KENDRIYA VIDYALAYA SANGATHAN LUCKNOW REGION
Second Pre Board Exam 2022-23
                                                  Marking Scheme
                                                  Class XII              Subject-mathematics
1.    (b)                                                                            1
2.    (d)                                                                             1
3.    (d)                                                                            1
4.    (a)                                                                            1
5.    (d)                                                                            1
6.    (c)                                                                            1
7.    (b)                                                                            1
8.    (b)                                                                            1
9.    (b)                                                                            1
10.   (a)                                                                            1
11.   (d)                                                                            1
12.   (c)                                                                            1
13.   (c)                                                                            1
14.   (b)                                                                            1
15.   (d)                                                                            1
16.   (c)                                                                            1
17.   (c)                                                                            1
18.   (b)                                                                            1
19.   (a)                                                                            1
20.   (d)                                                                            1
          𝑒 𝑥 (𝑥−3)              (𝑥−1)−2
21.   ∫     (𝑥−1)3
                      = ∫ 𝑒 𝑥 [ (𝑥−1)3 ]                                                  ½
                                 1           −2
                       = ∫ 𝑒 𝑥 [(𝑥−1)2 + ((𝑥−1)3 )]                                       ½
                           𝑒𝑥
                       = (𝑥−1)2 + 𝑐                                                       1
22. Since 𝑙 2 + 𝑚2 + 𝑛2 = 1 ⇒ 𝑐𝑜𝑠 2 𝛼 + 𝑐𝑜𝑠 2 𝛽 + 𝑐𝑜𝑠 2 𝛾 = 1                             1
                            ⇒ 1 − 𝑠𝑖𝑛2 𝛼 + 1 − 𝑠𝑖𝑛2 𝛽 + 1 − 𝑠𝑖𝑛2 𝛾 = 1
                                     ⇒    𝑠𝑖𝑛2 𝛼 + 𝑠𝑖𝑛2 𝛽 + 𝑠𝑖𝑛2 𝛾 = 2                    1
                            OR
   For getting direction ratios 1,2,3                                                     1
                                      1   2   3
   For getting direction cosines        ,   ,                                             1
                                     √14 √14 √14
              𝐸       𝑃(𝐸∩𝐹)    4
23. (i) 𝑃 (𝐹 ) =       𝑃(𝐹)
                             =9                                                           1
              𝐸𝑐       𝑃(𝐸 𝑐∩𝐹)   𝑃(𝐹)−𝑃(𝐸∩𝐹)      5
      (ii) 𝑃 ( 𝐹 )   = 𝑃(𝐹) =         𝑃(𝐹)
                                                =9                                        1
24. For reflexivity                                                                                          1
    For transitivity                                                                                         1
25. (𝑎⃗ + 𝑏⃗⃗ + 𝑐⃗). (𝑎⃗ + 𝑏⃗⃗ + 𝑐⃗) = 0
     ⇒ 𝑎⃗. 𝑎⃗ + 𝑎⃗. 𝑏⃗⃗ + 𝑎⃗. 𝑐⃗ + 𝑏⃗⃗. 𝑎⃗ + 𝑏⃗⃗. 𝑏⃗⃗ + 𝑏⃗⃗. 𝑐⃗ + 𝑐⃗. 𝑎⃗ + 𝑐⃗. 𝑏⃗⃗ + 𝑐⃗. 𝑐⃗ = 0              1
                            2
    ⇒ |𝑎⃗|2 + |𝑏⃗⃗| + |𝑐⃗|2 + 2(𝑎⃗. 𝑏⃗⃗ + 𝑏⃗⃗. 𝑐⃗ + 𝑐⃗. 𝑎⃗) = 0
    ⇒ 9 + 25 + 49 + 2(𝑎⃗. 𝑏⃗⃗ + 𝑏⃗⃗. 𝑐⃗ + 𝑐⃗. 𝑎⃗) = 0                                                        ½
                                               −83
               ⇒ (𝑎⃗. 𝑏⃗⃗ + 𝑏⃗⃗. 𝑐⃗ + 𝑐⃗. 𝑎⃗) = 2                                                            1/2
                                                                               OR
                𝑖̂ 𝑗̂ 𝑘̂
    𝑎⃗ × 𝑏⃗⃗ = |2 −3 4| = −2𝑖̂ + 4𝑗̂ + 4𝑘̂                                                                   1
                2 −1 2
    |𝑎⃗ × 𝑏⃗⃗| = √4 + 16 + 16 = 6                                                                            1/2
                           1
    Area of parallelogram = |𝑎⃗ × 𝑏⃗⃗| = 3 sq.units                                                              ½
                                            2
      4
26. ∫1 {|𝑥 − 1| + |𝑥 − 2| + |𝑥 − 4|}𝑑𝑥
           4                            2                        4                          4
    = ∫1 (𝑥 − 1)𝑑𝑥 − ∫1 (𝑥 − 2)𝑑𝑥 + ∫2 (𝑥 − 1)𝑑𝑥 − ∫1 (𝑥 − 1)𝑑𝑥                                               1
          (𝑥−1)2    4           (𝑥−2)2       2      (𝑥−2)2   4        (𝑥−4)2        4
    =[     2
                   ] −[             2
                                            ] +[        2
                                                             ] −[          2
                                                                                ]                             1
                    1                        1               2                      1
        9   1                   9       23
    =     +       +2+ =                                                                                      1
        2   2                   2       2
                        𝑥
27. (𝑥 − 𝑦)𝑒 (𝑥−𝑦) = 𝑎
    Taking log on both sides
                     𝑥
    log(𝑥 − 𝑦) + (𝑥−𝑦) = log 𝑎                                                                               1
                                                                      𝑑𝑦                         𝑑𝑦
                                                                 1−            1.(𝑥−𝑦)−𝑥(1−         )
    Differentiating both sides w.r.t.x, we get                        𝑑𝑥
                                                                           +            (𝑥−𝑦)2
                                                                                                 𝑑𝑥
                                                                                                        =0   1
                                                                 𝑥−𝑦
                                             𝑑𝑦                                𝑑𝑦
           ⇒ (𝑥 − 𝑦) (1 − 𝑑𝑥 ) + 𝑥 − 𝑦 − 𝑥 + 𝑥 𝑑𝑥 = 0                                                        ½
                   𝑑𝑦
           ⇒ 𝑦 𝑑𝑥 + 𝑥 − 2𝑦 = 0
                   𝑑𝑦
           ⇒ 𝑦 𝑑𝑥 + 𝑥 = 2𝑦                                                                                       ½
                                                                                    OR
        𝑦 = log(1 + 2𝑡 2 + 𝑡 4 ) = log(1 + 𝑡2 )2 = 2 log(1 + 𝑡2 )
      𝑑𝑦        2(2𝑡)            4𝑡
           =            =                                                                                    1
      𝑑𝑡        1+𝑡 2           1+𝑡 2
                                        𝑑𝑥          1
        𝑥 = tan−1 𝑡 ⇒                           = 1+𝑡 2                                                      ½
                                        𝑑𝑡
                 𝑑𝑦
      𝑑𝑦
      𝑑𝑡
             =   𝑑𝑡
                 𝑑𝑥   = 4𝑡                                                                         ½
                 𝑑𝑡
      𝑑2 𝑦        𝑑                𝑑𝑡
      𝑑𝑥 2
             = 𝑑𝑡 (4𝑡) × 𝑑𝑥 = 4(1 + 𝑡 2 )                                                          1
28. Let 𝑃(2,4, −1) be the given point and line
            𝑥+5        𝑦+3         𝑧−6
             1
                  =     4
                               =    −9
                                         = 𝜆 ⇒ direction ratios of this line are 1,4, −9
    ⇒ Any point Q on this line is given by 𝑄(𝜆 − 5,4𝜆 − 3,6 − 9𝜆)                                  1
    Then direction ratios of PQ are (𝜆 − 7,4𝜆 − 7,7 − 9𝜆)
    Since PQ is perpendicular to the given line
    So (𝜆 − 7)1 + (4𝜆 − 7)4 + (7 − 9𝜆)(−9) = 0 ⇒ 𝜆 = 1                                             1
    So coordinates of Q are (−4,1, −3)
    Also PQ = 7 units                                                                              1
29. Let 𝐸1 : Problem is solved by A
        𝐸2 : Problem is solved by B
                   1                1
    So 𝑃(𝐸1 ) = 2 and 𝑃(𝐸2 ) = 3
                           1                       2
    ⇒ 𝑃(𝐸1𝑐 ) = 2 and 𝑃(𝐸2𝑐 ) = 3                                                                  1
                                                                      1     2  2
    (𝑖) 𝑃(Problem is solved) = 1 − 𝑃(𝐸1𝑐 )𝑃(𝐸2𝑐 )=1 −                   × =                        1
                                                                      2     3  3
                                                                                               1
     (𝑖𝑖)𝑃(one of them solves the problem)=                   𝑃(𝐸1 )𝑃(𝐸2𝑐 ) + 𝑃(𝐸2 )𝑃(𝐸1𝑐 )   =2   1
                                                                      OR
    Let 𝐸1 : Red ball is transferred from Bag I to Bag II
        𝐸2 : Black ball is transferred from Bag I to Bag II
         𝐴: Ball drawn from bag II is black                                                        1
                  3                          5
    𝑃(𝐸1 ) =           and 𝑃(𝐸2 ) =
                  8                          8
                        3                         4
    𝑃(𝐴/𝐸1 ) =                 and 𝑃(𝐸2 ) =                                                        1
                        8                         8
                                     𝑨
        𝑬                    𝑷(𝑬𝟐 )𝑷( )                  20
                                     𝑬𝟐
    𝑷 ( 𝑨𝟐) =                 𝐴          𝐴             = 29                                        1
                      𝑃(𝐸1 )𝑃( )+𝑃(𝐸2 )𝑃( )
                              𝐸1         𝐸2
30. Let 𝑄(𝑥, 𝑦) be a point on the curve 𝑦 2 = 4𝑥, which is nearest to the point 𝑃(2,1)
    So (𝑃𝑄)2 = (𝑥 − 2)2 + (𝑦 − 1)2
                                                                2
                                                       𝑦2
                                        (𝑃𝑄)2 = ( − 2) + (𝑦 − 1)2 = 𝑆(𝑠𝑎𝑦)                         1
                                                 4
      𝑑𝑆          𝑦 3 −8
             =
      𝑑𝑦               4
      𝑑𝑆
      𝑑𝑦
         = 0 gives 𝑦 =                   2       and so 𝑥 = 1                                      1
        𝑑2 𝑆  3𝑦 2
    Now 𝑑𝑦2 = 4 > 0
    Therefore (1,2) will be at minimum distance from (2,1)                                         1
      𝑑𝑥       𝑦 tan 𝑦−𝑥 tan 𝑦−𝑥𝑦          𝑑𝑥         1        1
31.        =                         ⇒          +( +                  )𝑥 = 1
      𝑑𝑦             𝑦 tan 𝑦               𝑑𝑦         𝑦       tan 𝑦
                1
               ∫( +cot 𝑦)𝑑𝑦
      IF = 𝑒 𝑦             = 𝑒 log 𝑦+log sin 𝑦 = 𝑒 log(𝑦 sin 𝑦) = 𝑦 sin 𝑦      1
      Solution of the given differential equation is
                                              𝑥(IF) = ∫ Q. IF 𝑑𝑦 + 𝑐
                                      𝑥(𝑦 sin 𝑦) = ∫ 𝑦 sin 𝑦 𝑑𝑦 + 𝑐            1
                                      𝑥(𝑦 sin 𝑦) = −𝑦 cos 𝑦 + sin 𝑦 + 𝑐
                                                sin 𝑦−𝑦 cos 𝑦+𝑐
                                         𝑥=                                    1
                                                     𝑦 sin 𝑦
                                                OR
                                 cos 𝑦 𝑑𝑥 + (1 + 2𝑒 −𝑥 ) sin 𝑦 𝑑𝑦 = 0
                                      𝑑𝑥             − sin 𝑦 𝑑𝑦
                                 ∫ (1+2𝑒 −𝑥 ) = ∫                              1
                                                       cos 𝑦
                                    𝑒𝑥             − sin 𝑦 𝑑𝑦
                                 ∫ 2+𝑒 𝑥 𝑑𝑥 = ∫       cos 𝑦
                                 log(𝑒 𝑥 + 2) = log|cos 𝑦| + log 𝑐
                                 log(𝑒 𝑥 + 2) = log|cos 𝑦|𝑐                    1
                                     𝑒 𝑥 + 2 = |cos 𝑦|𝑐
                                                                   𝜋
                               Substituting 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 4 we get
                              1 + 2 = 𝑐(1/√2)
                                 𝑐 = 3√2                                       ½
                         𝑒 𝑥 + 2 = 3√2|cos 𝑦| is the particular solution       ½
32. |𝐴| = 10                                                                   1
                 4 −5 1
                                                                                   1
      𝑎𝑑𝑗. 𝐴 = [2 0 −2]                                                        12
                 2 5        3
                   4 −5 1
               1
      So 𝐴−1= 10 [2 0 −2]                                                      1
                   2 5        3
      Given equations can be written in the form of 𝐴𝑋 = 𝐵 𝑎𝑠
                                            1     2 1 𝑥       4
                                          [−1 1 1] [𝑦] = [0]
                                            1 −3 1 𝑧          4
      Since 𝐴𝑋 = 𝐵
          ⇒ 𝐴−1 𝐴𝑋=𝐴−1 𝐵
           ⇒ 𝐼𝑋 = 𝐴−1 𝐵
        ⇒ 𝑋 = 𝐴−1 𝐵                                                            1/2
       𝑥        4 −5 1 4
            1
    ⇒ [𝑦] = 10 [2 0 −2] [0]
       𝑧        2 5       3 4
       𝑥        20
             1
    ⇒ [𝑦] = 10 [ 0 ]
       𝑧        20
    ⇒ 𝑥 = 2, 𝑦 = 0, 𝑧 = 2                                                      1
                                                            OR
  To Prove         𝐵𝐴 = 6𝐼                                                     2
  Given equations can be written in the form of 𝐴𝑋 = 𝐵 𝑎𝑠
                                                   1 −1 0 𝑥      3
                                                  [2 3 4] [𝑦] = [17]
                                                   0 1 2 𝑧       7
               𝑥     1            −1 0 −1 3
       ⇒      [𝑦] = [2            3 4] [17]                                    1
               𝑧     0            1 2     7
                                              1
       Since 𝐵𝐴 = 6𝐼 ⇒ 𝐴−1 = 6 𝐵
               𝑥        2 2 −4 3          12     2
                    1                  1
       So     [𝑦] = 6 [−4 2 −4] [17] = 6 [−6] = [−1]
               𝑧        2 −1 5 7          24     4
            ⇒ 𝑥 = 2, 𝑦 = −1, 𝑧 = 4                                             2
33. For Correct figure                                                         1
             √3 𝑥                 2
    Area=   ∫0 √3 𝑑𝑥         + ∫√3 √22 − 𝑥 2 𝑑𝑥                                1
              1     𝑥 2 √3        𝑥                4        𝑥 2
          =        [2]       + [2 √22 − 𝑥 2 + 2 sin−1 2]                       1
              √3         0                                   √3
              𝜋
          = 3 sq.units                                                         2
                                                       OR
   For Correct figure                                                          2
   The point of intersection of the parabola 𝑦 = 𝑥 2 and the line 𝑦 = 𝑥 are
    (0,0) and (1,1)                                                           ½
                             1               2
    Required Area= ∫0 𝑥 2 𝑑𝑥 + ∫1 𝑥 𝑑𝑥                                        1
                             11                                                1
                         =            sq. units                               12
                             6
           3𝑥−2                               𝐴           𝐵            𝐶
34.
      (1+𝑥)2 (𝑥+3)
                                  = (𝑥+1) + (𝑥+1)2 +                               1
                                                                      (𝑥+3)
                                              11          −5          −11           1
      Getting values 𝐴 =                           ,𝐵 =        ,𝐶 =                12
                                              4           2            4
                        11                    5           11
      𝐼 = ∫ (4(𝑥+1) − 2(𝑥+1)2 − 4(𝑥+3)) 𝑑𝑥                                         1
          11            𝑥+1                   5                                        1
      =        log |𝑥+3| + 2(𝑥+1) + 𝑐                                              12
          4
                                                                              OR
      If 𝑥 = 𝑡 then
          2
               𝑡                          𝐴          𝐵
                                 = (𝑡+𝑎2 ) + (𝑡+𝑏2 )                                1
      (𝑡+𝑎2 )(𝑡+𝑏2 )
                                              −𝑎2                     𝑏2               1
      Getting values 𝐴 = 𝑏2 −𝑎2 𝑎𝑛𝑑 𝐵 = 𝑏2 −𝑎2                                     12
               −𝑎2                    1              𝑏2           1
      𝐼 = 𝑏2 −𝑎2 ∫ 𝑥 2 +𝑎2 𝑑𝑥 + 𝑏2 −𝑎2 ∫ 𝑥 2 +𝑏2 𝑑𝑥                                    1
               1                          𝑥                   𝑥                        1
      = 𝑎2 −𝑏2 [𝑎 tan−1 𝑎 − 𝑏 tan−1 𝑏] + 𝑐                                         12
35. For correct graph                                                               2
    For getting correct corner points (5,0),(6,0),(4,4),(0,6),(0,4)                 1
                        Points                   𝑍 = 600𝑥 + 400𝑦
                         (5,0)                            3000
                         (6,0)                            3600
                         (4,4)                            4000
                         (0,6)                            2400
                         (0,4)                            1600
                                                                                       1
                                                                                   12
                                                                                    1
      𝑍 is maximum for C(4,4) i.e. at 𝑥 = 4; 𝑦 = 4                                  2
           𝑥        𝑦             𝑧
36. (𝑖)        =        = −1                                                           1
           1         2
                   2 1            1
      (𝑖𝑖)          ,        ,                                                         1
               √6 √6 √6
      (𝑖𝑖𝑖) ⃗⃗⃗⃗⃗
            𝑎2 − ⃗⃗⃗⃗⃗
                     𝑎1 = 3𝑖̂ + 3𝑗̂                                                    ½
            ⃗⃗⃗⃗1 × 𝑏
            𝑏       ⃗⃗⃗⃗⃗2 = 3𝑖̂ − 3𝑗̂ − 3𝑘̂                                           1
           ( ⃗⃗⃗⃗⃗
               𝑎2 − ⃗⃗⃗⃗⃗).
                        𝑎1 (𝑏 ⃗⃗⃗⃗1 × ⃗⃗⃗⃗⃗
                                      𝑏2 ) = 0
      So shortest distance between the given lines = 0                                 ½
                                              OR
      Any point on line (i) is 𝑃(𝜆, 2𝜆, −𝜆)
      Any point on line (ii) is 𝑄(2𝜇 + 3, 𝜇 + 3, 𝜇)                                    1
      To meet the lines 𝜆 = 2𝜇 + 3 𝑎𝑛𝑑 −𝜆 = 𝜇
      We get     𝜇 = −1 𝑎𝑛𝑑 𝜆 = 1
      So, motorcycles meet with an accident at (1,2, −1)                               1
37. (i) Combined sales in September and October
                  Basmati Permal Naura
                    15000     30000    36000 Ramakishan
       𝐴+𝐵 =[                               ]                                                    1
                    70000     40000    20000 Gurucharan
    (ii) Change in sales from September to October
                    Basmati Permal     Naura
                    5000      10000    24000 Ramakishan
       𝐴−𝐵 =[                               ]                                                    1
                    30000     20000      0    Gurucharan
                    2
    (iii) 2% of B = 100 × 𝐵 = 0.02 𝐵                                                             ½
     Basmati Permal Naura
       100 200 120 Ramakishan
   𝐶=[                 ]                                                                         1
       400 200 200 Gurucharan
      Thus in October Ramakishan receives Rs.100, Rs.200, Rs.120 as profit in the sale of each
      variety of rice respectively                                                               ½
                                                  OR
                2
    2% of A = 100 × 𝐴 = 0.02 𝐴                                                                   ½
     Basmati Permal Naura
        200 400 600 Ramakishan
   𝐷=[                   ]                                                                       1
       1000 600 200 Gurucharan
      Thus in September Gurucharan receives Rs.1000, Rs.600, Rs.200 as profit in the sale of each
      variety of rice respectively                                                               ½
38. (𝑖)𝑓(𝑥) = −0.1𝑥 2 + 𝑚𝑥 + 98.6, being a polynomial function, is differentiable everywhere,
        Hence differentiable in (0,12).                                                       1
                  ′
       𝐴𝑙𝑠𝑜 𝑓 (𝑥) = −0.2𝑥 + 𝑚
         At critical point 𝑓 ′ (6) = 0 gives 𝑚 = 1.2                                          1
     (𝑖𝑖) 𝑓(𝑥) = −0.1𝑥 2 + 1.2𝑥 + 98.6
          𝑓 ′ (𝑥) = −0.2𝑥 + 1.2 = −0.2(𝑥 − 6)                                                 1
            Interval              Sign of 𝑓 (𝑥)
                                           ′       Conclusion
            (0,6)                 +ve              𝑓 is strictly increasing
            (6,12)                -ve              𝑓 is strictly decreasing
                                                                                              1
                                         OR
                                 𝑓(𝑥) = −0.1𝑥 2 + 1.2𝑥 + 98.6
                                 𝑓 ′ (𝑥) = −0.2𝑥 + 1.2
                                 𝑓 ′′ (𝑥) = −0.2 < 0
Hence by second derivative test 6 is a point of local maxima
Local Maximum Value= −0.1 × 62 + 1.2 × 6 + 98.6 = 102.2                                  1`
Now
We have 𝑓(0) = 98.6, 𝑓(6) = 102.2, 𝑓(12) = 98.6
So, 6 is the point of absolute maximum and absolute maximum value=102.2
And 0 and 12 both are the points of absolute minimum and absolute minimum value = 98.6   1