0% found this document useful (0 votes)
64 views28 pages

1001!1!2 COLUMN Combined Footing

The document summarizes the design of an isolated footing for a residential building. Key details include: - The footing is designed to support a 1000 kN working load. - Dimensions of the footing are 3000 mm long, 2500 mm wide, and 750 mm deep to provide an area of 7.5 square meters. - Reinforcement is calculated to resist bending moments of 360 kN-m and 386.47 kN-m in the x and y directions. - Shear capacity is checked at a critical section and found to be adequate to resist the design shear load.

Uploaded by

Parth Gandha
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
64 views28 pages

1001!1!2 COLUMN Combined Footing

The document summarizes the design of an isolated footing for a residential building. Key details include: - The footing is designed to support a 1000 kN working load. - Dimensions of the footing are 3000 mm long, 2500 mm wide, and 750 mm deep to provide an area of 7.5 square meters. - Reinforcement is calculated to resist bending moments of 360 kN-m and 386.47 kN-m in the x and y directions. - Shear capacity is checked at a critical section and found to be adequate to resist the design shear load.

Uploaded by

Parth Gandha
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLS, PDF, TXT or read online on Scribd
You are on page 1/ 28

Project Name : Design of Isolated Footing F 1001 - 1 for Date : 9/9/2009

Residential Building

DESIGN OF ISOLATED FOOTING :

Working Load P = 1000.0 kN P = 1000.0 kN


x - e = 1150 dx = 695
D= b=

d1 = 532
e = 50 600 dx-e = 645 dx/2= 230

d2 = 358
347.5

Df - Df_min
dx = 695

600

dy = 685
B1 = 915
Df = 750

L2 = 1970 B2 = 1620

=
d2 = 358
Df_min
= 150
Bf = 2500
Lf = 3000

B1 = b+dy = 915
y = 1135

x = 1200
D = 600
L1 = D + dy = 1285
Bf = 2500

Lf = 3000
b+2e = 330

b= 230

D = 600
D+2e = 700
dx = 695
B = 230

1. Area Calculation :

Working Load on the Column : P= 1000 kN


Factored Load = P x 1.5 = Pu = 1500 kN
Safe Bearing Capacity σbs = 175 kN/m²

1.1 · ( Pu / 1.5 )
Area of Footing required Af = = 6.2857 m²
σbs

Width of Column b= 230 mm


Depth of Column D= 600 mm 1/2
2
(D-b) (D-b)
Required length of Footing Lf = ± + Af = 2699 mm
2 2

Width of Footing Bf = Af / Lf = 2329 mm

Provided Size of Footing Lf = 3000 mm


Bf = 2500 mm ( Area Provided = 7.500 m² )

Grade of Concrete Fck = 20 N/mm²


Grade of Steel Fy = 415 N/mm²
2 . Depth Calculation

Upward Soil Reaction wu = Pu / ( Lf · Bf ) = 200 kN/m²

Projextion of Footing x = ( Lf - D ) / 2 = 1200 mm


y = ( Bf - b ) / 2 = 1135 mm

Mux = wu · Bf · x² / 2 = 360.00 kN-m


Muy = wu · Lf · y² / 2 = 386.47 kN-m

e is the projection at the top of footing in order to facilitate form work = 50 mm

Width at the top of Footing b' = b + 2e = 330 mm


Depth at the Top of Footing D' = D + 2e = 700 mm

Ru_max = 0.138 x Fck = 2.76 N / mm²

Dia of Bar proposed Φ = 10 mm


Effective Cover in X- Dir. d'x = 50 + Φ/2 = 55 mm
Effective Cover in Y- Dir. d'y = 50+ Φ/2 +Φ = 65 mm

Required total depth of Footing

Mux 1/2
Dfx = + d'x = 684 mm
Ru_max · b'

Muy 1/2
Dfy = + d'y = 512 mm
Ru_max · D'

Depth of Footing provided ( ≥ 700 mm ) Df = 750 mm

Effective Depth provided dx =Df - 50 - Φ/2 = 695 mm


dy =Df - 50 - Φ/2 - Φ = 685 mm

3 . Check for Two Way Shear

Critical section at distance dy / 2 from the face of the column

( a ) Calculation of Design Shear Vud

Size of Critical Section L1 = D + dy = 1285 mm


B1 = B + dy = 915 mm

Assuming Df_min = 150 mm


dy
- 50
Effective depth at distance dy / 2 = d1 = dy - 2 · ( Df - Df_min )
x - 50

d1 = 532.39 mm

Design Shear = Vud = wu · ( Lf · Bf - L1 · B1 ) = ### kN


( b) Calculation of Shear Resistance Vuc

Shear Stress τuc = 0.25 · Fck1/2 = 1.118 N / mm²

Ks = 0.5 + ( b / D ) = 0.88 ≤ 1 ==> Ks = 0.883

Area Resisting Shaear = 2 · ( L1 + B1 ) · d1 = 2342521.7 mm²

Shear Resistance = Vuc = Ks · τuc · Area Resisting Shear = 2313.5 kN

Here , Vuc ≥ Vud SECTION IS SAFE IN TWO WAY SHEAR

4 . Reinforcement Calculation

1/2
0.5 x Fck 4.6 · Mux
Ast_ x =
Fy · 1 - 1 -
Fck · b' · dx² · b' x dx

1/2
= 0.024 · 1 - 1 - 0.51945363265 · 229350

= 1695 mm² ( Pt_x = 0.7392 )

Required 10 # bars at 116 mm c/c

Provide 10 # bars at 200 mm c/c ( Nos. = 14 ) ( Ast = 1100 )

1/2
0.5 · Fck 4.6 · Muy
Ast_ y =
Fy · 1 - 1 -
Fck · D' · dy² · D' · dy

1/2
= 0.024 · 1 - 1 - 0.27062108492 · 479500

= 1686 mm² ( Pt_y = 0.3517 )

Required 10 # bars at 140 mm c/c

Provide 10 # bars at 200 mm c/c ( Nos. = 16 ) ( Ast = 1257 )

5 . Check for Development Length

0.87 · Fy · Φ Value of τbd from IS 456 for Fck = 20 = 1.2


Ld =
4 · τbd

= 752 mm

≤ x = 1200
≤ y = 1135
6 . Check for One Way Shear

Note : If the Effective Depth dx ≥ Projection of footing x, the check is not necessary.

Critical Section for one way shear occurs at distance dx ( or dy ) from face of column

( a) For Bending about x - x axis

Width at top of Footing at critical Section B2 = b + 2 dx = 1620 mm

dx - 50
Effective Depth at critical Section d2 = dx - ( Df - Df_min )
x - 50

= 358 mm

( Bf - B2 )
Area resisting Shear = Bf · d2 - · ( d2 - ( Df_min - d'x ) )
2

= 854395.7 mm²

Percentage of Steel Provided Pt_x = 0.20 ( Ast_x / Area resisting Shear )

Permissible Shear Stress τc = 0.344 N/mm²

Shear Resistance = Vuc = τc · Area resisting Shear = 293.49 kN

Enhenced Shear Resistance ( IS 456 , cl: 40.5.1 ) = 2 · Vuc = 586.97 kN

Design Shear = Vud = wu · Bf · ( x - dx ) = 252.5 kN

Here, Vuc ≥ Vud , SECTION IS SAFE IN ONE WAY SHEAR

( b) For Bending about y - y axis

Width at top of Footing at critical Section L2 = D + 2 dy = 1970 mm

dy - 50
Effective Depth at critical Section d2 = dy - ( Df - Df_min )
y - 50

= 334 mm

( Lf - L2 )
Area resisting Shear = Lf · d2 - · ( d2 - ( Df_min - d'y ) )
2

= 873387.1 mm²

Percentage of Steel Provided Pt_y = 0.14 ( Ast_y / Area resisting Shear )

Permissible Shear Stress τc = 0.326 N/mm²

Shear Resistance = Vuc = τc · Area resisting Shear = 284.76 kN

Enhenced Shear Resistance ( IS 456 , cl: 40.5.1 ) = 2 · Vuc = 569.52 kN

Design Shear = Vud = wu · Lf · ( y - dy ) = 270 kN

Here, Vuc ≥ Vud , SECTION IS SAFE IN ONE WAY SHEAR


Project Name : Design of Combined Footing F 1001 - 1 for Date : 10/17/2009 -1 1 1
Residential Building -1 -1 1

DESIGN of Combined FOOTING : ( Safe Bearing Capacity = 150 kN / m² ) Fck = 25 Mpa

X Y Dead Load Live Load EQx Eqz


Column
ID.
Co.Ord. Co.Ord Py Mx Mz Py Mx Mz Py Mx Mz Py Mx Mz
.
C65 0 0 525.77 -12.14 -0.24 106.9818 1.15 -1.36 133.37 -5.79 90.86 -297.5 -298 2.06

TOTAL 525.77 -12.14 -0.24 106.9818 1.15 -1.36 133.37 -5.79 90.86 -297.5 -298 2.06

Area of Footing Required for DL+LL= 4.6402 m² 2000 0 2000

150
CG of ( DL + LL ) = ( ### , -2.529 ) 141 934 B
Live Load Reduction for EQ = 1

1250
1075

x1 x2
Pressure Calculation 2

y2
2500
758

0
Load Case A B C D

y1
808 267

Dead 56.0 59.6 59.7 56.1 1

1250
1075

Live 10.5 10.2 10.9 11.2


Live for EQ 10.5 10.2 10.9 11.2 450 C 4000
Eqx 34.3 36.0 -7.6 -9.3 450
Eqz -74.0 15.4 14.5 -74.9 1625 -750 1625
484 47
1.5(DL+LL) 66.50 69.8 70.57 67.3
450

1.5(DL+Eqx) 90.2 95.6 52.1 46.7 150 Cover = 20 mm


1.5(DL-Eqx) 21.7 23.6 67.3 65.4 .
1.5(DL+Eqz) -18.0 75.0 74.2 -18.9 Col. Size X Size Z Area of Footing Provided A = 10 m²
GEOMETRICAL
PROPERTIES

1.5(DL-Eqz) 129.9 44.2 45.3 131.0 Id mm mm


Moment of Inertia @ CG Ixx = 13.333 m4
1.2(DL+LL+Eqx) 100.8 105.8 63.0 57.9 C65 750 350 Moment of Inertia @ CG Izz = 5.2083 m4
1.2(DL+LL-Eqx) 32.2 33.8 78.2 76.6 Section Modulus @ CG Zxx = 6.6667 m3
1.2(DL+LL+Eqz) -7.5 85.2 85.0 -7.7 Section Modulus @ CG Zzz = 4.1667 m3
1.2(DL+LL-Eqz) 140.5 54.4 56.1 142.2
0.9DL+1.5Eqx 101.8 107.7 42.3 36.5 Moment of inertia Section Modulus
Column
0.9DL-1.5Eqx -1.1 -0.4 65.1 64.5 Ixx Izz ZL ZR ZT ZB
0.9DL+1.5Eqz -60.6 76.8 75.4 -62.0 C65 13.333 5.2083 6.6667 6.6667 4.1667 4.166667
0.9DL-1.5Eqz 161.3 30.5 32.1 162.9 0 13.333 5.2083 6.6667 6.6667 4.1667 4.166667
Min. -60.57 -0.38 32.06 -61.95 0 13.333 5.2083 6.6667 6.6667 4.1667 4.166667
Max. 161.30 107.66 85.02 162.88 0 13.333 5.2083 6.6667 6.6667 4.1667 4.166667
0 13.333 5.2083 6.6667 6.6667 4.1667 4.166667

Depth Calc. at Critical Sec. at d/2 at d


Two Way Shear Calculation Critical Depth at TOP = 427 363
Depth of Footing = 450 mm Critical Depth at BOT = 450 396
Effective Depth in X-Dir = 424 mm Critical Depth at LEFT = 450 450
Effective Depth in Y-Dir = 412 mm Critical Depth at RIGHT = 419 378
Critical Length = 1174 mm
Critical Width = 774 mm
Design Shear = 1481 kN
Shear Stress ( τc ) = 1.25 N/mm²
Area Resisting Shear = 1.7021 m²
Co-efficient Ks = 0.9 ---
Shear Resistance = 1915 kN
1
-1

D
Project Name : Design of Combined Footing F 1001 - 1 for Date : -1 1 1 1
Residential Building -1 -1 1 -1

DESIGN of Combined FOOTING : ( Safe Bearing Capacity = 150 kN / m² ) Fck = 25 Mpa

X Y Dead Load Live Load EQx Eqz


Column
ID.
Co.Ord. Co.Ord Py Mx Mz Py Mx Mz Py Mx Mz Py Mx Mz
.
C1 0 0 298.08 0.6 -41.04 4.68 -0.06 -0.78 184.85 36.17 4.8 7.85 -0.37 -71.678
C4 2 0 432.33 4.68 -139 19.81 -0.55 -15.85 -76.97 239.35 -2.08 11.8 -1.89 -153.3

TOTAL 730.41 5.28 -180 24.49 -0.61 -16.63 107.88 275.52 2.72 19.65 -2.26 -224.978

Area of Footing Required for DL+LL= 5.5359 m² 1125 2000 1125

150
CG of ( DL + LL ) = ( 1204 , -260.5 ) B A

950
Live Load Reduction for EQ = 0.5

1375
1000
50

x1 x2
Pressure Calculation 2

y2
2750
850

0
Load Case A B C D

y1
Dead 52.0 18.3 85.5 119.2 1

1375
50
1000

950

Live 0.7 -2.8 3.4 7.0


Live for EQ 0.4 -1.4 1.7 3.5 150 C 4250 D
Eqx 11.4 8.1 7.1 10.4 450
Eqz -40.1 -40.5 43.5 43.9 750 1250 750
50 50
1.5(DL+LL) 52.73 15.5 88.9 126.2
450

1.5(DL+Eqx) 63.4 26.4 92.6 129.6 150 Cover = 20 mm


1.5(DL-Eqx) 40.6 10.2 78.4 108.8 .
1.5(DL+Eqz) 11.9 -22.2 129.0 163.1 Col. Size X Size Z Area of Footing Provided A = 11.688 m²
GEOMETRICAL
PROPERTIES

1.5(DL-Eqz) 92.1 58.8 42.0 75.3 Id mm mm


Moment of Inertia @ CG Ixx = 17.592 m4
1.2(DL+LL+Eqx) 63.8 25.0 94.3 133.1 C1 750 350 Moment of Inertia @ CG Izz = 7.3656 m4
1.2(DL+LL-Eqx) 41.0 8.8 80.2 112.3 C4 750 350 Section Modulus @ CG Zxx = 8.2786 m3
1.2(DL+LL+Eqz) 12.2 -23.6 130.7 166.6 Section Modulus @ CG Zzz = 5.3568 m3
1.2(DL+LL-Eqz) 92.5 57.4 43.7 78.8
0.9DL+1.5Eqx 63.9 28.6 87.6 122.9 Moment of inertia Section Modulus
Column
0.9DL-1.5Eqx 29.7 4.3 66.4 91.7 Ixx Izz ZL ZR ZT ZB
0.9DL+1.5Eqz -13.4 -44.3 142.2 173.1 C1 29.28 7.3656 8.2786 8.2786 5.3568 5.357
0.9DL-1.5Eqz 107.0 77.2 11.7 41.5 C4 29.28 7.3656 8.2786 8.2786 5.3568 5.357
Min. -13.38 -44.33 11.74 41.46 0 29.28 7.3656 8.2786 8.2786 5.3568 5.357
Max. 106.96 77.23 142.17 173.12 0 29.28 7.3656 8.2786 8.2786 5.3568 5.357
0 29.28 7.3656 8.2786 8.2786 5.3568 5.357

Depth Calc. at Critical Sec. at d/2 at d


Two Way Shear Calculation Critical Depth at TOP = 399 150
Depth of Footing = 450 mm Critical Depth at BOT = 399 150
Effective Depth in X-Dir = 424 mm Critical Depth at LEFT = 381 290
Effective Depth in Y-Dir = 412 mm Critical Depth at RIGHT = 381 290
Critical Length = 3174 mm
Critical Width = 1174 mm
Design Shear = 1378 kN
Shear Stress ( τc ) = 1.25 N/mm²
Area Resisting Shear = 3.4254 m²
Co-efficient Ks = 0.9 ---
Shear Resistance = 3854 kN
COMBINED FOOTING C65 + C68

COLUMN LOADS : ( Safe Bearing Capacity = 150 kN / m² ) Fck = 25 Mpa

Column X Y Dead Load Live Load EQx Eqz


ID. Co.Ord. Co.Ord. Py Mx Mz Py Mx Mz Py Mx Mz Py Mx Mz
C1 0 0 298.08 0.6 -41.04 4.68 -0.06 -0.78 184.85 36.17 4.8 7.85 -0.37 -71.68
C4 2 0 432.33 4.68 -139 19.81 -0.55 -15.85 -76.97 239.35 -2.08 11.8 -1.89 -153.3

TOTAL 730.41 5.28 -180 24.49 -0.61 -16.63 107.88 275.52 2.72 19.65 -2.26 -225
kN/m²
75.5

B A
1200

1375
750 750
kN/m²
107

2750

350

350
kN/m²

C1 C4
117

1375

1125 2000 1125


1200

C D
kN/m²
148.6

450 4250

750 1250 750

Footing Longitudional
Sectiomn
450

335.8
B,C A,D

Base Pressure

84.72 92 98.4
59.6 66.48 73.32 kN/m² kN/m² kN/m²
kN/m² kN/m² kN/m²

375.0 kN 382.3 kN 360.0 kN 378.4 kN


Shear Force
380.0 kN
396.4 kN 358.8 kN 345.0 kN

18.95 kN-m
Bending moment

210.9 kN-m 196.7 kN-m


Area of Footing Provided A = 11.688 m² Concrete grade = M 25
GEOMETRICAL
PROPERTIES
Moment of Inertia @ CG Ixx = 17.59 m4 Steel Grade = Fe 415
Moment of Inertia @ CG Izz = 7.37 m4
M.O.R
Section Modulus @ CG Zxx = 8.28 m3 = 0.138Fck = 3.45
Section Modulus @ CG Zzz = 5.36 m3

Calculating Load Eccentricity :

Load Case CG_X of Load Ecc_x CG_z of Load Ecc_z


Dead Load 864.66 / 730.41 = 2.31 m 0.184 m 0 / 730.41 = 1.38 m 0.000 m
Live Load 39.62 / 24.49 = 2.74 m 0.618 m 0 / 24.49 = 1.38 m 0.000 m
Eqx -153.9 / 107.88 = -0.30 m -2.427 m 0 / 107.88 = 1.38 m 0.000 m
Eqz 23.6 / 19.65 = 2.33 m 0.201 m 0 / 19.65 = 1.38 m 0.000 m

Pressure Calculation ( UNIT : kN / m² ) Avg. Pressure Avg. Pressure

Load Case A B C D BC AD AB CD
Dead 52.0 18.3 85.5 119.2 51.9 85.6 35.1 102.4
Live 0.7 -2.8 3.4 7.0 0.3 3.8 -1.0 5.2
Live for EQ 0.4 -1.4 1.7 3.5 0.2 1.9 -0.5 2.6
Eqx 11.4 8.1 7.1 10.4 7.6 10.9 9.7 8.7
Eqz -40.1 -40.5 43.5 43.9 1.5 1.9 -40.3 43.7

(DL+LL) 53 16 89 126 52.2 89.4 34.1 107.6


(DL+Eqx) 63 26 93 130 59.5 96.5 44.9 111.1
(DL-Eqx) 41 10 78 109 44.3 74.7 25.4 93.6
(DL+Eqz) 12 -22 129 163 53.4 87.5 -5.2 146.0
(DL-Eqz) 92 59 42 75 50.4 83.7 75.5 58.7
(DL+LL+Eqx) 64 25 94 133 59.6 98.4 44.4 113.7
(DL+LL-Eqx) 41 9 80 112 44.5 76.6 24.9 96.2
(DL+LL+Eqz) 12 -24 131 167 53.5 89.4 -5.7 148.6
(DL+LL-Eqz) 92 57 44 79 50.6 85.6 74.9 61.3

Min. 11.87 -23.6 42.0 75.33 44.3 74.71 -5.69 58.68


Max. 92.5 58.8 130.7 166.6 59.6 98.4 75.5 148.6

Sample Calculation of base pressure for Dead Load Case at Corner A :

Pressure due to Column Load C1

P P ex Mx Mz where ex = 1125 - 4250 / 2 = -1000 mm


= + + +
A Zx Zx Zz = -1 m

= 298.1 x 1.1 298.1 x -1 0.6 -41.04


+ + +
11.69 8.28 8.28 5.36

= 28.05 + -36 + 0.072 + -7.661

= -15.54 kN / m²

Pressure due to Column Load C4

P P ex Mx Mz where ex = 4250 / 2 - 1125 = 1000 mm


= + + +
A Zx Zx Zz = 1m

= 432.3 x 1.1 432.3 x 1 4.68 -139


+ + +
11.69 8.28 8.28 5.36

= 40.69 + 52.22 + 0.565 + -26

= 67.53 kN / m²
Total Pressure at Corner A = -15.54 + 67.53 = 51.99 kN/m²

Depth Calculation : ( Moment Criteria )

Max. working moment = 210.9 kN-m

Factored moment = 1.5 x 210.9 = 316.4 kN - m

Width of Footing = 2750 mm

Cover Provided = 50 mm

Reinforcement Dia = 20 mm

Mu
Depth Required = √ R x b
+ Cover + Reinf. Dia / 2

316.4 x 1000 x 1000


=
√ 0.138 x 25 x 2750
+ 50 + 10

= 242.6 mm
Depth Provided = 450 mm --------------------------------- SAFE

Effective Depth = 450 - 50 - 10 = 390 mm

Two Way Shear Check :


Column C1 Column C4
Load Combinations : DL + LL = 302.76 452.14 kN
DL + LL+ Eqx = 487.61 375.17 kN
DL + LL- Eqx = 117.91 529.11 kN
DL + LL+ Eqz = 310.61 463.94 kN
DL + LL- Eqz = 294.91 440.34 kN

Max. Column Load 487.61 529.11 kN

Two Way Shear Check For Column C1

max. Axial Load = 487.61 kN

Factored Load = 487.61 x 1.5 = 731.42 kN

Area Resisting Shear = 2( 750 + 390 + 350 + 390 ) x 390


= 1466400 mm²

731.42 x 1000
Shear Stress = = 0.499 N/mm²
1466400
Ks = 0.5 + ß
τc = 0.25 √ Fck = 0.5 + 0.467
= 0.25 x √ 25 = 0.967
= 1.25
b 350
ß = = = 0.467
ß = = = 0.467
Permissible Shear Stress = Ks · τc D 750
= 0.967 x 1.25
= 1.208 N/mm² --------------------------------------------------------------------- SAFE

Two Way Shear Check For Column C4

max. Axial Load = 529.11 kN

Factored Load = 529.11 x 1.5 = 793.67 kN

Area Resisting Shear = 2( 750 + 390 + 350 + 390 ) x 390


= 1466400 mm²

793.67 x 1000
Shear Stress = = 0.541 N/mm²
1466400
Ks = 0.5 + ß
τc = 0.25 √ Fck = 0.5 + 0.467
= 0.25 x √ 25 = 0.967
= 1.25
b 350
ß = = = 0.467
Permissible Shear Stress = Ks · τc D 750
= 0.967 x 1.25
= 1.208 N/mm² --------------------------------------------------------------------- SAFE

Reinforcement Calculation :

Longitudional Reinforcement :

Bottom Reinforcement :

max. Bending Moment = 210.9 kN

Factored bending Moment = 1.50 x 210.9 = 316.4 kN / m²

Considering Effective Width of Footing = 2750 mm

0.5 x Fck 4.6 Mu


Ast =
Fy [ 1 - √ 1 -
Fck b d² ] bd

= 0.5 x 25 4.6 x 316.4 x 1000 x 1000


415 [ 1 - √ 1 -
25 x 2750 x 390 x 390 ]
x 2750 x 390

= 2332 mm²

Minimum Reinforcement = 0.12 %

= 0.12 x 2750 x 390 / 100

= 1287 mm²

Provide 16 Dia 16 No Reinforcement Provided = 3217 mm²


Spacing Provided = 168.8 mm

Providing 16 Dia 165 mm c/c --------------------- SAFE

Top Reinforcement :
max. Bending Moment = 18.95 kN

Factored bending Moment = 1.50 x 18.95 = 28.43 kN / m²

Considering Effective Width of Footing = 2750 mm

0.5 x Fck 4.6 Mu


Ast =
Fy [ 1 - √ 1 -
Fck b d² ] bd

= 0.5 x 25 4.6 x 28.43 x 1000 x 1000


415 [ 1 - √ 1 -
25 x 2750 x 390 x 390 ]
x 2750 x 390

= 203 mm²

Minimum Reinforcement = 0.12 %

= 0.12 x 2750 x 390 / 100

= 1287 mm²

Provide 16 Dia 16 No Reinforcement Provided = 3217 mm²


Spacing Provided = 168.8 mm

Providing 16 Dia 165 mm c/c --------------------- SAFE

Transverse Reinforcement :

Bottom Reinforcement :

Effective Width of Footing = 1000 mm

Max. Bending moment at face of Column from AB side =

= (75.45+107.39)/2x(1200/1000)x(2x75.45+107.39)/(75.45+107.39)*(1200/3000)

= 61.99 kN - m ------------------------------------------------ (a)

Max. Bending moment at face of Column from CD side =

= (148.64+116.7)/2x(1200/1000)x(2x148.64+116.7)/(148.64+116.7)*(1200/3000)

= 99.35 kN - m ------------------------------------------------ (b)

Local Distribution of Forces from each Column

band Width of Footing = b+ 2 d = 750 + 2x 390 = 1530 mm

Max. Axial Force In Column = 529.11 kN

529.11 x 1000
Upward Pressure = = 192.40 kN/m
2750

Cantilever Projection = 1200 mm


2
192.40 x 1.2
Max. Moment at Face of Column = = 138.53 kN- m
2

This moment is acting along width of 1530 mm


Hence, moment per meter width = 138.53 / 1.53 = 90.54 kN -m ---------------------------- ( c )

Considering maximum moment from ( a ) , ( b ) and ( c )

Max. bending moment = 99.4 kN-m

Factored Moment = 99.4 x 1.5 = 149.0 kN - m

Mu
Depth Required = √ R x b
+ Cover + Reinf. Dia / 2

149.0 x 1000 x 1000


=
√ 0.138 x 25 x 1000
+ 50 + 10

= 267.8 mm
Depth Provided = 450 mm ------------------------------------------------- SAFE

Reinforcement in transverse Direction =

0.5 x Fck 4.6 Mu


Ast =
Fy [ 1 - √ 1 -
Fck b d² ] bd

= 0.5 x 25 4.6 x 149.0 x 1000 x 1000


415 [ 1 - √ 1 -
25 x 1000 x 390 x 390 ]
x 1000 x 390

= 1111 mm²

Minimum Reinforcement = 0.12 %

= 0.12 x 1000 x 390 / 100

= 468 mm²

Providing 16 Dia 100 mm c/c ( Ast provided = 2011 mm² )

------------------------------------------------------ SAFE

Top Reinforcement :

Providing minimum reinforcement

Minimum Reinforcement = 0.12 %

= 0.12 x 1000 x 390 / 100

= 468 mm²

Providing 16 Dia 175 mm c/c ( Ast provided = 1149 mm² )

------------------------------------------------------ SAFE

Summary of Reinforcement :

Longitudional Direction Top 16 Dia 165 c/c = 1219 mm² 0.31 %

Bottom 16 Dia 165 c/c = 1219 mm² 0.31 %

Transverse Direction Top. 16 Dia 175 c/c = 1149 mm² 0.29 %

Bottom 16 Dia 100 c/c = 2011 mm² 0.52 %


Check for one way shear :

Longitudional Direction

Max. Shear Force = 380.0 kN

Factored Shear Force = 380.0 x 1.5 = 570 kN

Width of Footing = 2.75 m

Eff. Depth of Footing = 390 mm

570 x 1000
Shear Stress = = 0.531 N/mm²
2750 x 390

% Reinforcement Provided = 0.31 %

Permissible Shear Stress = 0.392 N/mm² < 0.531 ------------------ Providing Stuirrups

Design shear Stress = 0.531 - 0.392 = 0.139 N/mm²

Design Shear Force = 0.139 x 2750 x 390 / 1000 = 149.1 kN

Providing Stirrups Dia = 10 mm Legged = 6

Asv = 471.2 mm²

0.87 x Fy x Asv x d
Spacing provided =
Vu

0.87 x 415 x 471.2 x 390


=
149.0713 x 1000

= 445.1 mm

Min. Shear Reinforcement 0.87 x Fy x Asv


=
Spacing 0.4 x b

0.87 x 415 x 471.2


=
0.4 x 2750

= 154.67 mm

Providing 10 Dia 6 Legged Stirrups at Spacing of 150 mm c/c

----------------------------- SAFE

Transverse Direction :

Upward Pressure = 192.40 kN / m

Cantilever Projection = 1200 mm

Effective Depth = 390 mm

Max. Shear Force at 'd' distance from face of Column = 192.40 x ( 1200 - 390 ) / 1000
= 155.85 kN

Factored Shear Force = 155.85 x 1.5 = 233.8 kN

Width of Footing = 1530 mm

233.8 x 1000
Shear Stress = = 0.39 N/mm²
1530 x 390
% Reinforcement Provided = 0.52 %

Permissible Shear Stress = 0.495 N/mm² < 0.39 ----------------------------- SAFE


Depth 0.6 m

A = 28
Zx = 32.6667 C1 C3
Zz = 18.6667

1.9 2 1.8

C
7

P Mx Mz ez Mx_add ex Mz_add P_s.w P


C1 DL 504 -10 52 -1.6 806.4 0 0 1024.8 1528.8
LL 88 0 0 -1.6 140.8 0 0 0 88

C2 DL 273 -40 0 2.2 -600.6 0 0 0 273


LL 51 0 0 2.2 -112.2 0 0 0 51

C3 DL 168 0 -67 0.4 -67.2 -0.55 -92.4 0 168


LL 204 0 -422 0.4 -81.6 -0.55 -112.2 0 204
WL1 -99 0 260 0.4 39.6 -0.55 54.45 0 -99
WL2 -64 0 87 0.4 25.6 -0.55 35.2 0 -64

DL+LL 2313
DL+LL+WL1 2214
p_ADD = 604.8 Kn DL+LL+WL2 2249
DL+WL1 1871
DL+WL2 1906
A

C2
4 z

1.3

pressure at
A B C D
P Mx Mz
1528.8 796.4 52 27 76 82 33
88 140.8 0 -1 7 7 -1

273 -640.6 0 29 -10 -10 29


51 -112.2 0 5 -2 -2 5

168 -67.2 -159.4 17 12 -5 0


204 -81.6 -534.2 38 33 -24 -19
-99 39.6 314.45 -22 -19 15 12
-64 25.6 122.2 -10 -8 5 3

2313 36 -642 116 118 49 47


2214 75 -327 94 99 64 59
2249 61 -519 106 110 54 51
1871 128 207 52 60 82 74
1906 114 15 64 71 72 65
COMBINED FOOTING C65 + C68

COLUMN LOADS : ( Safe Bearing Capacity = 150 kN / m² ) Fck = 25 Mpa

X Y Dead Load Live Load EQx Eqz


Column Co.Ord. Co.Ord.
ID. Py Mx Mz Py Mx Mz Py Mx Mz Py Mx Mz
C1 0 0 298.08 0.6 -41.04 4.68 -0.06 -0.78 184.85 36.17 4.8 7.85 -0.37 -71.68
C4 2 0 432.33 4.68 -139 19.81 -0.55 -15.85 -76.97 239.35 -2.08 11.8 -1.89 -153.3

TOTAL 730.41 5.28 -180 24.49 -0.61 -16.63 107.88 275.52 2.72 19.65 -2.26 -225
kN/m²
75.5

B A
750 750
1200

1375
kN/m²
107

2750

350

350
450
kN/m²

C1 C4
117

1125 2000 1125


1200

1375

C D
kN/m²
148.6

450 4250

750 1250 750

Footing Longitudional
Sectiomn
450

B,C A,D

Base Pressure

84.72 92 98.4
59.6 66.48 73.32 kN/m² kN/m² kN/m²
kN/m² kN/m² kN/m²
Area of Footing Provided A = 11.688 m² Concrete grade = M 25
GEOMETRICAL
PROPERTIES
Moment of Inertia @ CG Ixx = 17.59 m4 Steel Grade = Fe 415
Moment of Inertia @ CG Izz = 7.37 m4
M.O.R
Section Modulus @ CG Zxx = 8.28 m3 = 0.138Fck = 3.45
Section Modulus @ CG Zzz = 5.36 m3
Cover = 50 mm

Calculating Load Eccentricity :

Load Case CG_X of Load Ecc_x CG_z of Load Ecc_z


Dead Load 864.66 / 730.41 = 2.31 m 0.184 m 0 / 730.41 = 1.38 m 0.000 m
Live Load 39.62 / 24.49 = 2.74 m 0.618 m 0 / 24.49 = 1.38 m 0.000 m
Eqx -153.9 / 107.88 = -0.30 m -2.427 m 0 / 107.88 = 1.38 m 0.000 m
Eqz 23.6 / 19.65 = 2.33 m 0.201 m 0 / 19.65 = 1.38 m 0.000 m

Pressure Calculation ( UNIT : kN / m² ) Avg. Pressure Avg. Pressure

Load Case A B C D BC AD AB CD
Dead 52.0 18.3 85.5 119.2 51.9 85.6 35.1 102.4
Live 0.7 -2.8 3.4 7.0 0.3 3.8 -1.0 5.2
Live for EQ 0.4 -1.4 1.7 3.5 0.2 1.9 -0.5 2.6
Eqx 11.4 8.1 7.1 10.4 7.6 10.9 9.7 8.7
Eqz -40.1 -40.5 43.5 43.9 1.5 1.9 -40.3 43.7

(DL+LL) 53 16 89 126 52.2 89.4 34.1 107.6


(DL+Eqx) 63 26 93 130 59.5 96.5 44.9 111.1
(DL-Eqx) 41 10 78 109 44.3 74.7 25.4 93.6
(DL+Eqz) 12 -22 129 163 53.4 87.5 -5.2 146.0
(DL-Eqz) 92 59 42 75 50.4 83.7 75.5 58.7
(DL+LL+Eqx) 64 25 94 133 59.6 98.4 44.4 113.7
(DL+LL-Eqx) 41 9 80 112 44.5 76.6 24.9 96.2
(DL+LL+Eqz) 12 -24 131 167 53.5 89.4 -5.7 148.6
(DL+LL-Eqz) 92 57 44 79 50.6 85.6 74.9 61.3

Min. 11.87 -23.6 42.0 75.33 44.3 74.71 -5.69 58.68


Max. 92.5 58.8 130.7 167 59.6 98.4 75.5 148.6

Sample Calculation of base pressure for Dead Load Case at Corner A :

Pressure due to Column Load C1

P P ex Mx Mz where ex = 1125 - 4250 / 2 = -1000 mm


= + + +
A Zx Zx Zz = -1.00 m

= 298.1 x 1.1 298.1 x -1.00 0.6 -41.0


+ + +
11.69 8.28 8.28 5.36

= 28.05 + -36.01 + 0.072 + -7.661

= -15.54 kN / m²

Pressure due to Column Load C4

P P ex Mx Mz where ex = 4250 / 2 - 1125 = 1000 mm


= + + +
A Zx Zx Zz = 1.00 m

= 432.3 x 1.1 432.3 x 1.00 4.68 -139


+ + +
11.69 8.28 8.28 5.36

= 40.69 + 52.22 + 0.565 + -25.95

= 67.53 kN / m²
Total Pressure at Corner A = -15.54 + 67.53 = 51.99 kN/m²

Transverse Analysis :
350
148.6 + 75.5
Max. Average pressure = = 112.0 kN/m²
2
1100
Cantilever projection = 1.10 m 450

Width considering = 1000 m


75.5
Bending moment = 112.0 x 1.10 148.6 kN/m²
= 123.2 kN - m kN/m²

Factored moment = 123.2 x 1.5 = 184.9 kN - m

Mu
Depth Required = √ R x b
+ Cover + Reinf. Dia / 2

184.9 x 1000 x 1000


=
√ 0.138 x 25 x 1000
+ 50 + 8

= 289.5 mm
Depth Provided = 450 mm --------------------------------- SAFE

Effective Depth = 450 - 50 - 8 = 392 mm

Reinforcement Calculation :

0.5 x Fck 4.6 Mu


Ast =
Fy [ 1 - √ 1 -
Fck b d² ] bd

= 0.5 x 25 4.6 x 184.9 x 1000 x 1000


415 [ 1 - √ 1 -
25 x 1000 x 392 x 392 ]
x 1000 x 392

= 1389 mm²

Minimum Reinforcement = 0.12 %

= 0.12 x 1000 x 392 / 100

= 470.4 mm²

Providing 16 Dia 125 mm c/c Reinforcement Provided = 1608 mm²

--------------------- SAFE

Longitudional Analysis :

66.5 + 91.6
Max. Average pressure = = 79.0 kN/m²
2

Width of Footing = 2.75 m

UDL of Beam = 79.0 x 2.75 = 217.3 kN / m

Span of Beam = 2.00 m


2
217.3 x 2.00
Bending Moment = = 108.7 kN - m
8

Factored Moment = 108.7 x 1.5 = 163.0 kN - m

Width of Beam = 450 mm

Mu
Depth Required = √ R x b
+ Cover + Reinf. Dia / 2

163.0 x 1000 x 1000


=
√ 0.138 x 25 x 450
+ 50 + 8

= 382.0 mm
Depth Provided = 600 mm ------------------------------------------------- SAFE

Effective Depth = 600 - 50 - 8 = 542 mm

0.5 x Fck 4.6 Mu


Ast =
Fy [ 1 - √ 1 -
Fck b d² ] bd

= 0.5 x 25 4.6 x 163.0 x 1000 x 1000


415 [ 1 - √ 1 -
25 x 450 x 542 x 542 ]
x 450 x 542

= 887 mm²

Provide 16 Dia 5 No Reinforcement Provided = 1005 mm²


Two Way Shear Check :
Column C1 Column C4
Load Combinations : DL + LL = 302.76 452.14 kN
DL + LL+ Eqx = 487.61 375.17 kN
DL + LL- Eqx = 117.91 529.11 kN
DL + LL+ Eqz = 310.61 463.94 kN
DL + LL- Eqz = 294.91 440.34 kN

Max. Column Load 487.61 529.11 kN

Two Way Shear Check For Column C1

max. Axial Load = 487.61 kN

Factored Load = 487.61 x 1.5 = 731.42 kN

Area Resisting Shear = 2( 750 + 392 + 350 + 392 ) x 392


= 1477056 mm²

731.42 x 1000
Shear Stress = = 0.495 N/mm²
1477056
Ks = 0.5 + ß
τc = 0.25 √ Fck = 0.5 + 0.467
= 0.25 x √ 25 = 0.967
= 1.25
b 350
ß = = = 0.467
Permissible Shear Stress = Ks · τc D 750
= 0.967 x 1.25
= 1.208 N/mm² --------------------------------------------------------------------- SAFE

Two Way Shear Check For Column C4

max. Axial Load = 529.11 kN

Factored Load = 529.11 x 1.5 = 793.67 kN

Area Resisting Shear = 2( 750 + 392 + 350 + 392 ) x 392


= 1477056 mm²

793.67 x 1000
Shear Stress = = 0.537 N/mm²
1477056
Ks = 0.5 + ß
τc = 0.25 √ Fck = 0.5 + 0.467
= 0.25 x √ 25 = 0.967
= 1.25
b 350
ß = = = 0.467
Permissible Shear Stress = Ks · τc D 750
= 0.967 x 1.25
= 1.208 N/mm² --------------------------------------------------------------------- SAFE
Reinforcement Calculation :

Longitudional Reinforcement :

Bottom Reinforcement :

max. Bending Moment = 0.0 kN

Factored bending Moment = 1.50 x 0.0 = 0 kN / m²

Considering Effective Width of Footing = 2750 mm

0.5 x Fck 4.6 Mu


Ast =
Fy [ 1 - √ 1 -
Fck b d² ] bd

= 0.5 x 25 4.6 x 0 x 1000 x 1000


415 [ 1 - √ 1 -
25 x 2750 x 392 x 392 ]
x 2750 x 392

= 0 mm²

Minimum Reinforcement = 0.12 %

= 0.12 x 2750 x 392 / 100

= 1294 mm²

Provide 16 Dia 16 No Reinforcement Provided = 3217 mm²


Spacing Provided = 168.8 mm

Providing 16 Dia 165 mm c/c --------------------- SAFE

Top Reinforcement :

max. Bending Moment = 0.00 kN

Factored bending Moment = 1.50 x 0.00 = 0 kN / m²

Considering Effective Width of Footing = 2750 mm

0.5 x Fck 4.6 Mu


Ast =
Fy [ 1 - √ 1 -
Fck b d² ] bd

= 0.5 x 25 4.6 x 0 x 1000 x 1000


415 [ 1 - √ 1 -
25 x 2750 x 392 x 392 ]
x 2750 x 392

= 0 mm²

Minimum Reinforcement = 0.12 %

= 0.12 x 2750 x 392 / 100

= 1294 mm²
Provide 16 Dia 16 No Reinforcement Provided = 3217 mm²
Spacing Provided = 168.8 mm

Providing 16 Dia 165 mm c/c --------------------- SAFE

Transverse Reinforcement :

Bottom Reinforcement :

Effective Width of Footing = 1000 mm

Max. Bending moment at face of Column from AB side =

= (75.45+107.39)/2x(1200/1000)x(2x75.45+107.39)/(75.45+107.39)*(1200/3000)

= 61.99 kN - m ------------------------------------------------ (a)

Max. Bending moment at face of Column from CD side =

= (148.64+116.7)/2x(1200/1000)x(2x148.64+116.7)/(148.64+116.7)*(1200/3000)

= 99.35 kN - m ------------------------------------------------ (b)

Local Distribution of Forces from each Column

band Width of Footing = b+ 2 d = 750 + 2x 392 = 1534 mm

Max. Axial Force In Column = 529.11 kN

529.11 x 1000
Upward Pressure = = 192.40 kN/m
2750

Cantilever Projection = 1200 mm


2
192.40 x 1.2
Max. Moment at Face of Column = = 138.53 kN- m
2

This moment is acting along width of 1534 mm

Hence, moment per meter width = 138.53 / 1.534 = 90.31 kN -m ---------------------------- ( c )

Considering maximum moment from ( a ) , ( b ) and ( c )

Max. bending moment = 99.4 kN-m

Factored Moment = 99.4 x 1.5 = 149.0 kN - m

Mu
Depth Required = √ R x b
+ Cover + Reinf. Dia / 2

149.0 x 1000 x 1000


=
√ 0.138 x 25 x 1000
+ 0 + 0

= 207.8 mm
Depth Provided = 0 mm ------------------------------------------------- UNSAFE

Reinforcement in transverse Direction =

0.5 x Fck 4.6 Mu


Ast =
Fy [ 1 - √ 1 -
Fck b d² ] bd

= 0.5 x 25 4.6 x 149.0 x 1000 x 1000


[ 1 - √ 1 - ]
415 [ 1 - √ 1 -
25 x 1000 x 392 x 392 ]
x 1000 x 392

= 1105 mm²

Minimum Reinforcement = 0.12 %

= 0.12 x 1000 x 392 / 100

= 470.4 mm²

Providing 16 Dia 100 mm c/c ( Ast provided = 2011 mm² )

------------------------------------------------------ SAFE

Top Reinforcement :

Providing minimum reinforcement

Minimum Reinforcement = 0.12 %

= 0.12 x 1000 x 392 / 100

= 470.4 mm²

Providing 16 Dia 175 mm c/c ( Ast provided = 1149 mm² )

------------------------------------------------------ SAFE

Summary of Reinforcement :

Longitudional Direction Top 16 Dia 165 c/c = 1219 mm² 0.31 %

Bottom 16 Dia 165 c/c = 1219 mm² 0.31 %

Transverse Direction Top. 16 Dia 175 c/c = 1149 mm² 0.29 %

Bottom 16 Dia 100 c/c = 2011 mm² 0.51 %

You might also like