6 x 2 4 x 3 312 x 12 x 2
12 x 2 x . f ' 2 x 3 3 x 2 f ' 6 x 2 4 x 3 3
12 x x 1 . f ' 2 x 3 3 x 2 f ' 6 x 2 4 x 3 3
For increasing g ' x 0
2 x 3 3x 2 6 x 2 4 x 3 3 f ' x is incresing
2 1 1 1
x 1 x 0 x x ,0 1,
2 2 2
Case-II If 0 x 1
f ' 2 x 3 3x 2 f ' 6 x 2 4 x 3 3
2 1 1
x 1 x 0 x , so there is no solution
2 2
1
Hence the values are x ,0 1,
2
72.
Continuous at x 1 p q 2
4
1 1 1 13
differentiable at x 1 3p p ;q
11 2 6 4 6
2
73. 1 y cos 2 x 4cos 2 x 3 y 1 0
Since cos 2x is real, 16 4 3 y 11 y 0 Or 3 y 2 2 y 5 0
But y 1 cos 2 x 1 i.e. x which is not permissible.
2
74. Total disks in An is S n 3n n 1 and length of side of hexagon is
2 rn 1
1 2 rn n 1 rn
3 2
2n 2
3
2 2
75.
d 1 .d 2 0 a 2b . 2 a b 0 2 a 3a.b 2 b 0
2 2
d .d 0 2 a b . a 2b 0 2 a 3a.b 2 b 0
3 4
2 2
a.b 0 Now a b a 2b a b . a 2b 2 a b
76. et et cos t e t sin t
A et e t (sin t cos t ) e t (cos t sin t )
et 2e t sin t 2e t cos t
Sec: Sr.S60, ELITE ,TARGET & LIIT Page 9
SRI CHAITANYA IIT ACADEMY, INDIA 25-05-22_ Sr.S60, ELITE ,TARGET & LIIT _ Jee-Main_GTM-15_KEY &SOL’S
1 cos t sin t
A et .e 2t 1 sin t cos t cos t sin t
1 2sin t 2cos t
1 cos t sin t
A e t 0 sin t 2 cos t cos t 2sin t
0 2sin t cos t 2 cos t sin t
A e t sin 2 t 4 cos 2 t 4 sin t cos t 4 cos t 4 sin 2 t cos 2 t
A e t 5sin 2 t 5.cos 2 t 5.et ot R
77. 0 1 0 1 0 1 3 0
A A2 A. A
3 0 3 0 3 0 0 3
3 0 3 0 32 0
A 4 A2 . A 2
0 3 0 3 0 32
834 0 6 4 2 32 0 3 0 33 0
A and A A . A 2
0 34 0 3 0 3 0 33
x
Let V
y
A8 A6 A4 A2 I
81 0 27 0 9 0 3 0 1 0 121 0
0 81 0 27 0 9 0 3 0 1 0 121
0
A8 A6 A4 A2 I V 11
121 0 x 0 121x 0
0 121 y 11 121y 11
78.
Let y
cos3 sin 3 1
cos sin 1 sin cos 1
2 2
sin cos 1 sin cos 1
x2 1
x 1 1
2
2
2 3x x 3 2 x x 1 x
Let cos sin x y 2
2
2
1
x 1 2 x 1 2 x 1 2
cos sin 2
y 1 1
2 2
79. x y z 1 x y z 1
The lines are ,
1 1 0 1 1 0
Let C , ,
c a b
The distance of C from r a sb is
b
2
3. 3n 1
f a
2
84. If f 0 sin 0 or sin 2 0 or cos 3 0 or cos 4 0 or cos 5 0
85. t 1 x 8 y 4t 0
tx t 3 y 3t 1 0
t 1 8 4t
t t 3 3t 1
t3
86.
5
5 4 2 2 cos x
4 2 cos x sin x 10 cos x 1 sin 2 x 4
lim lim lim10cos x
x 1 sin 2 x x 1 sin 2 x x
4
4 4
5
1 cos x 4 10 4 2 1 cos5 h
lim 4 2 lim 5 2
x
4
1 sin 2 x 2 h 0 1 cos 2h
4 2 1 cosh cos2 h cos3 h cos4 h
lim 5 2 5 2 5 2 0
x 0 2 1 cosh
87. Taking dot product with a, b , c, we get 5 a b c a . a, 3 a b c a . c and a . b 0
2a c 3d .a 13 as d . a
So.
a b c
b a b .a 0
1 2
88. Check the continuity and differentiability at integral points. At x = 1, it is not
differentiable f x x sin x 1 x sin x x 1 x sin x
It is continuous but not differentiable
89. Let P and Q be points on the lines, then
P 2 2 s, 6 3s,34 10 s , Q 6 4t ,7 3t ,7 2t
The d .r ' s of PQ are 4 4t 2 s,13 3t 3s, 27 2t 10s
PQ is perpendicular to the two lines with d .r ' s2, 3, 10 and 4, 3, 2.
2 4 4t 2 s 3 13 3t 3s 10 27 2t 10s 0
4 4 4t 2 s 3 13 3t 3s 2 27 2t 10 s 0
113s 19t 301, 29 19 s 1
Solving s 3, t 2, P 4,3, 4 a, b, c a b c 11
90. R Q
T
, ,
S P
iˆ ˆj kˆ
1 1
Area of base (PQRS) PR SQ 3 1 2
2 2
4
1 3
1
10iˆ 10 ˆj 10kˆ 5 iˆ ˆj kˆ 5 3
2
1 2 3 2
Height = proj. of PT on iˆ ˆj kˆ
3 3
2
volume 5 3 10 cu. Units
3
CHEMISTRY
31) 3 32) 2 33) 2 34) 2 35) 3
36) 2 37) 4 38) 1 39) 2 40) 3
41) 2 42) 2 43) 4 44) 2 45) 3
46) 3 47) 3 48) 2 49) 3 50) 4
51) 3 52) 1 53) 36 54) 9 55) 1
56) 14 57) 5 58) 3 59) 144 60) 4
MATHEMATICS
61) 2 62) 4 63) 3 64) 1 65) 1
66) 4 67) 4 68) 3 69) 4 70) 1
71) 4 72) 2 73) 4 74) 1 75) 1
76) 1 77) 4 78) 1 79) 1 80) 4
81) 50 82) 40 83) 100 84) 75 85) 4
86) 0 87) 2 88) 1 89) 30 90) 11
SOLUTIONS
PHYSICS
1. f nimage
M .P 0
fe nObject
2. 1.22
a
3. Conceptual
4. For 2nd minima d sin 2
3 3
sin (given) ……………. (i)
2 d 4
3
So for 1st minima is d sin 2 In (from equation (i))
d 4
25.650 (form the sin table) 250
5. M
I
V
6. K .E W MB 1 cos
7. 1 n12 B1 cos1
T ; n B and 2
B n2 B2 cos 2
8. V V2 V1 V1 V2 0.2 0.1 10
4
We know that B , ,
r r r 0.1sin 300
9. V VCE I C RL 15 7 I C 2 103 iC 4mA
i 4
S C iB 0.04mA
iB 100
10. Lower NOT gate inverts input to zero. NOT gate from NAND gate inverts this
output to 1 upper NAND gate converts this input 1 and input 0 to 1. Thus A = 1 and
B = 1 become inputs of NAND gate giving final output as zero.
11. The P-N junctionwill conduct only when it is forward biased i.e., when -5V is fed to
it, so it will conduct only for 3rd quarter part of signal shown and when it conducts
potential drop 5 volts will be across both the resistors, so output voltage across R2
is 2.5 V V0 2.5V
12. 2 2
m
Psb Pc a Pc
0.5 0.0625P
c
2 4
2 2
Also P P 1 ma P 1 0.5 1.125 P
c c c
2 2
Sec: Sr.S60, ELITE, TARGET&LIIT Page 2
SRI CHAITANYA IIT ACADEMY, INDIA 27-05-22_ Sr.S60, ELITE, TARGET&LIIT _ Jee-Main_GTM-16_KEY &Sol’s
% solving
1.125Pc 0.0625 Pc 100 94.4%
1.125Pc
13. Given, Power of laser beam P 27mW 27 103W
Area of cross-section A 10mm2 10 106 m2
Permittivity of free space V0 9 1012 SI unit
1
Speed of light c 3 108 m / s I ncV0 E 2
2
Where, n is refractive index, for air n 1
1
I C.V0 E 2 …………… (i)
2
P
Also, I ………….. (ii)
A
From Eqs. (i) and (ii), we get
1 2 P 2 2P 2 27 103
cV0 E or E or E
2 A AcV0 10 108 3 108 9 1012
1.4 103V / m 1.4kV / m
14.
The volume of the needle, V 3 102 1 103 0.5 103 1.5 108 m3
The mass of the needle .......V
8
7900 1.5 10 1.183 104 kg
1.185 104
The number of atoms in the needle 6.02 10
23
1.27 1021
3
56 10
1
The needle’s dipole moment M
10
1.27 1021 2.1 10 23 2.7 103 J / T
15. B BV
tan 450 V tan d 2
BH BH cos 60
16. The conductivity of a semiconductor is given by t nee ~ e nhe ~ h
Since in the problem semiconductor is pure germanium (intrinsic semiconductor)
ne nh nl t nl e ~ e ~ h
As per given data, n1 1.6 106 per cubic meter
~ e 0.4m 2V 1s 1 ~ h 0.2m 2V 1s 1
t 1.6 106 1.6 1019 0.4 0.2 1.6 1.6 0.6 1013
Current produced in germanium plate,
V 5
I JA tEA t A 1.6 1.6 0.6 1013 2 104
d 1.2 1013
I 1.28 1013 ampere
CHEMISTRY
31. VO,VO2 ,VO3 & TiO3 show metallic (or) insulators depending upon temperature.
32. Conceptual
33. Argon is used mainly to provide an inert atmosphere in high temperature
metallurgical process
34. BeH 2 and MgH 2 are polymeric in structure.
35. Zn 2 HCl
ZnCl2 H 2
36. Cermic – honey comb coated with precious metals Pt , Pd and Rh .
37. Unbranched chain can be biodegraded more easily and hence pollution is prevented.
38. Vitamin B6 is also called Pyridoxine
39. Nylon 6 is used in manufacture of tyre cords, fabrics and ropes
40. Conceptual
41. Conceptual
42.
33.3 3.11 0.313 36.723 36.7
After decimal point one significant figure.
52. 1.014
4 significant figures
0.07
1 significant figures
5.11
3 significant figures
Sec: Sr.S60, ELITE, TARGET&LIIT Page 6
SRI CHAITANYA IIT ACADEMY, INDIA 27-05-22_ Sr.S60, ELITE, TARGET&LIIT _ Jee-Main_GTM-16_KEY &Sol’s
53. PV
1 1 P2V2
T1 T2
700 100 760 V2 7 273
V2
250 273 19
28 7 273 1
%N 100
22400 19 0.35
35.71% 36%
54. 1
450 1
n
log k log3 k 3
1
x 1
k . p n 3 3 9
m
55. hc 6.625 10 34 3 108
E eV 3.45 eV
3600 1010 1.6 1019
E kemax
kEmax E 3.45 2 1.45 eV
56. Enthalpy of ionization of HCO3 = Enthalpy of neutralization of WA & SB -
Enthalpy of neutralization of (SA&SB)
42 56 14 KJ / mole .
57. potassium ion participate in the oxidation of glucose to produce ATP.
58. O
CH 2 CH 2 C
CH 2
CH 2 CH 2 NH
COCH 3
59. COONa
I NaOH
2
CHI3
MATHEMATICS
61. n A ' B ' n A B ' n U n A B
n U n A n B n A B
700 200 300 100 300
62. Let F, B and C denote the set of men who received medals in football, basketball
and cricket, respectively.
Then n F 38, n B 15, n C 20
n F B C 58 and n F B C 3
Therefore, n F B C n F n B n C
n F B n F C n B C n F B C , gives
n F B n F C n B C 18
Consider the Venn diagram as given in figure.
U
F B
a
d
b c
C
Here, a denotes the number of men who get medals in football and basketball only,
b denotes the number of men who get medals in football and cricket only, c
denotes the number of men who got medals in basket ball and cricket only and d
denotes the number of men got medal in all the three.
Thus, d n F B C 3 and a d b d c d 18
Therefore a b c 9 , which is the number of people who got medals in exactly
two of the three sports.
63. n P 25%, n C 15% ,
n P c C c 65%, n P C 2000
Since n P c C c 65%
c
n P C 65% n P C 35%
Now n P C n P n C n P C
35 25 15 n P C n P C 40 35 5
Then n P C 5%
But n P C 2000
5% of the total = 2000
2000 100
Total number of families 40000
5
Therefore, statements 2 and 3 are correct.
64. As R is reflexive relation on A, a, a R for all a A . The minimum number of
ordered pairs in R is n . Hence, m n
B 450 100 m
O
300
68. Let BC be the declivity and BA be the tower. Using sine rule in ABC, we have
BC AB 80sin 300
AB
sin 750 sin 300 sin 750
40 2 2
3 1
40 6 2
A
750
300 C
750
150
B
69. S
R
c
bQ
a
P x
di 18
Now, M .D. 2.57
N 7
73. xi
2 2
x
Variance i
n n
18000 960 2
300 256 44
60 60
74. If p : A number is a prime
q : It is odd
We have p q
The inverse of q is ~ p ~ q
i.e., if a number is not a prime then it is not odd.
75. If p q is false only when p is true and q is false
Sec: Sr.S60, ELITE, TARGET&LIIT Page 11
SRI CHAITANYA IIT ACADEMY, INDIA 27-05-22_ Sr.S60, ELITE, TARGET&LIIT _ Jee-Main_GTM-16_KEY &Sol’s
p q r is false when p is true and q r is false
And q r is false when both q and r are false
Hence, truth values of p, q, r are respectively T, F, F.
76. If p ~ q ~ p q p ~ p ~ q q f f f
f false
(By using associative laws and commutative laws)
p ~ q ~ p q is a contradiction.
77. It is clear from table that ' ~ ' ~ p q is equivalent to ~ p ~ q .
p q ~ p ~ q p q p ~ q ~ p q ~ p ~ q ~ p q ~ ~ p q
T T F F T F F F T F
T F F T F T F F T F
F T T F F F T F T F
F F T T F F F T F T
78. Consider the following statements
p : Two triangles are identical.
q : Two triangles are similar.
Clearly, the given statement in symbolic form is p q .
Therefore, its contrapositive is given by ~ q ~ p
Now, ~ p : two triangles are not identical.
~ q : two triangles are not similar.
~ q ~ p : If two triangles are not similar, then these are not identical.
79. Let p : I become a teacher
q : I will open a school
Negation of p q is ~ p q p ~ q
i.e. I become a teacher and I will not open a school.
80. The event follows binomial distribution with n 5, p 3 / 6 1 / 2, q 1 p 1 / 2
Therefore, variance is npq 5 / 4
81. tan tan
20 h h
1 70 70
6
1
20 h h
70 2
70 2 20h h2 6 70 20
h 2 20h 70 70 120 0
h 2 20h 50 70 0
20 400 4 50 70
h 50m
2
20
h
70 m
82. 3
h
4
h/4
40
tan tan
tan
1 tan tan
h h
3
40 160
5 1 h h
40 160
h2 200h 6400 0
h 40 or 160 m
Hence, the possible height is 40 m.
83. In the figure PQR is triangular park with PQ PR 200 TV tower of height ‘h’
stands at midpoint M of QR.
150 450
600
B N
150
450
A Q
M
600
300
P O
90. According to the question, we have
2m 2n 112
n 2m n 1 2 4 7
2n 24 and 2m n 1 7
n 4 and 2m n 8
n 4 and 2m n 23
n 4 and m n 3
n 4 and m 4 3
n 4 and m 7
CHEMISTRY
31) 1 32) 3 33) 2 34) 2 35) 4
36) 3 37) 1 38) 1 39) 4 40) 2
41) 1 42) 2 43) 1 44) 4 45) 4
46) 2 47) 3 48) 2 49) 3 50) 1
51) 1 52) 3 53) 4 54) 4 55) 1
56) 0 57) 3 58) 3 59) 102 60) 2
MATHEMATICS
61) 2 62) 1 63) 4 64) 2 65) 2
66) 2 67) 4 68) 4 69) 2 70) 4
71) 1 72) 3 73) 4 74) 3 75) 2
76) 1 77) 2 78) 2 79) 1 80) 2
81) 0 82) 1 83) 5 84) 3 85) 16
86) 420 87) 2 88) 0 89) 5 90) 7
SOLUTIONS
PHYSICS
1. As magnets are perpendicular to each other, the resultant magnetic moment
2I
M ' M 2 M 2 2M T1 2
2M H
I T2 I 4
In the second case, T2 2 , 1/4
T2 1/4
3.36s
MH T1 2 2
2. 1 1 1 2 L
Lp
Lp L L L 2
1.8 104
Where L is inductance of each part, 0.9 104 H
2
4
L 0.9 10
Lp 0.45 104 H
2 2
6 1 1 1 2
Resistance of each part, r 3 Now,
2 rp 3 3 3
Lp 0.45 104
Time constant of circuit, 3 105 s
rp 1.5
3. When the spherical conductors are connected by a conducting wire, charge is
1 QA
redistributed and the spheres attain a common potential V. Intensity E A
4 0 RA2
1 C AV 4 0 RA V
or E A
4 0 RA2 4 0 RA2 RA
V E R 2
Similarly EB A 0
RB EB RA 1
4. to theplane. Area vector is at 60 0 angle with x-axis and 30 0
Areal vectors will be
angle with – z-axis. M NI A
M 10 102 Am2 M 0.1 Am 2
M M x i M z k M cos 60i M cos 300 k
M 0.05 i 3 k
5. The block will just start sliding when the angle made by the inclined plane with the
horizontal will be equal to the angle of repose respose tan 1 tan ,
3
4
6. If final temp is T
PV PV
0 0
Cv 4T0 T 0 0 Cv T T0
4 RT0 RT0
4T0 T 8T
T T0 4T0 T 4T 4T0 8T0 5T T 0
4 5
8
Tf T0
5 2
Final pressure In left Pf Pi P0 P0
T0 4T0 5
8
T0
5 8
In right Pf P0 P0
T0 5
8P 2 P 6P A
Force 0 0 A 0
5 5 5
7. p h g 3 p
h g 2 p ____(1)
4
p ' p h g ____(2)
5
From (1) and (2)
4 13 p
p' p 2p p'
5 5
8. F
Stress
A
400 400
Elastic limit is 379 MPa 379 106
A d2 / 4
400 4
d 6
1.16 10 3 m 1.16mm
379 10
9. 1 2 hc
mv .....(i)
2
1 2 4 hc
mv .....(ii)
2 3
hc 1 2
From Eqn. (i) mv On putting this Eqn. (ii)
2
1 2 4 1 2 4 2 4
mv mv v 2 v 2 v' v
2 3 2 3 3 m 3
10. K U mgH & K 2U
mgH mgH
2U U mgH U mgh h H /3
3 3
1 2mgH gH
mv 2 2U v2
2 3 3
Sec: Sr.S60, ELITE,TARGET & LIIT Page 3
SRI CHAITANYA IIT ACADEMY, INDIA 27-07-22_Sr.S60, ELITE,TARGET & LIIT _ Jee-Main_GTM-42_KEY &SOL’S
11. A sin B cos
Z ; Dimensions of A and B would be same as two quantites can be
A B
added only when they have same dimensions. So from given equation, we can say that Z
is dimensionless.
12.
2h
The time, the particle takes to go through h is t and in one complete oscillation,
g
the particle travels thorugh h four times.
For the motion of the particle through the tunnel, the force acting on the be like an SHM.
GMm GM R3 R
F 3 x a 3 x TSHM 2 2
R R GM g
2h R 2h
So the time period of the particle is T TSHM 4 T 2 4
g g g
13.
dy
For maxima x n n
D
dy 0.032 102 1.06 102
For n=4 530 nm
4D 4 1.6
14. In steady state, the capacitors are fully charged and act as open circuit, so the equivalent
circuit in steady state would be as shown:
Velocity of image of the point in the first mirror with respect to the image of the point in
the Second mirror is V I1 V0 3 i V0 3 j V I1 V0 6
I2 I2
21. 4
Wavelength of K line is given by 2
3R Z 1
For , between 250 and 179 pm three elements are possible (Z = 24, 25 and 26)
22. Q nC p T Cp 7
Q .W 20 70 J .
W nRT R 2
23.
F 10 g 20 g 10a.......(i)
10 g 10a..........(ii)
From (i) and (ii)
F 40 g
F 80 N
30.
V 20 V
V 5 0 V 20 V 2 V 5 0
2 2
30 15 15 10 5
4V 20 10 0 V V, I A 2I 5 A
4 2 2 2
Sec: Sr.S60, ELITE,TARGET & LIIT Page 6
SRI CHAITANYA IIT ACADEMY, INDIA 27-07-22_Sr.S60, ELITE,TARGET & LIIT _ Jee-Main_GTM-42_KEY &SOL’S
CHEMISTRY
31. 1 1 d A 1 d B
A 2B
2 1/ 2 dt 2 dt
2 d A 1 d B d A 1 d B
or
dt 2 dt dt 4 dt
32. The substances which have lower reduction potentials are strong reducing agents while
those which have higher reduction potentials are stronger oxidising agents.
EM0 n M for V,Fe and Hg are lower than that of NO3 , so NO3 will oxidize V,Fe and
Hg
33. A)d 6 High spin ; t24g eg2
CFSE 0.4 4 0.6 2 0 0.4 0
B ) d 5 Low spin ; t25g
CFSE 0.4 5 0.6 0 0 2.0 0
C ) d 4 Low spin ; t24g
CFSE 0.4 4 0.6 0 0 1.6 0
D ) d 7 High spin ; t 25g eg2
CFSE 0.4 5 0.6 2 0 0.8 0
Magnitude of CFSE is maximum for d 5 (low spin) complex
34.
35. The more nucleophile compound among the given will undergo more rapid electrophile
substitution reaction. NHCOCH 3 group is more electron releasing group than
CH CH 3 2 grope, exhibit more rapid electrophilic substituation reaction. Hence, the
correct order is
NHCOCH3
NO2
Br2 / Fe Mg / ether
H 2O
39. Conceptual
40.
2NaHCO3 Na2CO3 CO2 H 2O
(X)
(Y) white residue,soluble water
Na2CO3 2 HCl
2 NaCl CO2 H 2O
(Y)
(dil.)
41. The change given is occurring at the boiling point of the liquid, where, at given pressure
and temperature, the liquid-vapour system virtually remains at equilibrium and hence,
G 0 . Also due to absorption of heat as latent heat of vaporisation, or due to change
from liquid to gaseous sate where randomness has also increased, S 0 .
42. Physical adsorption results into multimolecular layers on adsorbent surface under high
pressure. While chemical adsorption results into unimolecular layer.
43. 2 HCl
CH 3 NH 2 COCl2 CH3 N C O
Methyl amine Phosgene Methyl isocyanate
Toluene
SbCl5
Ph Me
SbCl6
Ph Me
form
48. Conceptual
49. Conceptual
50. Among the following options, only K 2Cr2O7 exhibits triclinic crystal system in which
900 and a b c .
51. 1 xA xB moles of A 1
XA 0.5 1
PT PoA PoB Total moles 2
52. I, II and III only
Ma4b2 , M (aa)2 b2 , M (ab)2 - show GI
M ( aa)3 - does not show GI.
53. ClF3 , ICl3 , HNO3 , SO2
54. HNO3 Sn H 2 SnO3 4 NO2 H 2O
55. 1 18 18 dThe 41 50
dThe Z 1.219 1.22
(0.0821)500 41 d Exp 36 41
100
56. Moles of CH3 MgBr 5 103
V = 0.112 L
57. Acetal form is non reducing while hemiacetals are reducing in nature.
58. H E ng RT 2.1 2 0.002 300 3.3kcal
G H T S 3.3 300 (0.02) 2.7 kcal
59. d 8 is Ni 2 and d 7 is Ni 3
Sec: Sr.S60, ELITE,TARGET & LIIT Page 9
SRI CHAITANYA IIT ACADEMY, INDIA 27-07-22_Sr.S60, ELITE,TARGET & LIIT _ Jee-Main_GTM-42_KEY &SOL’S
Total charge of Nickel is (0.96 2 0.04 3) 2.04
So number of oxide ion is 1.02.
Therefore formula should be Ni1.00O1.02
60. 8.4
Normality = 1.50
5.6
MATHEMATICS
3
61. 16 3 3 1/2 x2 45
A total area 48 , A1 2 3 x dx
3 0
12 4
45
4 15
Ratio
45 49
48
4
62. dy
1 2 x dx Integrate both sides
y2
63.
1 1 1
I 2 2 dx
0
2 x 1 x 3
1 1 x
I tan 1 x tan 1 I
2 2 3 3 0 4 4 3
64. dx 1
I , Put t 1
8 1
4/7
x7
x 1 7
x
65. 7
2 a b ____(1)
2
1
2 a b ____(2)
2
Solve (1) and (2)
66. 50
200 2a 49d .......(1)
2
100
2900 2a 99d .......(2)
2
Solve (1) and (2)
67. 1 1 1 4
cos sin tan cos sin tan
3
4
cos sin 1 tan cos 1
5
3 7
cos sin 1
4 4
68. Conceptual
69. Conceptual
0,0
1,5 2,4
b0 5 4
1_____(1)
a 0 1 2
b 4 5 0 1_____(2)
a 2 1 0
Solve (1) and (2)
71.
a 0 1
16
2 3 1 0 a
5
6 7 1
72. 2
Equation of circle x 3 y 2 36
2
x 3 12 x 36 x 3, 9 x 3 y 6
73. Use R3 R2 and R2 R1
a2 b2 c2
2a 2 2b 2 2c 2
4a 4b 4c
a2 b2 c2 a2 b2 c2
4 3 1 1 1 4 2 a b c k 4 2
a b c 1 1 1
74. Tangent at point p 2,4 to the parabola y 2 8 x
y.4 4 x 2 y x 2
Solve y x 2 & y 2 8 x 5 and find mid point.
75. Conceptual
76. Conceptual
77. 2 2
x 1 y 2 1, b2 a 2 1 e 2 a 2e2 16 9 ae 7 distance 2 7
2 2
4 3
78. 1 1
lim 2 cos1 x 1 x 2 lim 1
1
1
x 1 1 x1
cos1 x 1 x 2 2
2 x 1
Sec: Sr.S60, ELITE,TARGET & LIIT Page 12
SRI CHAITANYA IIT ACADEMY, INDIA 27-07-22_Sr.S60, ELITE,TARGET & LIIT _ Jee-Main_GTM-42_KEY &SOL’S
79. 1 11
x a , x 7 4 , x 11 0 , r , r 12
2 2
1 0
80. 2
x x 1 2
x 1 y 3 y , x y 1 y 1 x y 1 0
x2 x 1
1 1
y 3 y ,3
3 3
81. Conceptual
82. Conceptual
2 2
83.
2 f ' x f ' x 2 f x f ' y ,
f ' x
f x c
2 2
5 2 2
Put x 0 c
2
f ' x f x 5
dy
dx
y 2 5 n y y 2 5 x c
Use f 0 2 y 2 5 y 5e x
19
Put x n2 y 4.75
4
84. c
3a b
3 abc 1/3 abc 1000 log abc 3
10
3
85. c c2 d1 d 2
Area of parallelogram 1
m1 m2
86. 8C2 6C2 28 15 420
87. a 2 a 1 2a 1
L ,
2 2
a 2 a 1 2a 1
Since L lines on line AB 3 6a
2 2
1
3a 2 7 a 2 0 a 2,
3
1
Also, PQ AB 3 2 1 a 2 a 2 0 a 2, 1
a a 1
Common value of a 2
Sec: Sr.S60, ELITE,TARGET & LIIT Page 13
SRI CHAITANYA IIT ACADEMY, INDIA 27-07-22_Sr.S60, ELITE,TARGET & LIIT _ Jee-Main_GTM-42_KEY &SOL’S
88. Conceptual
89. Let h x f x g x
h '' x f '' x g '' x 0
h '' x f ' x g ' x k (constant)
h ' 1 f ' 1 g ' 1 k 2 4 k k 2
h x f x g x kx c
h 2 f 2 g 2 2k c 3 9 2 2 c 6 4 c
c 2
h x 2 x 2
3 3
h 2 2 5
2 2
90. cos6 x tan 2 x cos6 x tan 2 x 1 0
cos 6 x 1 tan 2 x 1 tan 2 x
1 tan 2 x
cos 6 x cos 2 x
1 tan 2 x
cos 6 x cos 2 x 0
2sin 4 x sin 2 x 0
sin 4 x 0(or )sin 2 x 0
n n
x x (rejected )
4 2
Sol are 0, / 4,3 / 4, ,5 / 4,7 / 4,2