0% found this document useful (0 votes)
83 views3 pages

Limit Mcqs

This document contains 34 math problems involving limits. The problems cover a variety of limit calculations including one-sided limits, direct substitution, factorization, and indeterminate forms that require using l'Hopital's rule or trigonometric limits. Many of the problems involve simplifying complex expressions containing radicals, fractions, trigonometric functions, and algebraic expressions to determine the value of the limit.

Uploaded by

areebarizwi2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
83 views3 pages

Limit Mcqs

This document contains 34 math problems involving limits. The problems cover a variety of limit calculations including one-sided limits, direct substitution, factorization, and indeterminate forms that require using l'Hopital's rule or trigonometric limits. Many of the problems involve simplifying complex expressions containing radicals, fractions, trigonometric functions, and algebraic expressions to determine the value of the limit.

Uploaded by

areebarizwi2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 3

Name:-

Ramanujan Date:-

mathematics
tanx−√ 3 3 3
lim ( x+ 2) 2 −(a+2) 2
1. π π = ………. 19. lim
x→
3 −x x 2−a2
3 x →a

[A]-4⨀ [B]4 ⨀ [C]√3⨀ [D]2 ⨀ [A]


√ a+2 ⨀ [B]
3 √ a+2
⨀ [C]
3 √ a+2
⨀ [D]
lim √2 sinx−1 a 4a a
2. π cos 2 x 3 √a
x→ ⨀
4 4a
[A]1/2 ⨀ [B]√2⨀ [C]-1/2 ⨀ [D]-√2⨀ πx
20. limπ (1−x) tan 2
11
x +1
3. lim 10 x→
x→−1 x −1 4

11 −11 10 10 2 π 3
[A] ⨀ [B] ⨀ [C] ⨀ [D]- ⨀ [A] ⨀ [B]2⨀ [C] ⨀ [D] ⨀
10 10 11 11 π 2 π
4. If 5x ≤ f(x) ≤ 2x2 + 3, ∀x ϵR, then 5 sinx−12cosx 12
21. lim where tanα = 0<α<
lim f (x) = …………. x→ α x−α 5
x→−2 π
[A]8 ⨀ [B]3 ⨀ [C]-16 ⨀ [D]-8 ⨀ 2
3 3
(5+h) −5 [A]14 ⨀ [B]12 ⨀ [C]13⨀ [D]5⨀
5. lim = ……………
h→ 0 h 2009
x +1 2009
[A]75 ⨀ [B]25 ⨀ [C]125 ⨀ [D]50 ⨀ 22. lim n = where n is odd then find n
1996
x →1 x +1 2011
x −1 1996 [A]2001 ⨀ [B]2009 ⨀ [C]2011 ⨀ [D]1⨀
6. lim =- , then n = ……
x→−1
n
x +1 1995 5
x −5 x +4
[A]-1995 ⨀ [B]1995⨀ [C]1996⨀ [D]- 23. lim 2
x →1 ( x−1)
1996⨀
[A]11 ⨀ [B]12 ⨀ [C]10 ⨀ [D]13⨀
cos 7 x −cos 5 x
7. lim
x→ x
2 = …….
24. lim

3 2
x −2 √3 x +1
2
[A]12⨀ [B]-12 ⨀ [C]7 ⨀ [D]5 ⨀ x→ (x−1)
π 1 2 1 2
lim ( −x)secx = ……. [A] ⨀ [B] ⨀ [C] ⨀ [D] ⨀
8. π 2
9 5 4 9
x→ 3
2 1+cos x
[A]0 ⨀ [B]1 ⨀ [C]-1 ⨀ [D]2⨀ 25. lim 2
x → (x−3)
lim ¿
9. = ……… [A]3/2⨀ [B]2 ⨀ [C]3 ⨀ [D]2/3⨀
x→ 0+¿ √
1−cos 2 x
¿
x tanx
[A]√ 2⨀ [B]-√ 2⨀ [C]1⨀ [D]does not 26. lim = ……….
x→ π π −x
exist⨀ [a] 1 [b]-1 [c]o [d] does not exist
5 3 3
x −1 lim x −k lim ¿
10. lim = 2 2 ,then k = ….. 27. sin [ x ] = ………(-1< x < 0, x ∈ R)
x →1 x−1 x →k x −k x→ 0−¿ ¿
[x]
10 10 3 3 [a]1 [b]0 [c]-1 [d]sin1
[A] ⨀ [B] - ⨀ [C] ⨀ [D]- ⨀
3 3 10 10 sinx
3
(a+3) −a
3 28. lim = ……….
x →0 √ x +1− √ 1−x
11. lim = ……..
x→ x [a]1 [b]2 [c] 0 [d]-1

{
2
[A]3a ⨀ [B]-3a ⨀ [C]3a ⨀ [D]6a ⨀ 2 x +3 x <2
cos
πx 29. lim f (x ) = ……….where f(x) 5 x=2
x →0
12. 2 3 x +2 x >2
lim
x →1 1−x [a]5 [b]3 [c]2 [d] does
π π not exist
[A]π⨀ [B]1⨀ [C] ⨀ [D] ⨀
2 3 30. lim ¿ = ……….
x→ 5+¿ [ x ] ¿
3 2
x −2 x + 1 [a]6 [b] 5 [c]-5 [d]4
13. lim 2 sinx−sina
x →1 x −1 31. lim = ……….
[A]⨀ [B]⨀ [C]⨀ [D]⨀ x →a √ x−√ a
lim ¿ cosa
14. [a]cosa [b] [c]2√acosa [d]2√a
x→ 0+¿ √
1−cos 2 x
¿ 2√a
xcosx
[A]√ 2 ⨀ [B]3⨀ [C]√ 5 ⨀ [D]√3⨀ tanx−5 x
32. lim = ……….
x →0 7 x−sinx
15. lim
√ 1+ sinx− √1−sinx 2 −2 5 −5
x →0 x [a] [b] [c] [d]
[A]2⨀ [B]1⨀ [C]5⨀ [D]7⨀ 3 3 7 7
1 1
x x 3 −a 3
16. lim 3 2 33. lim (a>0) = ……….
x → tan ⁡(x −3 x +4 x ) 1 1
x →a
1 1 2 3 x −a
5 5
[A] ⨀ [B] ⨀ [C] ⨀ [D] ⨀ 3 1 5
4 2 3 5 1 1 5
[a] a 5 [b] a 15 [c] a 3 [d]
f (cos 2 x ) 1−x 3 5 3
17. lim 2 = where f(x) = 2
x →0 x 1+ x 5 15
a
[A]4⨀ [B]3⨀ [C]1⨀ [D]2⨀ 3
18. lim
1−cosmx
34. lim

3 2
x −2 √3 x +1
x →0 1−cosnx 2
2 2
x→ (x−1)
n n m m 1 2 1 2
[A] 2 ⨀ [B] ⨀ [C] 2 ⨀ [D] ⨀ [A] ⨀ [B] ⨀ [C] ⨀ [D] ⨀
m m n n 9 5 4 9
1996
x −1 1996 3
1+c os x
35. lim =- , then n = …… 56. lim
x→−1 x +1
n
1995 x → (x−3)
2

[A]-1995 ⨀ [B]1995⨀ [C]1996⨀ [D]- [A]3/2⨀ [B]2 ⨀ [C]3 ⨀ [D]2/3⨀


1996⨀
cos 7 x −cos 5 x
36. lim 2 = …….
x→ x
[A]12⨀ [B]-12 ⨀ [C]7 ⨀ [D]5 ⨀
π
37. limπ ( 2 −x)secx = …….
x→
2
[A]0 ⨀ [B]1 ⨀ [C]-1 ⨀ [D]2⨀
lim ¿
38. x→ 0+¿ √
1−cos 2 x
¿
= ………
x
[A]√ 2⨀ [B]-√ 2⨀ [C]1⨀ [D]does not
exist⨀
5 3 3
x −1 lim x −k
39. lim = 2 2 ,then k = …..
x →1 x−1 x →k x −k
10 10 3 3
[A] ⨀ [B] - ⨀ [C] ⨀ [D]- ⨀
3 3 10 10
3 3
(a+3) −a
40. lim = ……..
x→ x
[A]3a ⨀ [B]-3a ⨀ [C]3a2 ⨀ [D]6a ⨀
πx
cos
41. 2
lim
x →1 1−x
π π
[A]π⨀ [B]1⨀ [C] ⨀ [D] ⨀
2 3
3 2
x −2 x + 1
42. lim 2
x →1 x −1
[A]⨀ [B]⨀ [C]⨀ [D]⨀
lim ¿
43. x→ 0+¿ √
1−cos 2 x
¿
xcosx
[A]√ 2 ⨀ [B]3⨀ [C]√ 5 ⨀ [D]√3⨀
44. lim
√ 1+ sinx− √1−sinx
x →0 x
[A]2⨀ [B]1⨀ [C]5⨀ [D]7⨀
x
45. lim 3
2
x → tan ⁡(x −3 x +4 x )

1 1 2 3
[A] ⨀ [B] ⨀ [C] ⨀ [D] ⨀
4 2 3 5
f (cos 2 x ) 1−x
46. lim 2 = where f(x) =
x →0 x 1+ x
[A]4⨀ [B]3⨀ [C]1⨀ [D]2⨀
1−cosmx
47. lim
x →0 1−cosnx
2 2
n n m m
[A] 2 ⨀ [B] ⨀ [C] 2 ⨀ [D] ⨀
m m n n
3 3

48. lim ( x+ 2) 2 −(a+2) 2


x →a x 2−a2
[A]
√ a+2 ⨀ [B]
3 √ a+2
⨀ [C]
3 √ a+2

a 4a a
3 √a
[D] ⨀
4a
πx
49. limπ (1−x) tan 2
x→
4
2 π 3
[A] ⨀ [B]2⨀ [C] ⨀ [D] ⨀
π 2 π
5 sinx−12cosx 12
50. lim where tanα = 0<α<
x→ α x−α 5
π
2
[A]14 ⨀ [B]12 ⨀ [C]13⨀ [D]5⨀
2009
x +1 2009
51. lim = where n is odd then find n
x →1
n
x +1 2011
[A]2001 ⨀ [B]2009 ⨀ [C]2011 ⨀ [D]1⨀
5
x −5 x +4
52. lim 2
x →1 ( x−1)
[A]11 ⨀ [B]12 ⨀ [C]10 ⨀ [D]13⨀

Ramanujan Mathematics Dibesh Sir :- 9510509053

You might also like