W Nudear Fission Reactions.
W Compound Nudear Reactions
A+8—>2e*— + c+0
Q Direct Reochens
A+B—sc+Dd
Nuclear Fission +/Fisstom Reaction
Nuclear fission is the process in which a heav
nudeur splits into eo fragments , cotth the releane of
considerable
energy and the emission of neutrons and
Jovags
\
ws osc at
on + | BUl—> ater Pt a
oO
hare , Pris the number of neutrons and is eqpol to 25
GQ-is the releaned energy ard is about 250 Mev
gn -is tha projectile called Thermal neutron and
its energy is about 0-025 ev
oe is heavy muilei set ao target
A.B - aw the fissim fragments
yin - is yeleaned neutrons
called foot neutn amd
its ener gj is aloout 4 Mev% Relation behooen Y and y
The average number of neutrons both prompt-
amd delayed Yeleaned per fission j¢ diven the
Symbol PAs the energy of incident aeons vraised ,
) increase slowly
We define a new parameter 1 which is equal to
Aha number of neutrons yelained in fission per neutron
alosorbed by a fissile nucleur Since radiatve
capture —completen wilh fission is always smaller
than D ee
On particular, is equal to Y multiplied by the
relative probability 6 that an absorption.
leads 4o fission
6,
qo
Sy
= yt
5+ 6e.
[ 1
&
a
wey oeW Energy Distribution of fission fragments:
qn a fission veacton the Sissioning. muclai
almost aluaay s split into +0 fragments of unequal
mars Sine momentum munt be conserved in fission,
Ake lighter group of fragments receives more. energy
han the havier group The distribution of fission.
teagments kinetic enevgion dharefore exhibits too peakr
an shown in fig-1 amd the higher energy peak,
coven ponding fo the lighter fission fragments
Lighter
a) voup
Fragments per unit energy
Fission yield -%
°
‘
oa
ue bo Ge
E in He
Jo % WW 130 15d
Man namber
From the fig 4Re lighter group ith A=95 han an enery
of a pproximatel4 lSOMev, Whikk heavier 4reup witte
A140 yeesiven alow 68 Nev °Man distribution of fission fragments:
fissios Yeil do
i
ee
Ham jumber A
Fission ‘is almost always amymmetric so that 4Ra mamer
OF the two fragments are substantially alifferent
Prpbability of having fission fragments 5f equal man
‘number is veg small
From figure fhe most probability of fhe fission.
fragments aster the fission reaction are Of man
mamber X and 2 And the. probability of producti
of qual fission fragments is the Iswont in the figure
ply Share oF energy betweon the fission products
Vissi fragments 146 Mev, 108 He 89%
~ Neutrons lo Mey 12 ° Se
vPrays 5 He F 25),
Neutrivo 5 Mev Qo.
wv Others 2Mev 3-10 1%
B vays Toted 260 ve 10's.
trompt P- Tays 3W jrormal Neutrons:
A velatively slo moving. neutron whose energy is
dighibuted by tba Maxwellian “function. i called tarda
meutrons
Tdeal thermal neutron energg¢ is 0-025 ev ab the
oom temperature (298
Most of Re neutrons yeleared in fission ur
ynore than 99% are emitted assentially, at the instant
of fissim Thea are called prompt neutron -
g Del ayed Neutronss
Some neutrons are emitted after foro second
of fissim event They came ouk a a result of decay
of some fission fragments “Hey are known an delayed
neutrons
4 Thermal neutrons (= 0-045" av’)
2 Epithermal neubons (&% 1 kev)
3 Foot reutens E!t2 Mev)MH Fission Yield / Fission product Yield
That is tha. percent of the fission. raj ments
produced with a given mam rumber Tt fs a funchn
of mam number
H_The valu of GY ond Me
The value» ase plotted in tuble for fission
induced ‘f 4hormal neutrons (0:08253 ev)
»
ws Ss 2 a
ou 534. 2499. 2-284
235,
a sen 2418 2-066
239
on Far. 297) 2108
24
gy Pt. Lovo 29IF DIYs
q Energy vepleared in Nudsar Fission
: Ponsrntaige
Fissim Fragments 166 Mev ey'/, 2
B- rays 8 Mev an
P- rays F Mew 354
Neutrinos 12 Mev Cy
Prompt P- vays % Mey ast/
Fission neubens > Mev sf
Others 3-10 Mev nen ST
260 Mev ‘607.
TotalMh Fssile_nucleté
Nudeii that lead to fission Folloring the absorption.
of a 2er0 kinetic energy neutron are called fissile nuclew-
A. fissimable nuclun thot can be jnduced to fission
with "loo eherqy thermal neutrons with a high probability
is veffered to ar fissile nuclei
Natuce 4 Pal ee oy a
Example: C2) ED), SPH . Pu — (sneha
Thermal noatrons (0-025 Wav) induce fission corth Re
fissile nuclei and 5% ts very large (low) The term
fissile vepresents a special cane of the more general
term ‘ fissimable E
WH Fertile Nuelei :
a whisk de
Fertile material ig a materiel n abile not itselE
Fissionadele by thermal neutrons bul can. be converted
ind a fissile “material by neutron absorption amd
subsequent? nuelei :
232 234 238.
Example wal) gel? oo
Onls fart quutrons with energy greeter than.
o-F Nev can induce. fission
GE is vert small Ce tb)
but fission crosssectionq Prompt neutron distributin/ Thermal neutron spectrum
Fission neutron energy distribution:
The prompt fission nectrons ase emitted corth
continuow’ energy speetrum shown in Figure. hich
{5 Known an neutron energy spectrum,
KE) oe
Hen” on
em
Oe
E (Nev) —>
The distribution or spectrum is dlefined, bp ite
“function X (EB) = 0-459 2'8E sinh
229°
where XE) is defined sothab HE)dE % the
fur namber/ im of
E ond €4d€ at is
is normalized, 40-thod,
a qOde= 4
@
neutrons with energy betwetn
in MeN The function TIE)
@
“Tha avarage energy E of Re neutron can be-fourd from,
E | E XWde = 1:98 Mev
The probable energy corres ponding neutron energy
Speehrurn. to the peak 15 0-73 MevNeuttons classification :
Average energy 0-025 ex
ae
salad
pop Themed mewbin/ wrpceochbien funchion
Enargq of neutron.
TRarmal neutrons Z o-t ev
Epithermal neutrons > 1 Kev
Dntermediate ener neutrons 2 10 Kev
Foot neutrons vy. 1 Nev
\o
yor?
o
cress
Sechien.
ove
Lev AMeN
energy —>MH Nuclear exoss section:
Nucleav erozs sectim j$ a quantly, of the
probability that an interaction will take “phace
betioeen an incident -quetews and a torgeh mentor
Geis an area such that the rumber of interachons
which ocer in a sample exprsed to a beam of
qeatrons 15 equol fo Re product of tre number of-
nuclei in He sample and +s number uf neutrons
inthe beam -thak would pam through +h area
their velocitan coere perpendiculan to it 9+ is
denoted by &
The unit of nuclear cross-section. is barns
4 barn = [0-24 emt
FE Neutron Crass.schion-
All neutron e7635 sectimm ane function
OF he energt of tha incident nautrons and the
notune of the target nuclaur
® Corn pownd Nucleon:
(hen The incident neutron is absorbed
by th target nuckunr dusying interachom &
les edHh Compound Niucleun Fremabion:
Most: neutron interachon procerd in two
Steps The incident neutron or projectile on striki
dhe. target muclkurn first coalesces with it to form a
compound — nucleur aes the ararget nucleus is AZ te
compound nucleuo ig AY 2 Th compound’ nueleur
fren decay inh a number of ways Fay example x
JoMev neifron strike a S6Fe mugleur, +e compound
muckur is 576 formed and this nucleus mad.
decog ba emitting an elarhe or inelaotc neutron >
a Pray or two Neutron Tn symbols There processes
ore
See +n (clastic scattering’)
7 eer vw Cinelashe seattering
Neue +P Coodiatva seatering)
Fe ton (a2) reaction.
vy 56,
ol t Fe [ee]® Fission exuss seetion fn vm on,
Q
al
i
[0. be)
oh os
0 Say
ao"
Neutron ener
- _ tho
eva es :MH Neutron Intenactio:
Onerof tke, striking. feakiner of. intenachims
fat proceed by woo F compound nucleur brmedion is
hot thar cross-sections exhibits maxima ot certain
sudh maxima ane callea
incfdent — neutron | enengien
qesonanus
The target nuchei have certain excited stokes corresponding
to diffensnt configurations of nucleons in 1Re nuclei TE
qurns out tint tee incident” mautron amd target
nucleus ane mone likely to combine -#F and fies form
Campound Nucleus g4 the energy of 462. neutron is such
stab Re compownd nucleus 15 Hprodueed in one of
Hhase excited staben These resonance shar upIRem in
toa cross-sectim §— bocaune it is rneacessanh to form +x
Compound nucleus before the inferaction ean proceed
Resonances
fen
neutron
(6)
Fig: The elastic seottening and Total cross section Jor Ie
MH Thelastle Scattering:
This proctss does mot oceton un Lem the
cnelitrm har sufficdent enangy to place: Be tanget
qucew tn te fitse ot Stele As a result
cross geetlm is geo up te some +threshad enengy
brawenally t64 enengy at cobicks -the first exciteol
stake 15 found “deerates wittr imeren sing mam numberAZ a consequence, 5; -i8 monaeno over a langer
enerig ‘region for Rei pewier nuclei than for the
lighten nucle. The thneshed for inelost'c seattens
is 4° Mevifor [2¢ CDhile it ve onla. 44 Kev =
23% AL enengion well above thushold -5 is rough
egal to Se’
MB Rodiative Gplune:
we can divide Re. radiative capture erocs
Section into three enenga region Th fe loo region
of mst nuclei, Sy vanio an t/pe joherd E fs
dhe neutrm enengy> “Thin muons Bat 5 varia os 1,
The law enangy Region fs Byerafore called I%/y Megion
Vis die neutron velocity, Tna log-log scale +e
loos el veross section appears oo a straight line
with a slope of ->+
sab
arnt :
Newton, eee evs,
Fig, Roddetive capfune cress section of
AYAbove the % regi ffene fs a region of mesonantis
fat occurs ot fin same enengivn an tie resomancer in
&: Neat 00 isolated resonance at the enangg Ey
Sts. qiven. by Re Breity-Wignen ong-Level formula
ie a He
2] an Ea ye
Ohene,
de is the wavelengths of neutrons woth eneniag
Er,
gis & constant Known ao statistical factor. Mn
ama 14 ane constant -called respectively tha neutron width
amd Madiadln coidth and FP a=Pnapg it the told
width PF fs the width of Hu mesonanu af one-half its
hei
Above te resonance regio reahich ends ab about 1 kev
in +Pe heavy nuclei and at ineruasingry ight enangios
in lighten nuclei Sy drope rapidly and gmat ‘fe vany
Smoll vahrer_ Chaw ged. particle, Reactions:
The ‘Co Pyne) and offen sharged
particle reactions han got certain tnesholds. Reactions
ate endothermic Thein erots section’ alto 'rtend to be
small even above threshold especially for +he heavier
nuclei»
Howaven Rue ane some important -exotfenmic reachions
in hah nuclei One fh tRese ig log (re) F;
cohose cyoss section ts shown im the Follecing figure
A
L 0, .
(sn00b 07+ '28 —> gli the
cre
o
t
01 heey
Nesetron, cnanget ©)
64: Te ers sedim fr 6m) FL; reeachim
Fram oi ev ty (96 ay .
Te will be observed that & is veng lange at loo
anergy amd ois + oven saverrol orden of-
mregnitucle & energyg Tofet crass cect:
ieee
ne . ve
& = ine ve
‘
WA Fission Gross setin:
— eee de
The cross sechong -of fissita. for neutron -induced
fessPn reagemble nadiative capture cross section in tReirt
depencema on Retr fhe. energ¢ of incident neutron
Ln Figure he fission cross Sec on > fori 225 ony fRame are
frrer distinct reagions AL [eo enertgy OF is & on nearly so;
ARis is Soll owed by region oP resonance finaly above the
rasonanve rugion 6p is smevth and relling
ioamb Ad very tne Brsnid (IPanmed es)
ins ml rr
Go
s000! 0.001 001 out :
Neutwn enengy (av) —>
Fig: Fission crass section fe 25u
Flesion cross section at high anenay
Tntermadi att onengit’ eros slim (nesim ePrewmnc)
Siete ae ft 7 above Ha nesonene aay
190)
use t
AME Ceaction -for “ferlile Nioberiol
13% 299 & 239 BO 239
oat (-») oe o3\p —— oy A
232 239 pr 232 as
) e 233
ooh (»») aah Ps Bu
BB adawecd Unaninm contains 99-37 2364 and
ly, QF 1 235,
ong 077 » 235
ftoim. oceun lange fe ‘285 u
ME Fision cross section for 2984j° (Fant neutrons):
SS
4,
hob
Asin
:
Bim P|
oT May
Neutron erenyy on Muy 3
Fart Newton:
A meutron produced ba nucleon fisiat
het hos fost Little enemy, tg collision 4 han fp
Re tn vexetoy of 0-0 MevHB Caleatole the amount of eres melee in fission. cing
alee te eeeee
Hise Banking “energy curve,
: t
I
is?
A
5 6
= °
38
‘6 De Ie Ww EBD
Amic mam number A —
i
fy: Binding enangy cunve
®
Firm figure we depict deati dhe bin euungt per
pe ee
Apon thet for weactmnt
225
an
‘3 oO 93
L aby 5 T 26!" ooo
In + PFU cl ce +, fe 430
° a
From binding ener tunve we get thd
Nuglide omens pn rnuclson Ya Man num ber (a)
m3 93
4 RL gt Mev
140
© :
1 le G4 Mev
25 Fe Mev 235
orTe :
ye ounyt rueltored coil! be equivalent” eee
Herenee in tea binding enengy between ft
and the products " tteny Seton Be rence
ABE = :
a BE products — BE pea,
= (GF per BE «) pea
s {(eax8-7) + (tuo x@-4) — (298 x70 Mey
= 199:1 Mw
W loko ther the lim
loho teen the Un shone of the
in fissim > Toked- den _thonc_ of fhe eng ele
fhe fission fiagments -feke fee Gon shae of
the enenae rulsonsd in ficsion — becoune They have.
Mea « mans 16g Me if Shared 4 them
Hh Fission dain reaction:
neuctron
In fisstm reaction A ™
mie nucleus bith causes fis
ofr, “neutrons
is called fiesion
colliding wittr an ator S\on
and in this reaction eject ona on ™
whida induce Ofhin smuclet to split
cain reactions Here ttre product of ore step isa
ruattent of tn tfc’ follwing step. 30 tt happen rapidly.WB) Hu bidicaten fact Ki
david b The ratio of Hie neutrons numbey: in one
ein ‘bow heutevitd ntimber “tn ‘precheding genenation is
called ‘Mulltiplicalin factor: K'- ;
no ‘of “paws in one geneodion
no neutrons. in mraetaling gertnadion
K is also called oun factor.
ia Tnfinite. mattipticati fretor
Th patio of Hie number vf fot reutions”
in sucessive genenodions in an infihite sgstem for % given
htactor system is called the fafinite inultipliceh’an sretor
Mh ig Aenoted oka ie
kaa nepf
Goins, n= tle mumbey “of fiction neutrons realeased pert
neutron absorbed in the fuel. mucleur.
_ [3
= dhe. foot fission retac
Po- the resonanee escape prepbilty, :
fiz the thenmal atitizatin factor;MH Effective mmultiplicotin factor:
: : fr an, assembly of finite
sdienansins eran —— ane Kett
eoil{ be Less than as “facton &?2 Ttghide 5s
Aster mined ty the ae leakage Som the system
Kigh = Ka i oO
loko Lis the neutron’ noi - Lea kaye, probability
tomvenienty eqandt Tok. leapage affect into, treo components » a fagh
vheutrons , leakage. factor» ‘4 samd a Renmal nectrons
leakage, facto. Ayg
Le 4 x te —0p
u
Kap = kale Lag
ce.
By _Medenaton:_
We miterial whit stow down on
“Pranmalized 4a Fotst -remtron, i Knowon an modenato
of modanating material, -Evample-
ie
leght water » H20
heavy water - Dro
Giraphit e- eeWE Critic , Supercritical Q Suberitical neactér: «
_Crittad » Supercritical & Suberiticad meadlde:
Skyy <1 sytem Ish callbd evilizad fisactoh. “the rake
meutron oe is ea x pasion fie pee consumption +
Y ky>2, the Sct continusn te prodiset’ more
feutrons Rane ib - consumer . anid 1S Ren said to be
supereritical rivactor- Cenecrgy ettzaned ing chon poagtion Imenases wrth,
Aime)
$$ KypZ1 fewer ‘imautrons ane produced Han ane
consumed such an’ assembly S said fo be suberitical reactr .
Gitnans with, tine)
B) Derive the a Aor. bs
Assume #08 Start with mn, neutrons
some of- them will cause fissim wife 8K with a
consent indvense in de number of fact neytrons- Letus
Jake account “of iS’ small Increase. shy. means, of a cetor &
called the fast fission factor “The number of frot neutrons
ts mmo increased to” mee Tha enangy of 40x fast neutron
is aa reduced stead tg! collisions and Aen enter tote
the fea a toy —@
AL +Re Integrals lane covvied gut over. the. same
Velume and $0 thei integyale must abo be equal »
6
This is Known, on the. equadion of continuity}
neutron “dinsity is indipendidt of time
ate
eqn tyducn to
div? a a
Bee go gp as
hich “is “Kaown as tee steady Stoke. sqpation
OF continuity
eB microscopic -eross sectiin o7
macro seop!t cross section
= Bacrescopk absoephios cop tedtn
“b= neutron foxME Tee Ddiffunion Equstion: |
We now substide the ficke law in the
continuity eyodion Ficks ‘lassis T= — pv —O
and continuity equation is, 20. 6-3 g-av 7 —O
on DV beng a 24 _@®
there, we have used = av
Ta 4Re stationany a ima indepén clont cane a¢ =0
And the, Diffusion agn faker Re frm.
Dvwo- =4 +820
This ts ta steady state diffusion equadton 038 com device
the tohole 2qn by dD,
Yb- Td - £'—O
tokens we have. defined v___b
: VS — — © 4% diffusion Leng tb
“ts called’ He -Aiffucien’ artua. *
RB) Soliction to biffusten om _( point source):
Consider
a point sounte emitting S neutrons . per
Second isotropically in an infinite medium Tf fae
sounte point is taken fe tbe. 'at the, copter raf a
v spherical coordinate systems the fiux deponde only mr:
|“The Diffuoten gh take phe form, |) -
1
I aq 4 Se
Rg dee sw
#0
The appropriodz source condition js obtained bg drawing
4 small Sphere around: he source evnd computing.
Afe met number of, mautrons that pass through its
sirface. per seeond,- OF tie vadiue of the. sphere Is
Y this number fs just Ane te) s0-frot im the
limit o vr gon te zero, the “follotstng “anditten
is tained:
Aim” ws tr) = 7 a a
Yoo :
To solve. eqn 0 it te conenlent +o imfroduee a new
unetion = vd
Using this condition. the atflusion eqn becomun
Te general Solution ef this eqn is ae hal
We dh 4 @ arte -—@©
wi "Tova 4 dig "thane fare. .
wk oo oe a w eatlt —@
MeWhine A amd € are? unknovon “vonstants~ p muat be.
Funiain’ finite, apr becomen inflnite SotRat ¢. must
be equ +0 "geno The constant A is fourtd from Re
Source. condélion
_. -b dd.
See 4): Yh
Bs
amd 40 _s
& 4rd
a cen v/L
fhe flax fs therefore given by = ————— ibe J
8
JEL the Group Diflasim Method
' Sine, meutons ina nuelean reactor
har a distribution of enangy it muct be “taken inte account
im the diffusion, equation we can davide the energy region
into some Jreups
F rod Mev
Neutron
‘eld
semanyy of neutrom—
Figea ane
ne v
Neutrons cou emitted in fie wilt, a eendinu ous -eneng
Spectram XE) aw sharon is Figure Re dtetyibudin’
rotibrowdens oa Re, meutrong ane, seattyned in te
medium amd atftuse. abot the. system losing -onerga
in zlastic..and iqelastic collisions , Tn thermal ,
rusetors mostof He fist neutrons sucdeed in
Slowing agwn all fhe tong to thenmal anergier before
pag ane absorbed in ARs Jucl In fast reactors » they
s[oro Aown?- aye bess ‘before mduein. fission
required +o maintain -the chain reach
Garon t
py ei
i
Cee eee
P| oy tt
3 rota ty 2
: Et] 2 baveop N=
iS rT nop N
Fog 2: Erensy qreup fire © greep=diffuales tnlelodion
Th the qroup Aiffuolon methid » He entire energy
t
vegion ts divided into N groups aa. indiaka in
Figure 2 .
All eG the neutrons goithin each enenyy interval
ano lumped togethers amd ffuin diffusion 7 Seatlening
os a ns
‘ ‘abs oxphion ant deseribed in terms 6f suitable
average diffusion coxfficients amd cross Sechions.Considint for tistanes fhe reutrm in the ath imtenval
ave called “git grop tustzond Mosh “energetic. group is for
Qe amd Least energetic group ts for gen
Ge define tha flux of neutrms in tke git yroup ar
tee § ote) ae —~)
kine 40) is ‘te energy- dependent “flax:+
Neutrons disa ppean from tha’. qth qreuy bate eh absorption
yeactim amd an a presult os sealea colltstms {Rob
Case, Hem to .elonye * eninge de ob
they mo lengen
buing “he th group but ee another group ~The
fofal Absorption vate per em> in the gh group in given by
Absorption rate “f =) $e) de
“Thus we have agen summed up all tte events that
oeeun in the gtk group by defining tRe macroscopic
yer absorption ¢ 7055 Section: aye
coe fe Ee
Ag * 3p [=O ¢ ce) de" 1)
‘
» ge
The obsorphion yt. ein bes coriithen an. product of
the group cross sectim and the group flares
c+ Abeonphin ity 9tRe volte af whitch *meutrons Inde. gh, “group aw.
' Siédttensd, “in tReoth grep (5, .orithen ae.
“fronton vate Satoh a S ;
“ ; S44 oo)
an is: Known a's group transfer cross sectton
The total rote. at sohidr ,pautrns ae seattened
aut of Re a gtOUp per em?/ see is Bani *
A
‘
fe 17 SS dy 0
i saa &
. — it!
ge
969
fea entem’ +the = gee either from
sources that emit neutrons directlg “Frrto He
qreup Breas A vesult of seatlering from highen
groups - “The number’ per m/sec entering Z from
4 thes c hth ‘are 3
b
Tran me fm hte =And the total numben scattered into fi fs vobtotned
bf summing oven oll” groups thot com seatten inte qt’
grup ‘that all highen enenig. “froupsi»
Tot freon nate ole g = EE ae, gy
hel EC
At .
1
Combining tha term we can orite. '
Dy %bq — =
we anew BEA yo g=8
Here bg ig tke grup dafhasion csefficients whidr ¢s given oy.
ba = 4 d©) pee) 4e 1
da [re
ies
205 f Fey tO ®
tohere Zy ts the transport jeross section: ant 4 ts the
tet nemben of neukins emithed per em?/see trto He
gp:
shape of Renctor in Buryiadesh ie Mexegenal ©Wy Recktor Fp b
'
Classi fiaadion, of. reactors, according
to Rein: uses:
© Powers Reactor:
" Producti of cleetricity Iso MW «
Bamgladorh is planing to bud one with [600 Ney
powent from | Russia.
@D Researdr Regetor:,
Pro dusch'on of neutrons 20 Mw
Bangladn h haa got one with SMW power
weajhtSitm OSA
ep wh
@ Breeden: Rucetors
Proditctton OF Reactor fuel amd
ic efectricitts ~ 400'MW
BH Atomle Bomb (tun trin): .
ra 7
ee
Pakistan» North Korea, Argentina, Lsrach+lean reactor’
Wy Component of a nucteh
wa ved
ic
ton
Containment
Figr Schematic disgram ofo nucleast reactor»
Qeflectors aw made oft grephite Lithium or bergiicamn fo
prevenk the leakage of! neutrons:
Controt oda ant made Of highly “reutren absmbing material
ace boron Cadmium -omd gadolincam (halfnivni). Ctesirt
neutron alosorplion eres sectim 15 ‘ver high)HD Light water Penctors (Lwe);
IWR is moderated ; peeflected
and cooled by Ordimang wot
There ors basically to tymer of Lie ners in une -
© Pressurized woken Reactors (ewe)
ay Boiling. watert Reactor (awe)
TE] Pruseurtzccl water Reactors.
= tonholad drive assembiy
Pressure vessel
|| Control reed
© tontaof ed shroud tube,
inlet nozale Zee | ovtiet noodle %25%
290’c
7 HT i Fit assembly align mant- plete
i i Fut -assémbi:
iI A Core support barrel
Cort shroud
~ Core seppert assembly
Tnstrumertotin nopztes.
view
Fig: Cros section of a we,
Fudli U0, eramfe madenial
Fuels enriched ty 25, upto $7.
on
Presume: 16M pgStainlen steel container or cladding
yodiur [-2em
ee Thickneva 200m
Fig Single fusl etement of a PWR.
Sina water dos not boil ingide te reactor, tHe steam
for He turbine murt be produced extennal to the reactor «
This is dome bg/ in Steam qoenabr s. tohidh are heat
exchangers coith pressurized water on the hot sicle. A
typical steam gqensitactor is shown in figure
— Steam outlet te fun bite qeneteater
moisture sepatiater
Swirl vant. moisture sepayator
Uppen stull ~ steam drum
The bundle
Hower shall- 2vapoyater sech' an
Ferd water inleb
Primo
Paton tet
Fig: skeom genenator ot a pwR.
Primany cooteant ok LepHigh pressure , heated tooleent water from tke
factor -enters at the bottom and passes upward
amd -then deonward through several “thousand tubes
each in the shape of an inverteol u [Ke outert
sunfoces of -tRere tubes ‘ane Im veontact with Iswer
pressure and ‘cooler feed ,cwoctert returning from
the het—watert—trsie -funbind condenser Heat
transfered from -tRe. ot unten Insiclethe U- tubes
causes tke feed unten fo boil and produce steam.
The lowen seetion of a steam generetor where the
boiling oceuns §—§ called +Ra evaporation section.
fhe wet steam passes upward amd ts drred in
several moisture. separater Lange PWR system
Lui lize on mony an Sourr Steam gerenaters which
Produced steam at about 296 293°C cand 5M Pa
“this gives an overall efficiency fh 327. fr a
PWR plant:
“The fuel sf/ im a POFRA. és slightly enyiched
(2°57-) Urantum oliexida V0. whidh is a
Black cevamie -matenial tote « amulking point
oF 2800 "C :
The cladding of a fuel element is cithea
Stainless steal of 2in caloy tuber abot 4m longThe completed — prerssurized fuel node vane annanged tm
a square lathice structure called a fuel assembly ons
fhoon in -figue “The fuel assembly aru {Ren arranged
in nean- tgylindricsl array fo form tRe core. the fuel
poada in the fuel assembly ane Kept a port by voniaua
Spaces - this is important — sine roda, Hat Come Into
contac mad. overheat and fulease fi'sston products.
eq: Fiat ansermblt of « PWR:
© Contra contrel od
(Control 4 chamical “shimFET The Boiling Waten Reccter (owe)
Cone sh =f
one shroud ante bte ——]— steam sepatector
Redomten ineh \
n Aen |___— Fiat assembiy
Manifoll own éonnen
Jet pume
=
Recirculation
VT
ih
Plenum
Fig: Cross seettinn view of a BWR
Obview advantage of BWR (s that the steam is
formed in the react and goer dinactly to turbine.
Storm gensnator fn separate lwp i's not necessand.
For this reactor {fe BWR fs said te operate in
Oo dAimeet cycle:
the pressure in a BWR is “FM pa about ont half
the pressure in a PWR Asa mesult the
tkicknen vf pressure vessel Ps aho half -that
ina PWR $0 cost of pressure vessel Is much
less-