Jercicios Quternion
Jercicios Quternion
UDLA
Hector Oña
31-12-2023
IEAZ4841-2850_2851-ROBOTICA INDUSTRIAL
    1 0    0    √3     1
      √2   √2       0
    0    −       2     2
𝑅=    2     2 ∗ 0 1 0
      √2 √2       1   √3
   [0           −   0
      2    2 ] [ 2     2]
         √3    1
               0
         2     2
         1 1   √3
𝑅=           −
     2√2 √2    2√2
       1   1  √3
    −
   [ 2 √2 √2 2√2 ]
𝜃𝑤 = 30                                 𝜃𝑣 = 45
     𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0                          𝐶𝑜𝑠(𝜃) 0 𝑆𝑖𝑛(𝜃)
Rw= [ 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) 0]                  Rv=[      0    1   0 ]
        0      0    1                          −𝑆𝑖𝑛(𝜃) 0 𝐶𝑜𝑠(𝜃)
     𝐶𝑜𝑠(30) −𝑆𝑖𝑛(30) 0                                   𝐶𝑜𝑠(45) 0 𝑆𝑖𝑛(45)
Rw= [ 𝑆𝑖𝑛(30) 𝐶𝑜𝑠(30) 0]                           Rv=[      0     1    0 ]
         0       0    1                                   −𝑆𝑖𝑛(45) 0 𝐶𝑜𝑠(45)
      √3       1                                √2          √2
           −       0                                    0
      2      2                                  2           2
Rw=   1    √3                           Rv=     0       1   0
                   0                               √2       √2
       2   2
      [0   0       1]                         [−    2
                                                        0
                                                            2   ]
                               √3   1            √2      √2
                                  −      0             0
                               2    2             2       2
                           𝑅 = 1 √3         ∗ 0        1 0
                                         0        √2     √2
                               2   2            −      0
                              [0   0 1    ]   [    2      2]
                                     √6         1 √6
                                             −
                                      4         2 4
                                       2     √3 √2
                                𝑅= √
                                      4       2      4
                                      √ 2           √2
                                    −
                                   [ 2        0
                                                     2]
𝜃𝑥 = 60                         𝜃𝑦 = 45                                  𝜃𝑧 = 30
     1   0       0                     𝐶𝑜𝑠(𝜃) 0 𝑆𝑖𝑛(𝜃)                   𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0
Rx= [0 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃)]          Ry=[      0    1   0 ]              Rz= [ 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) 0]
     0 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃)                   −𝑆𝑖𝑛(𝜃) 0 𝐶𝑜𝑠(𝜃)                     0      0    1
     1    0       0                          𝐶𝑜𝑠(45) 0 𝑆𝑖𝑛(45)      𝐶𝑜𝑠(30) −𝑆𝑖𝑛(30) 0
Rx= [0 𝐶𝑜𝑠(60) −𝑆𝑖𝑛(60)]              Ry=[      0     1    0 ] Rz= [ 𝑆𝑖𝑛(30) 𝐶𝑜𝑠(30) 0]
     0 𝑆𝑖𝑛(60) 𝐶𝑜𝑠(60)                       −𝑆𝑖𝑛(45) 0 𝐶𝑜𝑠(45)         0       0    1
       1   0         0                        √2          √2              √3          1
           1         √3                               0                        −          0
                                              2           2               2         2
Rx= 0      2
                −
                      2               Ry=     0       1   0         Rz=   1       √3
           √3        1                           √2       √2
                                                                                          0
                                                                           2      2
    [0     2         2    ]                 [−    2
                                                      0
                                                          2]              [0      0       1]
𝑅 = 𝑅𝑥 ∗ 𝑅𝑦 ∗ 𝑅𝑧
      01   0     √2    √2   √3   1
      1    √3        0         −   0
    0    −        2     2    2   2
𝑅=    2     2 ∗   0  1 0 ∗ 1 √3
      √3   1      √2   √2          0
    0           −    0       2  2
   [  2    2 ] [ 2      2] [0   0 1]
          √6                √2       √2
                          −
           4                4         2
        3√2 1         (       )
                        √2 − 2 ∗ √3   √6
𝑅=          +       −               −
         8    4             8          4
      (√2 − 2) ∗ √3      √2 3        √2
   [−       8            8 4
                            +
                                      4 ]
             𝑎11 + 𝑎 22 + 𝑎 33 − 1
𝜃 = 𝑐𝑜𝑠 −1
                       2
Angulo de rotación 𝜃
             𝑎11 + 𝑎 22 + 𝑎 33 − 1
𝜃 = 𝑐𝑜𝑠 −1
                       2
             0.866 + 0.866 + 1 − 1
𝜃 = 𝑐𝑜𝑠 −1
                       2
𝜃 = 30°
       0.5+0.5
𝑆𝑥= 2sin (30) = 1
         0−0
𝑆𝑦 =             =0
       2sin (30)
          0+0
𝑆𝑧 =    2sin (30)
                   =0
                                                   𝑎11 + 𝑎 22 + 𝑎 33 − 1
                                        𝜃 = 𝑐𝑜𝑠 −1
                                                             2
                                               −1
                                                  0.866 + 0.866 + 1 − 1
                                       𝜃 = 𝑐𝑜𝑠
                                                             2
                                                    𝜃 = 30°
                                             0 −0
                                     𝑆𝑥 =          =0
                                            2𝑠(30)
                                             0−0
                                       𝑆𝑦 =        =0
                                            2𝑠(30)
                                       0.5 + 0.5   1
                                  𝑆𝑧 =           = 1 =1
                                        2𝑠(30)    2( )
                                                    2
𝜃𝑧 = 30
     𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0
Rz= [ 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) 0 ]
        0      0    1
     𝐶𝑜𝑠(30) −𝑆𝑖𝑛(30) 0
Rz= [ 𝑆𝑖𝑛(30) 𝐶𝑜𝑠(30) 0]
         0       0    1
      √3       1
           −       0
      2      2
Rz=   1    √3
                   0
       2   2
      [0   0       1]
Matriz Homogénea
   √3         1
           −
   2          2        0 0
𝑀= 1        √3         0 0
   2         2
    0       0          1 0
  [ 0       0          0 1]
          √𝟑             𝟏
                 −           𝟎 √𝟑 − 𝟐
          𝟐       𝟐
𝑨         𝟏      √𝟑          𝟎 𝟐√ 𝟑 + 𝟏
𝑩𝑻   =
             𝟐       𝟐
           𝟎     𝟎                   𝟏   𝟎
         [ 𝟎     𝟎                   𝟎   𝟏   ]
𝑹𝒂 = 𝑹𝒛 ∗ 𝑷𝒂
     √𝟑   𝟏
        −   𝟎
     𝟐    𝟐      𝟐
𝑹𝒂 = 𝟏 √𝟑     ∗ [𝟒 ]
            𝟎    𝟎
     𝟐   𝟐
    [𝟎   𝟎 𝟏]
       √𝟑 − 𝟐
𝑹𝒂 = [𝟐√𝟑 + 𝟏]
         𝟎
          √𝟑             𝟏
                 −           𝟎 −𝟐
          𝟐       𝟐
𝑩         𝟏      √𝟑          𝟎 −𝟒
𝑨𝑻   =
             𝟐       𝟐
           𝟎     𝟎               𝟏   𝟎
         [ 𝟎     𝟎               𝟎   𝟏]
  𝟎       𝟎      𝟏                      −𝟏
  𝟏       √𝟑               𝟏            𝟏+𝟐√𝟑
                 𝟎     * { 𝟐 }=                     //
  𝟐       𝟐                           𝟐
  √𝟑      𝟏               −𝟏        −√𝟑+𝟐
{−   𝟐     𝟐
                 𝟎}                 {    𝟐      }
Quaternion
                 𝒂𝟏𝟏 + 𝒂𝟐𝟐 + 𝒂𝟑𝟑 − 𝟏
𝜽 = 𝐜𝐨𝐬−𝟏
                          𝟐
                         𝟎 + √𝟐 + 𝟎 − 𝟏
                               𝟑
               𝜽 = 𝐜𝐨𝐬−𝟏
                               𝟐
𝜽 = 𝟏. 𝟔𝟑° = 𝟗𝟑. 𝟑°
                          𝟏
         𝒂𝟑𝟐 −𝒂𝟐𝟑           −𝟎
𝑺𝒙 =       𝟐𝒔𝜽
                     = 𝟐𝐬𝐢𝐧 (𝟗𝟑.𝟑) = 0.25
                          𝟐
                             √𝟑
         𝒂𝟏𝟑 −𝒂𝟑𝟏        𝟏−(− )
𝑺𝒚 =       𝟐𝒔𝜽
                     = 𝟐𝐬𝐢𝐧 (𝟗𝟑.𝟑)=0.93
                             𝟐
                            𝟏
         𝒂𝟐𝟏 −𝒂𝟏𝟐             −()
𝑺𝒛 =       𝟐𝒔𝜽
                     =      𝟐
                         𝟐𝐬𝐢𝐧 (𝟗𝟑.𝟑)
                                        =0.25
MODULO=
            𝟏.𝟔𝟑
                      𝟎. 𝟐𝟓        𝟏.𝟔𝟑
𝒒 = 𝑪𝒐𝒔 (        ) + {𝟎. 𝟗𝟑}*𝐬𝐢𝐧 (      )
             𝟐                      𝟐
                      𝟎. 𝟐𝟓
                                  𝒒 = 𝟎. 𝟔𝟖 + 𝟎. 𝟏𝟖𝟑𝒊 + 𝟎. 𝟔𝟖𝟑 𝒋 + 𝟎. 𝟏𝟖𝟑𝒌
                                  𝒒 ∗= 𝟎. 𝟔𝟖 − 𝟎. 𝟏𝟖𝟑𝒊 − 𝟎. 𝟔𝟖𝟑𝒋 − 𝟎. 𝟏𝟖𝟑𝒌
           √𝟑 + 𝟏 + √𝟑 − 𝟏
𝜽 = 𝐜𝐨𝐬−𝟏 𝟐            𝟐
                   𝟐
           √𝟑
𝜽 = 𝒄𝒐𝒔−𝟏 ( )
            𝟐
𝜽 = 𝟑𝟎
        𝒂𝟑𝟐 −𝒂𝟐𝟑        𝟎−𝟎
𝑺𝒙 =            =                =0
          𝟐𝒔𝜽       𝟐𝐬𝐢𝐧 (𝟑𝟎)
                       𝟏    𝟏
        𝒂𝟏𝟑 −𝒂𝟑𝟏         −(− )
𝑺𝒚 =      𝟐𝒔𝜽
                = 𝟐𝐬𝐢𝐧 (𝟑𝟎)=1
                       𝟐    𝟐
Parametros: 𝜽 = 𝟑𝟎 ; 𝑲 = (𝟎 𝟏 𝟎)𝑻
Movimiento
Mx= 3
My= 10
Mz= -1
          1 0 0 3
   0 cos(30) −sin (30) 𝑀𝑦
𝑇=[                      ]
    0 sin(30) cos(30) 𝑀𝑧
          0 0 0 1
    1   0  0   3
       √3   1
    0     −   10
        2   2
𝑇=
        1 √3
     0        −1
        2  2
   [0 0    0   1]
17. 𝑃 𝐵 = (0, −1, 2) 𝑇
𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑟 𝑃 𝐴
           0
          −1
𝑃𝐴 = 𝑇 ∗ [ ]
           2
           1
       1
       0   0   3
       √3   1        0
    0     −   10
 𝐴     2    2       −1
𝑃 =               ∗[ ]
       1 √3          2
     0        −1     1
       2   2
    [0 0  0   1 ]
         3
      18 − √3
𝑃𝐴 =     2
      2√3 − 3
         2
     [ 1 ]
19.
Punto A = (6,2,4)
Eje de rotación Z
𝜃𝑧 = 90
     𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0
Rz= [ 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) 0 ]
        0      0    1
     𝐶𝑜𝑠(90) −𝑆𝑖𝑛(90) 0
Rz= [ 𝑆𝑖𝑛(90) 𝐶𝑜𝑠(90) 0]
         0       0    1
      0 1 0
Rz= [−1 0 0]
      0 0 1
Matriz Homogenea A
       0    1   0   𝐴𝑥
      −1    0   0   𝐴𝑦]
𝑀𝑎 = [
       0    0   1   𝐴𝑧
       0    0   0   1
       0    1   0   6
𝑀𝑎 = [−1    0   0   4]
       0    0   1   4
       0    0   0   1
20.
Punto B = (-2, 9, 7)
No existe rotación
     1 0 0
𝑅 = [0 1 0]
     0 0 1
Matriz Homogenea B
      1    0   0   𝐵𝑥
                   𝐵𝑦 ]
𝑀𝑏 = [0    1   0
      0    0   1   𝐵𝑧
      0    0   0    1
      1    0   0 −2
𝑀𝑏 = [0    1   0 9]
      0    0   1 7
      0    0   0 1
21.
𝜃𝑥 = 180                                   𝜃𝑦 = −90
      1   0       0                            𝐶𝑜𝑠(𝜃) 0 𝑆𝑖𝑛(𝜃)
Rx= [ 0 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃)]                    Ry=[ 0      1   0 ]
      0 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃)                          −𝑆𝑖𝑛(𝜃) 0 𝐶𝑜𝑠(𝜃)
     1     0        0                             𝐶𝑜𝑠(−90) 0 𝑆𝑖𝑛(−90)
Rx= [0 𝐶𝑜𝑠(180) −𝑆𝑖𝑛(180)]                 Ry=[       0     1     0   ]
     0 𝑆𝑖𝑛(180) 𝐶𝑜𝑠(180)                          −𝑆𝑖𝑛(−90) 0 𝐶𝑜𝑠(−90)
     1 0  0                                     0 0 −1
Rx= [0 −1 0 ]                              Ry= [0 1 0 ]
     0 0 −1                                     1 0 0
R= Rx*Ry
     1 0  0      0 0 −1
𝑅 = [0 −1 0 ] ∗ [0 1 0 ]
     0 0 −1      1 0 0
      0  0 −1
𝑅 = [ 0 −1 0 ]
     −1 0   0
Matriz Homogénea C
       0   0    −1   𝐶𝑥
                     𝐶𝑦]
𝑀𝑐 = [ 0   −1    0
      −1   0     0   𝐶𝑧
       0   0     0    1
       0    0 −1 2
𝑀𝑐 = [ 0   −1 0 3 ]
      −1    0 0 −4
       0    0 0 1
Quaterniones
                                         S = (0,0,1)
                                           θ         θ
                                      q = C2 + S ∗ S 2
                                                     0
                θ          θ      π         π
          q1 = C 21 + S ∗ S 21 = C2 + S ∗ S 2 = 0 + [0 ] ∗ 1 = 0 + 0i + 0j + k
                                                     1
                                  3π          3π                 0
                θ          θ
          q2 = C 22 + S ∗ S 22 = C 42 + S ∗ S 42 = 0.382683 + [0] ∗ 0.92388
                                                                 1
                          = 0.382683 + 0i + 0j + 0.92388k
Traslación:
                                   t1 = 0 + 10i + 4j + 0k
                                   t 2 = 0 − 10i + 5j + 0k
                           P C = q1 ( q2 ∗ p ∗ q2 ∗ + t 2 ) ∗ q1 ∗ + t1
                               P C = 0 + 20.71i + 2.54j + 1k
Quaterniones duales
                                  ϵrxyz = h0 ∗ ϵruvw ∗ ̅̅̅̅
                                                       h0 ∗
                                               t i ∗ qi
                                      hi = qi + ε
                                                   2
               t1 ∗ q1                         (0 + 10i + 4j + 0) ∗ (0 + 0i + 0j + k)
   h1 = q1 + ε         = (0 + 0i + 0j + k) + ε
                  2                                              2
                   = (0 + 0i + 0j + k) + ε(0 + 2.5i − 5j + 0k)
                 t 2 ∗ q2
   h2 = q2 + ε
                     2
                      = (0.382683 + 0i + 0j + 0.92388k)
                          (0 − 10i + 5j + 0k) ∗ (0.382683 + 0i + 0j + 0.92388k)
                      +ε
                                                     2
                      = (0.382683 + 0i + 0j + 0.92388k) + ε(0 + 0.396857i − 5.57611j
                      + 0k)
 Dual conjugado:
                     ̅̅̅̅
                     h1 ∗ = (0 − 0i − 0j − k) − ε(0 + 2.5i − 5j + 0k)
      ̅̅̅̅
      h2 ∗ = (0.382683 − 0i − 0j − 0.92388k) − ε(0 + 0.396857i − 5.57611j + 0k)
 El punto C resulta:
                               ϵC = h1 ∗ h2 ∗ ϵP ∗ ̅̅̅̅
                                                   h1 ∗ ∗ ̅̅̅̅
                                                          h2 ∗
 Donde ϵP = (1 + 0i + 0j + 0k) + ε(0 − 2i + 3j + 1k))
  ϵC = ((0 + 0i + 0j + k) + ε(0 + 4i − 10j + 0k)) ∗ ((0 + 0i + 0j + k) + ε(0 + 0.79257i
                 − 11.152215j + 0k)) ∗ ϵP ∗ ((0 − 0i − 0j − k) − ε(0 + 4i − 10j + 0k))
                 ∗ ( (0.382683 − 0i − 0j − 0.92388k) − ε(0 + 0.79257i − 11.152215j
                 + 0k))
                 ϵC = ( (1 + 0i + 0j + 0k) + ε(0 + 20.71i + 2.54j + 1k)
Matrices
                                1    0      0        1 0 0
                      (     )
                    R x, 90 = [ 0 C(90° ) −S(90)] = [0 0 −1]
                                0 S(90)   C(90)      0 1 0
Translación en p (8, -4, 12)
                                          1 0     0 8
                                 XYZ
                                TUVW   = [0 0    −1 −4]
                                          0 1     0 12
                                          0 0     0 1
                                      1 0 0       8      −3
                             XYZ
                            rUVW   = [0 0 −1      −4] ∗ [ 4 ]
                                      0 1 0       12     −11
                                      0 0 0       1       1
                                                 5
                                         XYZ     7
                                        rUVW   =[ ]
                                                 16
                                                 1
Quaterniones
Quaternion de traslación p (8, -4, 12)
                                  qt = 0 + 8i − 4j + 12k
Quaternion de rotación
                                    S = i + 0j + 0k
                                        90              90
                              qr = cos ( ) + S ∗ sin ( )
                                         2               2
                                    √ 2    √ 2
                               qr =     +      i + 0j + 0k
                                     2      2
                                        √2 √2
                               qr ∗ =      −   i − 0j − 0k
                                         2   2
                                   p = 0 − 3i + 4j − 11k
                                    rxyz = qr ∗ p ∗ qr ∗
                          √2   √2                                 3√2
                             −            0      0
                           2    2                                  2
                          √2 √2                           0      −3√2
                                            0     0
                                                         −3
                 qr ∗ p = 2    2                      ∗[     ]=    2
                                           √2     √2      4      15√2
                               0     0          −        −11
                                            2      2               2
                                           √ 2   √ 2             −7 √2
                             [ 0     0
                                            2     2 ]           [ 2 ]
                             3√2       3√2       15√2 7√2
                                               −
                               2        2           2      2      √2
                               3√2     3√2      7√2     15 √2      2      0
                            −
          qr ∗ p ∗ qr ∗ =       2       2         2        2 ∗ √2 = [−3]
                            15√2      −7√2      3√2      3√2     −       11
                                                                    2
                               2        2         2        2       0      4
                            −7√2       15√2       3√2           [ 0 ]
                                                          √2
                           [ 2      −          −
                                         2          2      2 ]
                         ∗
            (qr ∗ p ∗ qr ) + qt = (0 − 3i + 11j + 4k) + (0 + 8i − 4j + 12k)
                                  rxyz = 0 + 5i + 7j + 16k
Quaterniones duales
                                  ∈rxyz = h0 ∗ ∈ruvw ∗ ̅̅̅̅
                                                       h0 ∗
                                                 t∗q
                                      h0 = q + ε
                                                   2
                                                               √2 √2
             √2 √2                      (0 + 8i − 4j + 12k) ∗ ( +    i + 0j + 0k)
       h0 = ( +        i + 0j + 0k) + ε                        2   2
               2    2                                        2
                    √ 2   √ 2
             h0 = ( +         i + 0j + 0k) + ε(−2√2 + 2√2i + 2√2j + 2√2k)
                     2     2
            ̅̅̅̅    √2 √2
            h0 ∗ = ( +        i + 0j + 0k) − ε(−2√2 − 2√2i − 2√2j − 2√2k)
                     2      2
 Matrices
                             C( −90°) −S(−90°) 0    0 1 0
               R(z, −90°) = [ S(−90°) C(−90°) 0] = [−1 0 0]
                                 0       0     1    0 0 1
                                    0 1 0      4
                           rxyz = [−1 0 0] ∗ [ 8 ]
                                    0 0 1     12
                                           8
                                  rxyz = [−4]
                                          12
Quaterniones
                                      θ        θ
                                q = C2 + S ∗ S 2
                                          0
                                   −90          −90
                             q = C 2 + [0] ∗ S 2
                                          1
                                √2              √2
                            q=      + 0i + 0j −    k
                                 2               2
                                 p = q ∗ p ∗ q∗
             √2           √2                             √2           √2
     rxyz = ( + 0i + 0j −    k) ∗ (0 + 4i + 8j + 12k) ∗ ( − 0i − 0j +    k)
              2            2                              2            2
                      √2                   √2
                              0      0 −
                      2                     2
                             √ 2    √ 2             0     6√2
                      0                    0
                                                    4
                 =            2      2          ∗ [ ] = 6√2
                              √2 √2                 8     2√2
                      0     −              0       12    [
                               2     2                    6√2]
                       √2                 √2
                    [− 2      0      0
                                           2 ]
                                                      √2
                   6√2 −6√2 −2√2 −6√2                  2     0
                   6√2    6√2     −6√2     2√2         0     8
                =                                  ∗     =[ ]
                   2√2 6√2         6√2 −6√2            0    −4
                  [6√2 −2√2 6√2            6√2 ] √2         12
                                                     [2]
Quaterniones duales
                            ϵrxyz = h0 ∗ ϵruvw ∗ ̅̅̅̅
                                                 h0 ∗
                                             t∗q
                                h0 = q + ε
                                              2
                                                         √2           √2
           √2           √2        (0 + 4i + 8j + 12k) ∗ ( + 0i + 0j −    k)
     h0 = ( + 0i + 0j −    k) + ε                        2             2
           2            2                              2
                                                √2            √2
                 t ∗ q = (0 + 4i + 8j + 12k) ∗ ( + 0i + 0j −     k)
                                                 2             2
                                                      √2
                           0 −4 −8 −12                2       6√2
                           4    0 −12         8 ]     0
                 t ∗q = [                         ∗        = −2√2
                           8 12       0      −4       0       6√2
                          12 −8       4       0        √2   [ 6√2 ]
                                                    [− 2 ]
                                              3√2
                                    t∗q
                                          = −√2
                                      2       3√2
                                            [ 3√2 ]
                    √2             √2
             h0 = ( + 0i + 0j −        k) + ε(3√2 − √2i + 3√2j + 3√2k)
                     2              2
             ̅̅̅̅    √2           √2
             h0 ∗ = ( − 0i − 0j +    k) − ε(3√2 − √2i + 3√2j + 3√2k)
                     2             2
                             1 0   0      1 0  0           0
                     B
                     CR   = [0 Cπ −Sπ] = [0 −1 0 ] ; B
                                                     Ct = [0]
                             0 Sπ Cπ      0 0 −1           5
                                        1 0   0 0
                                 B      0 −1  0 0]
                                 CT = [ 0  0 −1 5
                                        0 0   0 1
                                PA = A  B
                                     BT CTP
                                            C
      0.2366124 0.9501203                0.2031894 −10 1 0    0 0 1
      0.8820099 −0.2977589               0.3652371  5 ] [0 −1 0 0] [0 ]
PA = [
      0.4075207 0.0927954                −0.9084690 2    0 0 −1 5 1
          0          0                        0     1    0 0  0 1 1
                      P A = (−8.9506 7.3430 −1.2264)
Quaterniones
                                            θ      θ
                                     q = C2 + S ∗ S 2
                           0.0927954 − 0.3652371
                    Sx =                         = −0.78446
                                  2s(170)
                           0.2031894 − 0.4075207
                    Sy =                         = −0.58834
                                  2s (170)
                           0.8820099 − 0.9501203
                    Sz =                         = −0.19611
                                  2s(170)
                     S = (−0.78446, −0.58834, −0.19611)
          A          170                                            170
          Bq   =C     2
                           + (−0.78446, −0.58834, −0.19611) ∗ S      2
          A
          Bq    = −0.98427 + 0.13812i + 0.10359j + 0.03453k
          A ∗
          Bq    = −0.98427 − 0.13812i − 0.10359j − 0.03453k
                               B        π               π
                               Cq    = C2 + (1,0,0) ∗ S2
                               B
                               Cq    = 0 + 1i + 0j + 0k
                               B ∗
                               Cq    = 0 − 1i − 0j − 0k
                               A
                               Bt   = 0 − 10i + 5j + 2k
                                B
                                Ct   = 0 + 0i + 0j + 5k
                                         P C = 0 + 1i + 0j + 1k
                                     PA = A   B  CB ∗  B A ∗    A
                                          Bq( CqP Cq + Ct) Bq + Bt
           Quaterniones duales
                                                      θ     θ
                                              q = C2 + S ∗ S 2
                      A        170                                          170
                      Bq   =C   2
                                     + (−0.78446, −0.58834, −0.19611) ∗ S    2
                      A
                      Bq   = −0.98427 + 0.13812i + 0.10359j + 0.03453k
                                         A
                                         Bt   = 0 − 10i + 5j + 2k
                                                        A    A
                                          A             Bt ∗ Bq
                                          Bh    =A
                                                 Bq + ε
                                                           2
      A
      Bh   = [0.0871 − 0.781i − 0.586j − 0.195k − ε2.247 − ε0.338i − ε1.540j + ε4.971k]
    ̅̅̅̅̅
    A ∗
    Bh = [0.0871 + 0.781i + 0.586j + 0.195k + ε2.247 − ε0.338i − ε1.540j + ε4.971395k]
                                         B        π              π
                                         Cq   = C2 + (1,0,0) ∗ S2
                                B
                                Cq   = 0 + 1i + 0j + 0k
                                B
                                Ct   = 0 + 0i + 0j + 5k
                                               B
                                 B            C   t∗ B
                                                     Cq
                                 Ch   =B
                                       Cq + ε
                                                   2
            B
            Ch   = [0 + 1.0i + 0.0j + 0.0k + ε0.0 + ε0.0i + ε2.5j + ε0.0k]
           ̅̅̅̅̅
           B   ∗
           Ch = [0 − 1.0i − 0.0j − 0.0k − ε0.0 + ε0.0i + ε2.5j + ε0.0k]
                                PA = A  B    ̅̅̅̅̅∗ ̅̅̅̅̅
                                            CB      A ∗
                                     Bh Ch P Ch Bh
La rotación y translación:
                                                 π
                                     R z0 = θ1 = rad = 30°
                                                 6
                                          Tx1 = a1 = 3ft
                                                 π
                                     R z2 = θ2 = rad = 45°
                                                 4
                                          Tx3 = a2 = 2ft
                                                 π
                                     R z4 = θ3 = rad = 60°
                                                 3
                                P ′ = (a3,0) = (1,0)
Matrices
M0 -> T=0 y R z0 = 30°
                                                     √3   1
                      C(30°) −S(30°) 0          0       −   0 0
                                                      2   2
                M0 = [ S(30°) C(30°) 0          0] = 1 √3
                                                            0 0
                         0      0    1          0     2  2
                         0      0    0          1     0  0 1 0
                                                    [0   0 0 1]
M1 ->Tx1 = 3ft y R z2 = 45°
                                                        √2   √2
                     C(45°) −S(45°) 0 3                    −      0 3
                                                         2    2
               M1 = [ S(45°) C(45°) 0 0] =              √2 √2
                                                                  0 0
                        0      0    1 0                  2  2
                        0      0    0 1                  0  0     1 0
                                                       [0   0     0 1]
M2 ->Tx3 = 2ft y R z4 = 60°
                                                     1   √3
                     C(60°) −S(60°) 0          2       −          0 2
                                                     2    2
               M1 = [ S(60°) C(60°) 0          0] = √3  1
                                                                  0 0
                        0      0    1          0     2  2
                        0      0    0          1     0  0         1 0
                                                   [0   0         0 1]
                                 R = M0 ∗ M1 ∗ M2 ∗ P′
           √3   1                 √2      √2            1    √3
              −   0           0        −      0 3          −       0 2   1
            2   2                  2       2            2     2
       R = 1 √3 0                 √ 2   √  2           √ 3  1           [0]
                              0 ∗             0 0 ∗                0 0 ∗ 0
            2  2                   2      2             2   2
            0  0 1            0    0      0   1 0       0   0      1 0   1
          [0   0 0            1] [ 0      0   0 1] [ 0      0      0 1]
                                         1
                                      −
                                        √2     2.4086
                                        1      4.1390 ]
                                R=           =[
                                       √2         0
                                        0         0
                                     [ 0 ]
Quaterniones
                               S0 = S2 = S4 = 0i + 0j + k
                                     θi           θi
                             qi = C ( ) + Si ∗ S ( )
                                     2            2
          θ1           θ1      30     0      30
  q0 = C ( ) + S0 ∗ S ( ) = C ( ) + [0] ∗ S ( ) = 0.96592 + 0i + 0j + 0.25881k
          2            2        2             2
                                      1
          θ2           θ2      45     0      45
  q2 = C ( ) + S2 ∗ S ( ) = C ( ) + [0] ∗ S ( ) = 0.92388 + 0i + 0j + 0.38268k
          2            2        2             2
                                      1
             θ3           θ3      60    0       60
    q4 = C ( ) + S4 ∗ S ( ) = C ( ) + [0] ∗ S ( ) = 0.86602 + 0i + 0j + 0.5k
             2            2        2             2
                                        1
                               t1 = 0 + 3i + 0j + 0k
                               t 3 = 0 + 2i + 0j + 0k
                               P′ = 0 + 1i + 0j + 0k
                   P = q0 q2 q4 ∗ P ′ ∗ q4 ∗ + t 3 ) ∗ q2 ∗ + t1 ) ∗ q0 ∗
                    0    (   (
                           P 0 = 0 + 2.41i + 4.14j + 0k
Quaterniones duales
                                                  t i ∗ qi
                                    hi = qi + ε
                                                      2
                                                  t 0 ∗ q0
                                   h0 = q0 + ε
                                                      2
     h0 = (0.96592 + 0i + 0j + 0.25881k)
                      (0 + 0i + 0j + 0k) ∗ (0.96592 + 0i + 0j + 0.25881k)
                   +ε
                                                2
           h0 = (0.96592 + 0i + 0j + 0.25881k) + ε(0 + 0i − 0j + 0k)
                                                  t1 ∗ q2
                                   h2 = q2 + ε
                                                     2
       h2 = (0.92388 + 0i + 0j + 0.38268k)
                         (0 + 3i + 0j + 0k) ∗ (0.92388 + 0i + 0j + 0.38268k)
                     +ε
                                                   2
      h2 = (0.92388 + 0i + 0j + 0.38268k) + ε(0 + 0.1.3858i − 0.57403j + 0k)
                                             t 3 ∗ q4
                                   h4 = q4 + ε
                                                 2
                                     (0 + 2i + 0j + 0k) ∗ (0.86602 + 0i + 0j + 0.5k)
 h4 = (0.86602 + 0i + 0j + 0.5k) + ε
                                                             2
           h4 = (0.86602 + 0i + 0j + 0.5k) + ε(0 + 0.86603i − 0.5j + 0k)
              ̅̅̅̅
              h0 ∗ = (0.96592 − 0i − 0j − 0.25881k) − ε(0 + 0i − 0j + 0k)
      ̅̅̅̅
      h2 ∗ = (0.92388 − 0i − 0j − 0.38268k) − ε(0 + 0.1.3858i − 0.57403j + 0k)
            ̅̅̅̅
            h4 ∗ = (0.86602 − 0i − 0j − 0.5k) − ε(0 + 0.86603i − 0.5j + 0k)
                       ϵC = h0 ∗ h2 ∗ h4 ∗ ϵP ∗ ̅̅̅̅
                                                h0 ∗ ∗ ̅̅̅̅
                                                       h2 ∗ ∗ ̅̅̅̅
                                                              h4 ∗
Matrices
  Traslación: A
              Bt = (−10 2 10 )
                            π
  Rotación 1: A
              BR1 => θ =         rad; S = (1 0 0 )
                            10
                            π
  Rotación 2: A
              BR 2 => θ =        rad; S = (0 1 0)
                            10
   Traslación: B
               Ct = ( 1 10 −10)
   Posición de la cámara: P C = ( 0 0 2)
                                   1 0      0
                                      π       π
                      A        0 c         −s
                      BR1 =          10       10
                                      π      π
                              [0 s 10 c 10 ]
                                  π           π
                                c        0 s
                                  10          10
                      A
                      BR  2 =     0      1    0
                                    π         π
                               −s
                              [ 10       0  c
                                              10]
      1   0    0         π            π
          π      π     c       0 s
      0 c    −s          10           10      0.9511        0   0.3090
A
BR =      10    10 ∗     0     1      0 = [ 0.0955       0.9511 −0.2939]
          π    π           π          π      −0.2939     0.3090 0.9045
     [0 s 10 c 10 ] [ −s 10 0 c 10]
                          0.9511    0    0.3090 −10
               A          0.0955 0.9511 −0.2939  2 ]
               BT      =[
                         −0.2939 0.3090 0.9045  10
                             0      0       0    1
                                  1    0   0  1
                            B     0    1   0 10 ]
                            CT = [0    0   1 −10
                                  0    0   0  1
                                PA = A  B
                                     BT CTP
                                            C
Quaterniones
   TA
    Bt = (0 − 10i + 2j + 10k)
   A              π
   BR1   => θ =        rad; S = (1 0 0 )
                  10
                           A            π                  π
                           Bq1   =C          + (1 0 0) S
                                      2 ∗ 10             2 ∗ 10
                           A
                           Bq1   = (0.9877 + 0.1564i + 0j + 0k)
                          A ∗
                          Bq1    = (0.9877 − 0.1564i − 0j − 0k)
   A               π
   BR 2   => θ =        rad; S = (0 1 0)
                   10
                           A            π                  π
                           Bq2   =C          + (0 1 0) S
                                      2 ∗ 10             2 ∗ 10
                           A
                           Bq2   = (0.9877 + 0i + 0.1564j + 0k)
                          A ∗
                          Bq2    = (0.9877 − 0i − 0.1564j − 0k)
   B
   Ct   = (0 + 1i + 10j − 10k)
   P C = (0 + 0i + 0j + 2k)
                                                  ∗    ∗
                    PA = A     A     c  B A       A     A
                         Bq1 ( Bq2 (P + Ct) Bq2 ) Bq1 + Bt
Quaterniones duales
   A
   Bt   = (0 − 10i + 2j + 10k)
   A               π
   BR1    => θ =        rad; S = (1 0 0 )
                   10
                           A            π                  π
                           Bq1   =C          + (1 0 0) S
                                      2 ∗ 10             2 ∗ 10
                           A
                           Bq1   = (0.9877 + 0.1564i + 0j + 0k)
                                              A    A
                                      A       Bt ∗ Bq1
                                   =A BH1
                                      Bq1 + ε
                                                  2
    A
     H
    B 1 = [0.988 + 0.156i + 0.0j + 0.0k + ε0.782  − ε4.938i + ε1.769j + ε4.782k]
 ̅̅̅̅̅̅
 A ∗
 BH1 = [0.988 − 0.156i − 0.0j − 0.0k − ε0.782 − ε4.938i + ε1.769j + ε4.782k]
   A               π
   BR 2   => θ =        rad; S = (0 1 0)
                   10
                           A            π                  π
                           Bq2   =C          + (0 1 0) S
                                      2 ∗ 10             2 ∗ 10
                           A
                           Bq2   = (0.9877 + 0i + 0.1564j + 0k)
                                            A    A
                             B              Bt ∗ Bq1
                             CH2   =Aq
                                    B 1 + ε
                                                2
      B
      CH2   = [0.988 + 0.0i + 0.156j + 0.0k + ε0.0 + ε0.0i + ε0.0j + ε0.0k]
     ̅̅̅̅̅̅
     B    ∗
     CH2 = [0.988 − 0.0i − 0.156j − 0.0k − ε0.0 + ε0.0i + ε0.0j + ε0.0k]
B
Ct   = (0 + 0i + 0j + 0k + ε0 + ε1i + ε10j − ε10k)
             −1 0 0 0.1           1 0 0 0               −1 0       0 0.1
      oM = [  0 −1   0     1 ]∗ [ 0     0    1   0]=[    0    0   −1  1]
       c
              0  0 1 1.6          0 −1 0 0               0 −1 0 1.6
              0  0 0 1            0 0 0 1                0    0    0  1
                                   R = ocM ∗ pp
                             −1 0          0 0.1          2
                              0      0    −1     1      −1.6
                      R= [                          ]∗ [    ]
                              0 −1 0 1.6                −0.1
                              0      0     0     1        1
                                           −1.9
                                            1.1 ]
                                    R=[
                                            3.2
                                             1
Quaterniones
                            q0 = 0 + 0.1i + 1j + 1.6k
                         180             180
                q1 = C (     ) + ⃗S ∗ S (     ) → ⃗S = 0i + 0j + 1k
                          2                2
                              q1 = 0 + 0i + 0j + 1k
                        −90               −90
                q2 = C (     ) + ⃗S ∗ S (     ) → ⃗S = 1i + 0j + 0k
                          2                2
                                   √2 √2
                            q2 =       −     i + 0j + 0k
                                    2      2
                            pp = 0 + 2i − 1.6j − 0.1k
                      R = (q1 ∗ (q2 ∗ pp ∗ q′2 ) ∗ q1′ ) + q0
                                    R = ((0 + 0i + 0j + 1k)
                 √2 √2                                          √2 √2
             ∗ (( −    i + 0j + 0k) ∗ (0 + 2i − 1.6j − 0.1k) ∗ ( +    i − 0j − 0k))
                  2 2                                            2  2
                          √2 √2
                                              0    0
                           2   2
                           √2 √2                          0        1.4142
                         −                    0    0
                            2  2                          2  ] = [ 1.4142 ]
               q2 ∗ pp =                               ∗[
                                              √2   √2    −1.6     − 1.2021
                               0        0        −       −0.1      1.0607
                                               2    2
                                              √2 √2
                           [ 0          0
                                               2   2 ]
                                                                       √2
                        1.4142 −1.4142  1.202  −1.0607                 2       0
                        1.4142  1.4142 −1.0607 − 1.202 ]               √2 = [ 2 ]
      q2 ∗ pp ∗ q′2 = [                                  ∗
                       − 1.202 1.0607  1.4142 −1.4142                        − 0.1
                                                                       2
                        1.0607   1.202 1.4142  1.4142                  0      1.6
                                                                      [0]
                                          0    0 0 −1      0      −1.6
                     (q2 ∗ pp ∗ q′2 )     0    0 −1 0 ] [ 2 ]      0.1 ]
              q1 ∗                      =[             ∗       = [
                                          0    1 0  0    − 0.1      2
                                          1    0 0  0     1.6       0
                                     −1.6 −0.1 −2    0      0                0
   (q1 ∗ (q2 ∗ pp ∗ q′2 ) ∗ q1′ ) = [ 0.1 −1.6  0    2  ]∗[ 0 ] =           −2
                                                                           [ ]
                                       2   0   −1.6 −0.1    0               0.1
                                       0  −2   0.1 −1.6    −1               1.6
(q1 ∗ (q2 ∗ pp ∗ q′2 ) ∗ q′1 ) + q0 = (0 − 2i + 0.1j + 1.6k) + (0 + 0.1i + 1j + 1.6k)
          H1 -> T1 = 0 + 0i + 0j + 0k y R x0 = −90°
                                   −90             −90
                          q1 = C (     ) + ⃗S ∗ S (    ) → ⃗S = 1i + 0j + 0k
                                    2               2
                                             √2 √2
                                      q2 =       −    i + 0j + 0k
                                              2     2
                                                       T1 ∗ q1
                                         H1 = q1 + ε
                                                          2
                                                                     √2 √2
                    √2 √ 2                     (0 + 0i + 0j + 0k) ∗ ( −      i + 0j + 0k)
              H1 = ( −       i + 0j + 0k) + ε                         2    2
                     2     2                                        2
                                 √2 √2
                          H1 = ( −        i + 0j + 0k) + ε(0 + 0i + 0j + 0k)
                                  2    2
                           ∈= (1 + 0i + 0j + 0k) + ε(0 + 2i − 1.6j − 0.1k)
                                          R = H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
                                                            H1 ∗ ∗ ̅̅̅̅̅
                                                                   H0 ∗
                      ̅̅̅̅̅
                      H0 ∗ = (0 + 0i + 0j + 1k) − ε(−0.8 − 0.5i + 0.05j − 0k)
                        ̅̅̅̅̅   √2 √2
                        H1 ∗ = ( −    i + 0j + 0k) − ε(0 − 0i − 0j − 0k)
                                2   2
                    √2 √2
             ∗ ((     −   i + 0j + 0k) + ε(0 + 0i + 0j + 0k)) ∗ ((1 + 0i + 0j + 0k) + ε(0 + 2i
                    2   2
                                    √2 √2
             − 1.6j − 0.1k)) ∗ ((      −   i + 0j + 0k) − ε(0 − 0i − 0j − 0k))
                                     2   2
             ∗ ((0 + 0i + 0j + 1k) − ε(−0.8 − 0.5i + 0.05j − 0k))
                               √2 √2
H0 ∗ H1 = (0 + 0i + 0j + 1k) ∗ (  −     i + 0j + 0k) + ε((0 + 0i + 0j + 1k) ∗ (0 + 0i + 0j + 0k)
                                2     2
                                             √2 √2
             + (−0.8 + 0.5i − 0.05j + 0k) ∗ ( −      i + 0j + 0k))
                                              2    2
             H0 ∗ H1 = (0 + 0i − 0.71j + 0.71k) + ε(−0.21 + 0.92i − 0.04j − 0.4k)
 H0 ∗ H1 ∗ ϵ = (0 + 0i − 0.71j + 0.71k) ∗ (1 + 0i + 0j + 0k) + ε((0 + 0i − 0.71j + 0.71k) ∗ (0 + 2i
                − 1.6j − 0.1k) + (−0.21 + 0.92i − 0.04j − 0.4k) ∗ (1 + 0i + 0j + 0k))
             H0 ∗ H1 ∗ ϵ = (0 + 0i − 0.71j + 0.71k) + ε(−1.27 + 2.13i + 1.38j + 1.38k)
 H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
               H1 ∗
                                                √2 √2
                  = (0 + 0i − 0.71j + 0.71k) ∗ (   −     i + 0j + 0k) + ε((0 + 0i − 0.71j + 0.71k)
                                                 2    2
                                                                            √2 √2
                  ∗ (0 + 0i + 0j + 0k) + (−1.27 + 2.13i + 1.38j + 1.38k) ∗ ( −       i + 0j + 0k))
                                                                             2    2
               H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
                             H1 ∗ = (0 + 0i + 0j + 1k) + ε(−2.4 + 0.61i + 1.95j + 0k)
   H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
                 H1 ∗ ∗ ̅̅̅̅̅
                        H0 ∗
                    = (0 + 0i + 0j + 1k) ∗ (0 + 0i + 0j + 1k) + ε((0 + 0i + 0j + 1k) ∗ (+0.8 + 0.5i
                    − 0.05j + 0k) + (−2.4 + 0.61i + 1.95j + 0k) ∗ (0 + 0i + 0j + 1k))
H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
              H1 ∗ ∗ ̅̅̅̅̅
                     H0 ∗ = (1 + 0i + 0j + 0k) + ε(0 − 1.9i + 1.1j + 3.2k)