0% found this document useful (0 votes)
40 views37 pages

Jercicios Quternion

The document contains matrices representing rotations and transformations between reference frames. It provides the individual rotation matrices Rx, Ry, Rz and calculates the total rotation matrix R as the product of the individual rotations. It also calculates the rotation angle θ and rotation axis S from the components of R. Finally, it provides an example of a homogeneous transformation matrix M between two frames and the inverse transformation bTa.

Uploaded by

hectorandresona
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
40 views37 pages

Jercicios Quternion

The document contains matrices representing rotations and transformations between reference frames. It provides the individual rotation matrices Rx, Ry, Rz and calculates the total rotation matrix R as the product of the individual rotations. It also calculates the rotation angle θ and rotation axis S from the components of R. Finally, it provides an example of a homogeneous transformation matrix M between two frames and the inverse transformation bTa.

Uploaded by

hectorandresona
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 37

Universidad De Las Américas

UDLA

Hector Oña

31-12-2023

IEAZ4841-2850_2851-ROBOTICA INDUSTRIAL

Portafolio de Ejercicios Progreso 2


𝜃𝑥 = 45 𝜃30 = 30
1 0 0 𝐶𝑜𝑠(𝜃) 0 𝑆𝑖𝑛(𝜃)
Rx= [ 0 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃)] Ry=[ 0 1 0 ]
0 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0 𝐶𝑜𝑠(𝜃)
1 0 0 𝐶𝑜𝑠(30) 0 𝑆𝑖𝑛(30)
Rx= [0 𝐶𝑜𝑠(45) −𝑆𝑖𝑛(45)] Ry=[ 0 1 0 ]
0 𝑆𝑖𝑛(45) 𝐶𝑜𝑠(45) −𝑆𝑖𝑛(30) 0 𝐶𝑜𝑠(30)
1 0 0 √3 1
√2 √2 0
2 2
Rx= 0 2

2 Ry= 0 1 0
√2 √2 1 √3
[0 2 2 ] [− 2 0 2 ]

Matrix Rotación= Rx*Ry


𝑅 = 𝑅𝑥 ∗ 𝑅𝑦

1 0 0 √3 1
√2 √2 0
0 − 2 2
𝑅= 2 2 ∗ 0 1 0
√2 √2 1 √3
[0 − 0
2 2 ] [ 2 2]

√3 1
0
2 2
1 1 √3
𝑅= −
2√2 √2 2√2
1 1 √3

[ 2 √2 √2 2√2 ]
𝜃𝑤 = 30 𝜃𝑣 = 45
𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0 𝐶𝑜𝑠(𝜃) 0 𝑆𝑖𝑛(𝜃)
Rw= [ 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) 0] Rv=[ 0 1 0 ]
0 0 1 −𝑆𝑖𝑛(𝜃) 0 𝐶𝑜𝑠(𝜃)
𝐶𝑜𝑠(30) −𝑆𝑖𝑛(30) 0 𝐶𝑜𝑠(45) 0 𝑆𝑖𝑛(45)
Rw= [ 𝑆𝑖𝑛(30) 𝐶𝑜𝑠(30) 0] Rv=[ 0 1 0 ]
0 0 1 −𝑆𝑖𝑛(45) 0 𝐶𝑜𝑠(45)
√3 1 √2 √2
− 0 0
2 2 2 2
Rw= 1 √3 Rv= 0 1 0
0 √2 √2
2 2
[0 0 1] [− 2
0
2 ]

Matriz Rotacion R=Rv*Rw

√3 1 √2 √2
− 0 0
2 2 2 2
𝑅 = 1 √3 ∗ 0 1 0
0 √2 √2
2 2 − 0
[0 0 1 ] [ 2 2]
√6 1 √6

4 2 4
2 √3 √2
𝑅= √
4 2 4
√ 2 √2

[ 2 0
2]

𝜃𝑥 = 60 𝜃𝑦 = 45 𝜃𝑧 = 30
1 0 0 𝐶𝑜𝑠(𝜃) 0 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0
Rx= [0 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃)] Ry=[ 0 1 0 ] Rz= [ 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) 0]
0 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0 𝐶𝑜𝑠(𝜃) 0 0 1
1 0 0 𝐶𝑜𝑠(45) 0 𝑆𝑖𝑛(45) 𝐶𝑜𝑠(30) −𝑆𝑖𝑛(30) 0
Rx= [0 𝐶𝑜𝑠(60) −𝑆𝑖𝑛(60)] Ry=[ 0 1 0 ] Rz= [ 𝑆𝑖𝑛(30) 𝐶𝑜𝑠(30) 0]
0 𝑆𝑖𝑛(60) 𝐶𝑜𝑠(60) −𝑆𝑖𝑛(45) 0 𝐶𝑜𝑠(45) 0 0 1
1 0 0 √2 √2 √3 1
1 √3 0 − 0
2 2 2 2
Rx= 0 2

2 Ry= 0 1 0 Rz= 1 √3
√3 1 √2 √2
0
2 2
[0 2 2 ] [− 2
0
2] [0 0 1]

𝑅 = 𝑅𝑥 ∗ 𝑅𝑦 ∗ 𝑅𝑧

01 0 √2 √2 √3 1
1 √3 0 − 0
0 − 2 2 2 2
𝑅= 2 2 ∗ 0 1 0 ∗ 1 √3
√3 1 √2 √2 0
0 − 0 2 2
[ 2 2 ] [ 2 2] [0 0 1]

√6 √2 √2

4 4 2
3√2 1 ( )
√2 − 2 ∗ √3 √6
𝑅= + − −
8 4 8 4
(√2 − 2) ∗ √3 √2 3 √2
[− 8 8 4
+
4 ]

Necesitamos encontrar S de la matriz, esto se hace para las componentes (x,y,z)


𝑎 32 − 𝑎 23
𝑆𝑋 =
2𝑠𝑖𝑛(𝜃)
𝑎13 − 𝑎 31
𝑆𝑌 =
2𝑠𝑖𝑛(𝜃)
𝑎 21 − 𝑎12
𝑆𝑍 =
2𝑠𝑖𝑛(𝜃)
Angulo de rotación 𝜃

𝑎11 + 𝑎 22 + 𝑎 33 − 1
𝜃 = 𝑐𝑜𝑠 −1
2

Angulo de rotación 𝜃
𝑎11 + 𝑎 22 + 𝑎 33 − 1
𝜃 = 𝑐𝑜𝑠 −1
2
0.866 + 0.866 + 1 − 1
𝜃 = 𝑐𝑜𝑠 −1
2
𝜃 = 30°

𝑎32 −𝑎23 0−0


𝑆𝑥 = = =0
2𝑠𝑖𝑛𝜃 2sin (30)
𝑎13 −𝑎31 0−0
𝑆𝑦 = 2𝑠𝑖𝑛𝜃
= 2sin (30)= 0
𝑎21 −𝑎12 0.5+0.5
𝑆𝑧 = 2𝑠𝑖𝑛𝜃
= 2sin (30)
=1
Angulo de rotación 𝜃
𝑎11 + 𝑎 22 + 𝑎 33 − 1
𝜃 = 𝑐𝑜𝑠 −1
2
1 + 0.866 + 0.866 − 1
𝜃 = 𝑐𝑜𝑠 −1
2
𝜃 = 30°

0.5+0.5
𝑆𝑥= 2sin (30) = 1
0−0
𝑆𝑦 = =0
2sin (30)
0+0
𝑆𝑧 = 2sin (30)
=0

En base a la matriz propuesta el ángulo será 30 grados y rotara en X

𝑎11 + 𝑎 22 + 𝑎 33 − 1
𝜃 = 𝑐𝑜𝑠 −1
2
−1
0.866 + 0.866 + 1 − 1
𝜃 = 𝑐𝑜𝑠
2
𝜃 = 30°
0 −0
𝑆𝑥 = =0
2𝑠(30)
0−0
𝑆𝑦 = =0
2𝑠(30)
0.5 + 0.5 1
𝑆𝑧 = = 1 =1
2𝑠(30) 2( )
2

𝜃𝑧 = 30
𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0
Rz= [ 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) 0 ]
0 0 1
𝐶𝑜𝑠(30) −𝑆𝑖𝑛(30) 0
Rz= [ 𝑆𝑖𝑛(30) 𝐶𝑜𝑠(30) 0]
0 0 1
√3 1
− 0
2 2
Rz= 1 √3
0
2 2
[0 0 1]

Matriz Homogénea

√3 1

2 2 0 0
𝑀= 1 √3 0 0
2 2
0 0 1 0
[ 0 0 0 1]

A. Matriz trasnformacion aTb


Pa=(2, 4, 0)
1 0 𝟎 𝟐
𝑅𝑃𝑎 = [0 1 𝟎 𝟒]
0 0 𝟏 𝟎
0 𝟎 𝟎 𝟏
√𝟑 𝟏

𝟐 𝟐 𝟎 𝟎 𝟏 𝟎 𝟎 𝟐
𝑨 𝟏 √𝟑 𝟎 𝟎 ∗ [𝟎 𝟏 𝟎 𝟒]
𝑩𝑻 = 𝟎 𝟎 𝟏 𝟎
𝟐 𝟐
𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟏
[ 𝟎 𝟎 𝟎 𝟏]

√𝟑 𝟏
− 𝟎 √𝟑 − 𝟐
𝟐 𝟐
𝑨 𝟏 √𝟑 𝟎 𝟐√ 𝟑 + 𝟏
𝑩𝑻 =
𝟐 𝟐
𝟎 𝟎 𝟏 𝟎
[ 𝟎 𝟎 𝟎 𝟏 ]

B. Matriz Inversa bTa


√𝟑 𝟏
− 𝟎
𝟐 𝟐
Rz= 𝟏 √𝟑
𝟎
𝟐 𝟐
[𝟎 𝟎 𝟏]
Pa=(2, 4, 0)

𝑹𝒂 = 𝑹𝒛 ∗ 𝑷𝒂

√𝟑 𝟏
− 𝟎
𝟐 𝟐 𝟐
𝑹𝒂 = 𝟏 √𝟑 ∗ [𝟒 ]
𝟎 𝟎
𝟐 𝟐
[𝟎 𝟎 𝟏]

√𝟑 − 𝟐
𝑹𝒂 = [𝟐√𝟑 + 𝟏]
𝟎

√𝟑 𝟏
− 𝟎 −𝟐
𝟐 𝟐
𝑩 𝟏 √𝟑 𝟎 −𝟒
𝑨𝑻 =
𝟐 𝟐
𝟎 𝟎 𝟏 𝟎
[ 𝟎 𝟎 𝟎 𝟏]
𝟎 𝟎 𝟏 −𝟏
𝟏 √𝟑 𝟏 𝟏+𝟐√𝟑
𝟎 * { 𝟐 }= //
𝟐 𝟐 𝟐
√𝟑 𝟏 −𝟏 −√𝟑+𝟐
{− 𝟐 𝟐
𝟎} { 𝟐 }

Quaternion
𝒂𝟏𝟏 + 𝒂𝟐𝟐 + 𝒂𝟑𝟑 − 𝟏
𝜽 = 𝐜𝐨𝐬−𝟏
𝟐
𝟎 + √𝟐 + 𝟎 − 𝟏
𝟑
𝜽 = 𝐜𝐨𝐬−𝟏
𝟐
𝜽 = 𝟏. 𝟔𝟑° = 𝟗𝟑. 𝟑°

𝟏
𝒂𝟑𝟐 −𝒂𝟐𝟑 −𝟎
𝑺𝒙 = 𝟐𝒔𝜽
= 𝟐𝐬𝐢𝐧 (𝟗𝟑.𝟑) = 0.25
𝟐

√𝟑
𝒂𝟏𝟑 −𝒂𝟑𝟏 𝟏−(− )
𝑺𝒚 = 𝟐𝒔𝜽
= 𝟐𝐬𝐢𝐧 (𝟗𝟑.𝟑)=0.93
𝟐

𝟏
𝒂𝟐𝟏 −𝒂𝟏𝟐 −()
𝑺𝒛 = 𝟐𝒔𝜽
= 𝟐
𝟐𝐬𝐢𝐧 (𝟗𝟑.𝟑)
=0.25
MODULO=

|𝒖| = √𝟎. 𝟐𝟓𝟐 + 𝟎. 𝟗𝟑𝟐 + 𝟎. 𝟐𝟓𝟐


|𝒖| = 𝟎. 𝟗𝟗
𝟎. 𝟐𝟓
{𝟎. 𝟗𝟑}
𝟎. 𝟐𝟓

𝟏.𝟔𝟑
𝟎. 𝟐𝟓 𝟏.𝟔𝟑
𝒒 = 𝑪𝒐𝒔 ( ) + {𝟎. 𝟗𝟑}*𝐬𝐢𝐧 ( )
𝟐 𝟐
𝟎. 𝟐𝟓
𝒒 = 𝟎. 𝟔𝟖 + 𝟎. 𝟏𝟖𝟑𝒊 + 𝟎. 𝟔𝟖𝟑 𝒋 + 𝟎. 𝟏𝟖𝟑𝒌
𝒒 ∗= 𝟎. 𝟔𝟖 − 𝟎. 𝟏𝟖𝟑𝒊 − 𝟎. 𝟔𝟖𝟑𝒋 − 𝟎. 𝟏𝟖𝟑𝒌

𝒒𝟐 = −𝟏. 𝟑𝟔𝟔 − 𝟎. 𝟑𝟔𝟔𝒊 + 𝟏. 𝟕𝟑𝟐 𝒋 − 𝟏𝒌


𝒒 ∗= 𝟎. 𝟔𝟖 − 𝟎. 𝟏𝟖𝟑𝒊 − 𝟎. 𝟔𝟖𝟑𝒋 − 𝟎. 𝟏𝟖𝟑𝒌
Determinacion Angulo

√𝟑 + 𝟏 + √𝟑 − 𝟏
𝜽 = 𝐜𝐨𝐬−𝟏 𝟐 𝟐
𝟐
√𝟑
𝜽 = 𝒄𝒐𝒔−𝟏 ( )
𝟐
𝜽 = 𝟑𝟎
𝒂𝟑𝟐 −𝒂𝟐𝟑 𝟎−𝟎
𝑺𝒙 = = =0
𝟐𝒔𝜽 𝟐𝐬𝐢𝐧 (𝟑𝟎)
𝟏 𝟏
𝒂𝟏𝟑 −𝒂𝟑𝟏 −(− )
𝑺𝒚 = 𝟐𝒔𝜽
= 𝟐𝐬𝐢𝐧 (𝟑𝟎)=1
𝟐 𝟐

𝒂𝟐𝟏 −𝒂𝟏𝟐 𝟎−𝟎


𝑺𝒛 = 𝟐𝒔𝜽
= 𝟐𝐬𝐢𝐧 (𝟑𝟎)
=0

Parametros: 𝜽 = 𝟑𝟎 ; 𝑲 = (𝟎 𝟏 𝟎)𝑻

Movimiento
Mx= 3
My= 10
Mz= -1

1 0 0 3
0 cos(30) −sin (30) 𝑀𝑦
𝑇=[ ]
0 sin(30) cos(30) 𝑀𝑧
0 0 0 1

1 0 0 3
√3 1
0 − 10
2 2
𝑇=
1 √3
0 −1
2 2
[0 0 0 1]
17. 𝑃 𝐵 = (0, −1, 2) 𝑇
𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑟 𝑃 𝐴
0
−1
𝑃𝐴 = 𝑇 ∗ [ ]
2
1
1
0 0 3
√3 1 0
0 − 10
𝐴 2 2 −1
𝑃 = ∗[ ]
1 √3 2
0 −1 1
2 2
[0 0 0 1 ]

3
18 − √3
𝑃𝐴 = 2
2√3 − 3
2
[ 1 ]
19.
Punto A = (6,2,4)
Eje de rotación Z
𝜃𝑧 = 90
𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0
Rz= [ 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) 0 ]
0 0 1
𝐶𝑜𝑠(90) −𝑆𝑖𝑛(90) 0
Rz= [ 𝑆𝑖𝑛(90) 𝐶𝑜𝑠(90) 0]
0 0 1
0 1 0
Rz= [−1 0 0]
0 0 1

Matriz Homogenea A
0 1 0 𝐴𝑥
−1 0 0 𝐴𝑦]
𝑀𝑎 = [
0 0 1 𝐴𝑧
0 0 0 1

0 1 0 6
𝑀𝑎 = [−1 0 0 4]
0 0 1 4
0 0 0 1

20.
Punto B = (-2, 9, 7)
No existe rotación

1 0 0
𝑅 = [0 1 0]
0 0 1

Matriz Homogenea B
1 0 0 𝐵𝑥
𝐵𝑦 ]
𝑀𝑏 = [0 1 0
0 0 1 𝐵𝑧
0 0 0 1

1 0 0 −2
𝑀𝑏 = [0 1 0 9]
0 0 1 7
0 0 0 1

21.

Punto C = (2, 3, -4)

Hay dos rotaciones, una en x y otra en Y

𝜃𝑥 = 180 𝜃𝑦 = −90
1 0 0 𝐶𝑜𝑠(𝜃) 0 𝑆𝑖𝑛(𝜃)
Rx= [ 0 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃)] Ry=[ 0 1 0 ]
0 𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃) 0 𝐶𝑜𝑠(𝜃)
1 0 0 𝐶𝑜𝑠(−90) 0 𝑆𝑖𝑛(−90)
Rx= [0 𝐶𝑜𝑠(180) −𝑆𝑖𝑛(180)] Ry=[ 0 1 0 ]
0 𝑆𝑖𝑛(180) 𝐶𝑜𝑠(180) −𝑆𝑖𝑛(−90) 0 𝐶𝑜𝑠(−90)
1 0 0 0 0 −1
Rx= [0 −1 0 ] Ry= [0 1 0 ]
0 0 −1 1 0 0

R= Rx*Ry

1 0 0 0 0 −1
𝑅 = [0 −1 0 ] ∗ [0 1 0 ]
0 0 −1 1 0 0
0 0 −1
𝑅 = [ 0 −1 0 ]
−1 0 0

Matriz Homogénea C

0 0 −1 𝐶𝑥
𝐶𝑦]
𝑀𝑐 = [ 0 −1 0
−1 0 0 𝐶𝑧
0 0 0 1

0 0 −1 2
𝑀𝑐 = [ 0 −1 0 3 ]
−1 0 0 −4
0 0 0 1

2. Resolver por matrices, quaternios y quaternios duales.

cos (π) −sen (π) 10 −1 0 10


M1 = [sen (π) cos (π) 4 ] = [ 0 −1 4 ]
0 0 1 0 0 1

M2 -> B T B
Ct = [−10 5] y CRz = rad.
4
3π 3π −√2 −√2
cos ( ) −sen ( ) −10 −10
4 4 2 2
M1 = 3π 3π = √2 −√2
sen ( ) cos ( ) 5 5
4 4 2 2
[ 0 0 1 ] [ 0 0 1 ]
La posición del punto C:
P C = M1 ∗ M2 ∗ p
−√2 −√2
−10
−1 0 10 2 2 −2
C
P = [ 0 −1 4 ] ∗ √2 −√2 ∗[ 3 ]
0 0 1 5 0
2 2
[ 0 0 1 ]
√2
+ 40
2
P C = 5√2
−1
2
[ 1 ]

Quaterniones
S = (0,0,1)
θ θ
q = C2 + S ∗ S 2
0
θ θ π π
q1 = C 21 + S ∗ S 21 = C2 + S ∗ S 2 = 0 + [0 ] ∗ 1 = 0 + 0i + 0j + k
1
3π 3π 0
θ θ
q2 = C 22 + S ∗ S 22 = C 42 + S ∗ S 42 = 0.382683 + [0] ∗ 0.92388
1
= 0.382683 + 0i + 0j + 0.92388k

Traslación:
t1 = 0 + 10i + 4j + 0k
t 2 = 0 − 10i + 5j + 0k

P C = q1 ( q2 ∗ p ∗ q2 ∗ + t 2 ) ∗ q1 ∗ + t1
P C = 0 + 20.71i + 2.54j + 1k

Quaterniones duales
ϵrxyz = h0 ∗ ϵruvw ∗ ̅̅̅̅
h0 ∗

t i ∗ qi
hi = qi + ε
2
t1 ∗ q1 (0 + 10i + 4j + 0) ∗ (0 + 0i + 0j + k)
h1 = q1 + ε = (0 + 0i + 0j + k) + ε
2 2
= (0 + 0i + 0j + k) + ε(0 + 2.5i − 5j + 0k)
t 2 ∗ q2
h2 = q2 + ε
2
= (0.382683 + 0i + 0j + 0.92388k)
(0 − 10i + 5j + 0k) ∗ (0.382683 + 0i + 0j + 0.92388k)

2
= (0.382683 + 0i + 0j + 0.92388k) + ε(0 + 0.396857i − 5.57611j
+ 0k)

Dual conjugado:
̅̅̅̅
h1 ∗ = (0 − 0i − 0j − k) − ε(0 + 2.5i − 5j + 0k)
̅̅̅̅
h2 ∗ = (0.382683 − 0i − 0j − 0.92388k) − ε(0 + 0.396857i − 5.57611j + 0k)

El punto C resulta:
ϵC = h1 ∗ h2 ∗ ϵP ∗ ̅̅̅̅
h1 ∗ ∗ ̅̅̅̅
h2 ∗
Donde ϵP = (1 + 0i + 0j + 0k) + ε(0 − 2i + 3j + 1k))
ϵC = ((0 + 0i + 0j + k) + ε(0 + 4i − 10j + 0k)) ∗ ((0 + 0i + 0j + k) + ε(0 + 0.79257i
− 11.152215j + 0k)) ∗ ϵP ∗ ((0 − 0i − 0j − k) − ε(0 + 4i − 10j + 0k))
∗ ( (0.382683 − 0i − 0j − 0.92388k) − ε(0 + 0.79257i − 11.152215j
+ 0k))
ϵC = ( (1 + 0i + 0j + 0k) + ε(0 + 20.71i + 2.54j + 1k)

Matrices

1 0 0 1 0 0
( )
R x, 90 = [ 0 C(90° ) −S(90)] = [0 0 −1]
0 S(90) C(90) 0 1 0
Translación en p (8, -4, 12)
1 0 0 8
XYZ
TUVW = [0 0 −1 −4]
0 1 0 12
0 0 0 1
1 0 0 8 −3
XYZ
rUVW = [0 0 −1 −4] ∗ [ 4 ]
0 1 0 12 −11
0 0 0 1 1
5
XYZ 7
rUVW =[ ]
16
1
Quaterniones
Quaternion de traslación p (8, -4, 12)
qt = 0 + 8i − 4j + 12k

Quaternion de rotación
S = i + 0j + 0k
90 90
qr = cos ( ) + S ∗ sin ( )
2 2
√ 2 √ 2
qr = + i + 0j + 0k
2 2

√2 √2
qr ∗ = − i − 0j − 0k
2 2

p = 0 − 3i + 4j − 11k
rxyz = qr ∗ p ∗ qr ∗
√2 √2 3√2
− 0 0
2 2 2
√2 √2 0 −3√2
0 0
−3
qr ∗ p = 2 2 ∗[ ]= 2
√2 √2 4 15√2
0 0 − −11
2 2 2
√ 2 √ 2 −7 √2
[ 0 0
2 2 ] [ 2 ]
3√2 3√2 15√2 7√2

2 2 2 2 √2
3√2 3√2 7√2 15 √2 2 0

qr ∗ p ∗ qr ∗ = 2 2 2 2 ∗ √2 = [−3]
15√2 −7√2 3√2 3√2 − 11
2
2 2 2 2 0 4
−7√2 15√2 3√2 [ 0 ]
√2
[ 2 − −
2 2 2 ]

(qr ∗ p ∗ qr ) + qt = (0 − 3i + 11j + 4k) + (0 + 8i − 4j + 12k)
rxyz = 0 + 5i + 7j + 16k
Quaterniones duales
∈rxyz = h0 ∗ ∈ruvw ∗ ̅̅̅̅
h0 ∗
t∗q
h0 = q + ε
2
√2 √2
√2 √2 (0 + 8i − 4j + 12k) ∗ ( + i + 0j + 0k)
h0 = ( + i + 0j + 0k) + ε 2 2
2 2 2
√ 2 √ 2
h0 = ( + i + 0j + 0k) + ε(−2√2 + 2√2i + 2√2j + 2√2k)
2 2
̅̅̅̅ √2 √2
h0 ∗ = ( + i + 0j + 0k) − ε(−2√2 − 2√2i − 2√2j − 2√2k)
2 2

∈ruvw = (1 + 0i + 0j + 0k) + ε(0 − 3i + 4j − 11k)


√2 √2 √2 √2
h0 ∗ ∈ruvw = ( + i + 0j + 0k) ∗ (1 + 0i + 0j + 0k) + ε(( + i + 0j + 0k)
2 2 2 2
∗ (0 − 3i + 4j − 11k) + (−2√2 + 2√2i + 2√2j + 2√2k)
∗ (1 + 0i + 0j + 0k))
h0 ∗ ∈ruvw = (0.71 + 0.71i + 0.0j + 0.0k) + ε(−0.71 + 0.71i + 13.44j + 0.71k)
√2 √2
h0 ∗ ∈ruvw ∗ ̅̅̅̅
h0 ∗ = (0.71 + 0.71i + 0.0j + 0.0k) ∗ ( + i + 0j + 0k) + ε((0.71
2 2
+ 0.71i + 0.0j + 0.0k) ∗ (2√2 + 2√2i + 2√2j + 2√2k) + (−0.71 + 0.71i
√2 √2
+ 13.44j + 0.71k) ∗ ( + i + 0j + 0k))
2 2
rxyz = (1 + 0i + 0j + 0k) + ε(0 − 5i + 7j − 16k)

Matrices
C( −90°) −S(−90°) 0 0 1 0
R(z, −90°) = [ S(−90°) C(−90°) 0] = [−1 0 0]
0 0 1 0 0 1

0 1 0 4
rxyz = [−1 0 0] ∗ [ 8 ]
0 0 1 12
8
rxyz = [−4]
12

Quaterniones

θ θ
q = C2 + S ∗ S 2
0
−90 −90
q = C 2 + [0] ∗ S 2
1
√2 √2
q= + 0i + 0j − k
2 2

p = q ∗ p ∗ q∗
√2 √2 √2 √2
rxyz = ( + 0i + 0j − k) ∗ (0 + 4i + 8j + 12k) ∗ ( − 0i − 0j + k)
2 2 2 2
√2 √2
0 0 −
2 2
√ 2 √ 2 0 6√2
0 0
4
= 2 2 ∗ [ ] = 6√2
√2 √2 8 2√2
0 − 0 12 [
2 2 6√2]
√2 √2
[− 2 0 0
2 ]
√2
6√2 −6√2 −2√2 −6√2 2 0
6√2 6√2 −6√2 2√2 0 8
= ∗ =[ ]
2√2 6√2 6√2 −6√2 0 −4
[6√2 −2√2 6√2 6√2 ] √2 12
[2]

Quaterniones duales
ϵrxyz = h0 ∗ ϵruvw ∗ ̅̅̅̅
h0 ∗

t∗q
h0 = q + ε
2
√2 √2
√2 √2 (0 + 4i + 8j + 12k) ∗ ( + 0i + 0j − k)
h0 = ( + 0i + 0j − k) + ε 2 2
2 2 2
√2 √2
t ∗ q = (0 + 4i + 8j + 12k) ∗ ( + 0i + 0j − k)
2 2
√2
0 −4 −8 −12 2 6√2
4 0 −12 8 ] 0
t ∗q = [ ∗ = −2√2
8 12 0 −4 0 6√2
12 −8 4 0 √2 [ 6√2 ]
[− 2 ]
3√2
t∗q
= −√2
2 3√2
[ 3√2 ]
√2 √2
h0 = ( + 0i + 0j − k) + ε(3√2 − √2i + 3√2j + 3√2k)
2 2

̅̅̅̅ √2 √2
h0 ∗ = ( − 0i − 0j + k) − ε(3√2 − √2i + 3√2j + 3√2k)
2 2

ϵruvw = (1 + 0i + 0j + 0k) + ε(0 + 4i + 8j + 12k))

ϵrxyz = h0 ∗ ϵruvw ∗ ̅̅̅̅


h0 ∗
√2 √2
ϵrxyz = ( + 0i + 0j − k) + ε(3√2 − √2i + 3√2j + 3√2k) ∗ ((1 + 0i + 0j + 0k) + ε(0
2 2
√2 √2
+ 4i + 8j + 12k)) ∗ (( − 0i − 0j + k) − ε(3√2 − √2i + 3√2j
2 2
+ 3√2k))

∈rxyz = (1 + 0i + 0j + 0k) + ε(0 + 8i − 4j + 12k)


Matrices
0.2366124 0.9501203 0.2031894 −10
A A
BR = [0.8820099 −0.2977589 0.3652371 ] ; Bt = [ 5 ]
0.4075207 0.0927954 −0.9084690 2

0.2366124 0.9501203 0.2031894 −10


A 0.8820099 −0.2977589 0.3652371 5 ]
BT =[
0.4075207 0.0927954 −0.9084690 2
0 0 0 1

1 0 0 1 0 0 0
B
CR = [0 Cπ −Sπ] = [0 −1 0 ] ; B
Ct = [0]
0 Sπ Cπ 0 0 −1 5

1 0 0 0
B 0 −1 0 0]
CT = [ 0 0 −1 5
0 0 0 1
PA = A B
BT CTP
C
0.2366124 0.9501203 0.2031894 −10 1 0 0 0 1
0.8820099 −0.2977589 0.3652371 5 ] [0 −1 0 0] [0 ]
PA = [
0.4075207 0.0927954 −0.9084690 2 0 0 −1 5 1
0 0 0 1 0 0 0 1 1
P A = (−8.9506 7.3430 −1.2264)

Quaterniones
θ θ
q = C2 + S ∗ S 2

0.2366124 0.9501203 0.2031894


A
BR = [0.8820099 −0.2977589 0.3652371 ]
0.4075207 0.0927954 −0.9084690
0.2366124 − 0.2977589 − 0.9084690 − 1
θ = cos −1 = 170
2

0.0927954 − 0.3652371
Sx = = −0.78446
2s(170)
0.2031894 − 0.4075207
Sy = = −0.58834
2s (170)
0.8820099 − 0.9501203
Sz = = −0.19611
2s(170)
S = (−0.78446, −0.58834, −0.19611)

A 170 170
Bq =C 2
+ (−0.78446, −0.58834, −0.19611) ∗ S 2

A
Bq = −0.98427 + 0.13812i + 0.10359j + 0.03453k
A ∗
Bq = −0.98427 − 0.13812i − 0.10359j − 0.03453k

B π π
Cq = C2 + (1,0,0) ∗ S2
B
Cq = 0 + 1i + 0j + 0k
B ∗
Cq = 0 − 1i − 0j − 0k

A
Bt = 0 − 10i + 5j + 2k
B
Ct = 0 + 0i + 0j + 5k
P C = 0 + 1i + 0j + 1k

PA = A B CB ∗ B A ∗ A
Bq( CqP Cq + Ct) Bq + Bt

P A = (−0.98427 + 0.13812i + 0.10359j + 0.03453k) [(0 + 1i + 0j + 0k)(0 + 1i + 0j + 1k)(0 − 1i


− 0j − 0k) + (0 + 0i + 0j + 5k)](−0.98427 − 0.13812i − 0.10359j − 0.03453k)
+ (0 − 10i + 5j + 2k)

P A = 0 − 8.95i + 7.34j − 1.23k

Quaterniones duales
θ θ
q = C2 + S ∗ S 2

0.2366124 0.9501203 0.2031894


A
BR = [0.8820099 −0.2977589 0.3652371 ]
0.4075207 0.0927954 −0.9084690
0.2366124 − 0.2977589 − 0.9084690 − 1
θ = cos −1 = 170
2
0.0927954 − 0.3652371
Sx = = −0.78446
2s(170)
0.2031894 − 0.4075207
Sy = = −0.58834
2s (170)
0.8820099 − 0.9501203
Sz = = −0.19611
2s(170)
S = (−0.78446, −0.58834, −0.19611)

A 170 170
Bq =C 2
+ (−0.78446, −0.58834, −0.19611) ∗ S 2

A
Bq = −0.98427 + 0.13812i + 0.10359j + 0.03453k
A
Bt = 0 − 10i + 5j + 2k
A A
A Bt ∗ Bq
Bh =A
Bq + ε
2
A
Bh = [0.0871 − 0.781i − 0.586j − 0.195k − ε2.247 − ε0.338i − ε1.540j + ε4.971k]
̅̅̅̅̅
A ∗
Bh = [0.0871 + 0.781i + 0.586j + 0.195k + ε2.247 − ε0.338i − ε1.540j + ε4.971395k]

B π π
Cq = C2 + (1,0,0) ∗ S2
B
Cq = 0 + 1i + 0j + 0k
B
Ct = 0 + 0i + 0j + 5k
B
B C t∗ B
Cq
Ch =B
Cq + ε
2
B
Ch = [0 + 1.0i + 0.0j + 0.0k + ε0.0 + ε0.0i + ε2.5j + ε0.0k]
̅̅̅̅̅
B ∗
Ch = [0 − 1.0i − 0.0j − 0.0k − ε0.0 + ε0.0i + ε2.5j + ε0.0k]

PA = A B ̅̅̅̅̅∗ ̅̅̅̅̅
CB A ∗
Bh Ch P Ch Bh

P A = [1 + 0i − 0.0j + 0.0k + ε0 − ε8.950i + ε7.343j − ε1.226k]

La rotación y translación:
π
R z0 = θ1 = rad = 30°
6
Tx1 = a1 = 3ft
π
R z2 = θ2 = rad = 45°
4
Tx3 = a2 = 2ft
π
R z4 = θ3 = rad = 60°
3
P ′ = (a3,0) = (1,0)

Matrices
M0 -> T=0 y R z0 = 30°
√3 1
C(30°) −S(30°) 0 0 − 0 0
2 2
M0 = [ S(30°) C(30°) 0 0] = 1 √3
0 0
0 0 1 0 2 2
0 0 0 1 0 0 1 0
[0 0 0 1]
M1 ->Tx1 = 3ft y R z2 = 45°

√2 √2
C(45°) −S(45°) 0 3 − 0 3
2 2
M1 = [ S(45°) C(45°) 0 0] = √2 √2
0 0
0 0 1 0 2 2
0 0 0 1 0 0 1 0
[0 0 0 1]
M2 ->Tx3 = 2ft y R z4 = 60°

1 √3
C(60°) −S(60°) 0 2 − 0 2
2 2
M1 = [ S(60°) C(60°) 0 0] = √3 1
0 0
0 0 1 0 2 2
0 0 0 1 0 0 1 0
[0 0 0 1]

R = M0 ∗ M1 ∗ M2 ∗ P′
√3 1 √2 √2 1 √3
− 0 0 − 0 3 − 0 2 1
2 2 2 2 2 2
R = 1 √3 0 √ 2 √ 2 √ 3 1 [0]
0 ∗ 0 0 ∗ 0 0 ∗ 0
2 2 2 2 2 2
0 0 1 0 0 0 1 0 0 0 1 0 1
[0 0 0 1] [ 0 0 0 1] [ 0 0 0 1]
1

√2 2.4086
1 4.1390 ]
R= =[
√2 0
0 0
[ 0 ]

Quaterniones
S0 = S2 = S4 = 0i + 0j + k
θi θi
qi = C ( ) + Si ∗ S ( )
2 2
θ1 θ1 30 0 30
q0 = C ( ) + S0 ∗ S ( ) = C ( ) + [0] ∗ S ( ) = 0.96592 + 0i + 0j + 0.25881k
2 2 2 2
1
θ2 θ2 45 0 45
q2 = C ( ) + S2 ∗ S ( ) = C ( ) + [0] ∗ S ( ) = 0.92388 + 0i + 0j + 0.38268k
2 2 2 2
1
θ3 θ3 60 0 60
q4 = C ( ) + S4 ∗ S ( ) = C ( ) + [0] ∗ S ( ) = 0.86602 + 0i + 0j + 0.5k
2 2 2 2
1

t1 = 0 + 3i + 0j + 0k
t 3 = 0 + 2i + 0j + 0k
P′ = 0 + 1i + 0j + 0k
P = q0 q2 q4 ∗ P ′ ∗ q4 ∗ + t 3 ) ∗ q2 ∗ + t1 ) ∗ q0 ∗
0 ( (
P 0 = 0 + 2.41i + 4.14j + 0k

Quaterniones duales

ϵrxyz = h0 ∗ ϵruvw ∗ ̅̅̅̅


h0 ∗

t i ∗ qi
hi = qi + ε
2

t 0 ∗ q0
h0 = q0 + ε
2
h0 = (0.96592 + 0i + 0j + 0.25881k)
(0 + 0i + 0j + 0k) ∗ (0.96592 + 0i + 0j + 0.25881k)

2
h0 = (0.96592 + 0i + 0j + 0.25881k) + ε(0 + 0i − 0j + 0k)

t1 ∗ q2
h2 = q2 + ε
2
h2 = (0.92388 + 0i + 0j + 0.38268k)
(0 + 3i + 0j + 0k) ∗ (0.92388 + 0i + 0j + 0.38268k)

2
h2 = (0.92388 + 0i + 0j + 0.38268k) + ε(0 + 0.1.3858i − 0.57403j + 0k)

t 3 ∗ q4
h4 = q4 + ε
2
(0 + 2i + 0j + 0k) ∗ (0.86602 + 0i + 0j + 0.5k)
h4 = (0.86602 + 0i + 0j + 0.5k) + ε
2
h4 = (0.86602 + 0i + 0j + 0.5k) + ε(0 + 0.86603i − 0.5j + 0k)
̅̅̅̅
h0 ∗ = (0.96592 − 0i − 0j − 0.25881k) − ε(0 + 0i − 0j + 0k)
̅̅̅̅
h2 ∗ = (0.92388 − 0i − 0j − 0.38268k) − ε(0 + 0.1.3858i − 0.57403j + 0k)
̅̅̅̅
h4 ∗ = (0.86602 − 0i − 0j − 0.5k) − ε(0 + 0.86603i − 0.5j + 0k)

ϵC = h0 ∗ h2 ∗ h4 ∗ ϵP ∗ ̅̅̅̅
h0 ∗ ∗ ̅̅̅̅
h2 ∗ ∗ ̅̅̅̅
h4 ∗

Donde ϵP = (1 + 0i + 0j + 0k) + ε(0 − 2i + 3j + 1k))


ϵC = 1 + 0i + 0j + 0k + ε(0 + 2.41i + 4.14j + 0k)

Matrices

Traslación: A
Bt = (−10 2 10 )
π
Rotación 1: A
BR1 => θ = rad; S = (1 0 0 )
10
π
Rotación 2: A
BR 2 => θ = rad; S = (0 1 0)
10
Traslación: B
Ct = ( 1 10 −10)

Posición de la cámara: P C = ( 0 0 2)
1 0 0
π π
A 0 c −s
BR1 = 10 10
π π
[0 s 10 c 10 ]
π π
c 0 s
10 10
A
BR 2 = 0 1 0
π π
−s
[ 10 0 c
10]
1 0 0 π π
π π c 0 s
0 c −s 10 10 0.9511 0 0.3090
A
BR = 10 10 ∗ 0 1 0 = [ 0.0955 0.9511 −0.2939]
π π π π −0.2939 0.3090 0.9045
[0 s 10 c 10 ] [ −s 10 0 c 10]
0.9511 0 0.3090 −10
A 0.0955 0.9511 −0.2939 2 ]
BT =[
−0.2939 0.3090 0.9045 10
0 0 0 1
1 0 0 1
B 0 1 0 10 ]
CT = [0 0 1 −10
0 0 0 1
PA = A B
BT CTP
C

0.9511 0 0.3090 −10 1 0 0 1 0


0.0955 0.9511 −0.2939 2 ] [0 1 0 10 ] [0 ]
PA = [
−0.2939 0.3090 0.9045 10 0 0 1 −10 2
0 0 0 1 0 0 0 1 1
−11.5211
13.9572 ]
PA =[
5.5602
1
P A = (−11.5211 13.9572 5.5602 )

Quaterniones

TA
Bt = (0 − 10i + 2j + 10k)
A π
BR1 => θ = rad; S = (1 0 0 )
10
A π π
Bq1 =C + (1 0 0) S
2 ∗ 10 2 ∗ 10
A
Bq1 = (0.9877 + 0.1564i + 0j + 0k)
A ∗
Bq1 = (0.9877 − 0.1564i − 0j − 0k)
A π
BR 2 => θ = rad; S = (0 1 0)
10

A π π
Bq2 =C + (0 1 0) S
2 ∗ 10 2 ∗ 10
A
Bq2 = (0.9877 + 0i + 0.1564j + 0k)
A ∗
Bq2 = (0.9877 − 0i − 0.1564j − 0k)
B
Ct = (0 + 1i + 10j − 10k)

P C = (0 + 0i + 0j + 2k)
∗ ∗
PA = A A c B A A A
Bq1 ( Bq2 (P + Ct) Bq2 ) Bq1 + Bt

P A = (0 − 11.52i + 13.96j + 5.56k)

Quaterniones duales
A
Bt = (0 − 10i + 2j + 10k)
A π
BR1 => θ = rad; S = (1 0 0 )
10

A π π
Bq1 =C + (1 0 0) S
2 ∗ 10 2 ∗ 10
A
Bq1 = (0.9877 + 0.1564i + 0j + 0k)
A A
A Bt ∗ Bq1
=A BH1
Bq1 + ε
2
A
H
B 1 = [0.988 + 0.156i + 0.0j + 0.0k + ε0.782 − ε4.938i + ε1.769j + ε4.782k]
̅̅̅̅̅̅
A ∗
BH1 = [0.988 − 0.156i − 0.0j − 0.0k − ε0.782 − ε4.938i + ε1.769j + ε4.782k]

A π
BR 2 => θ = rad; S = (0 1 0)
10

A π π
Bq2 =C + (0 1 0) S
2 ∗ 10 2 ∗ 10
A
Bq2 = (0.9877 + 0i + 0.1564j + 0k)
A A
B Bt ∗ Bq1
CH2 =Aq
B 1 + ε
2
B
CH2 = [0.988 + 0.0i + 0.156j + 0.0k + ε0.0 + ε0.0i + ε0.0j + ε0.0k]
̅̅̅̅̅̅
B ∗
CH2 = [0.988 − 0.0i − 0.156j − 0.0k − ε0.0 + ε0.0i + ε0.0j + ε0.0k]
B
Ct = (0 + 0i + 0j + 0k + ε0 + ε1i + ε10j − ε10k)

P C = (1 + 0i + 0j + 0k + ε0 + ε0i + ε0j + ε2k)


B ̅̅̅̅̅̅
B ∗ ̅̅̅̅̅̅
A ∗
PA = A B c
Bq1 ( CH2 (P + Ct) CH2 ) BH1

P A = (1 + 0i + 0j + 0k + ε0 − ε11.521i + ε13.957j + ε5.560k)


Tc = (0.1, 1, 1.6)m
R zo = 180°
R xo = −90°
pp = (2, −1.6, −0.1)m
Matrices
M0 -> Tc = (0.1, 1, 1.6)m y R z0 = 180°
C(180°) −S(180°) 0 0.1 −1 0 0 0.1
0 −1 0 1]
M0 = [ S(180°) C(180°) 0 1 ] = [
0 0 1 1.6 0 0 1 1.6
0 0 0 1 0 0 0 1
M1 -> T = (0, 0, 0)m y R x0 = −90°
1 0 0 0 1 0 0 0
0 C(−90°) −S(−90) 0
M1 = [ ] = [0 0 1 0]
0 S(−90) C(−90°) 0 0 −1 0 0
0 0 0 1 0 0 0 1
oM = M0 ∗ M1
c

−1 0 0 0.1 1 0 0 0 −1 0 0 0.1
oM = [ 0 −1 0 1 ]∗ [ 0 0 1 0]=[ 0 0 −1 1]
c
0 0 1 1.6 0 −1 0 0 0 −1 0 1.6
0 0 0 1 0 0 0 1 0 0 0 1
R = ocM ∗ pp
−1 0 0 0.1 2
0 0 −1 1 −1.6
R= [ ]∗ [ ]
0 −1 0 1.6 −0.1
0 0 0 1 1
−1.9
1.1 ]
R=[
3.2
1
Quaterniones
q0 = 0 + 0.1i + 1j + 1.6k
180 180
q1 = C ( ) + ⃗S ∗ S ( ) → ⃗S = 0i + 0j + 1k
2 2
q1 = 0 + 0i + 0j + 1k
−90 −90
q2 = C ( ) + ⃗S ∗ S ( ) → ⃗S = 1i + 0j + 0k
2 2
√2 √2
q2 = − i + 0j + 0k
2 2
pp = 0 + 2i − 1.6j − 0.1k
R = (q1 ∗ (q2 ∗ pp ∗ q′2 ) ∗ q1′ ) + q0
R = ((0 + 0i + 0j + 1k)

√2 √2 √2 √2
∗ (( − i + 0j + 0k) ∗ (0 + 2i − 1.6j − 0.1k) ∗ ( + i − 0j − 0k))
2 2 2 2

∗ (0 − 0i − 0j − 1k)) + (0 + 0.1i + 1j + 1.6k)

√2 √2
0 0
2 2
√2 √2 0 1.4142
− 0 0
2 2 2 ] = [ 1.4142 ]
q2 ∗ pp = ∗[
√2 √2 −1.6 − 1.2021
0 0 − −0.1 1.0607
2 2
√2 √2
[ 0 0
2 2 ]

√2
1.4142 −1.4142 1.202 −1.0607 2 0
1.4142 1.4142 −1.0607 − 1.202 ] √2 = [ 2 ]
q2 ∗ pp ∗ q′2 = [ ∗
− 1.202 1.0607 1.4142 −1.4142 − 0.1
2
1.0607 1.202 1.4142 1.4142 0 1.6
[0]
0 0 0 −1 0 −1.6
(q2 ∗ pp ∗ q′2 ) 0 0 −1 0 ] [ 2 ] 0.1 ]
q1 ∗ =[ ∗ = [
0 1 0 0 − 0.1 2
1 0 0 0 1.6 0
−1.6 −0.1 −2 0 0 0
(q1 ∗ (q2 ∗ pp ∗ q′2 ) ∗ q1′ ) = [ 0.1 −1.6 0 2 ]∗[ 0 ] = −2
[ ]
2 0 −1.6 −0.1 0 0.1
0 −2 0.1 −1.6 −1 1.6
(q1 ∗ (q2 ∗ pp ∗ q′2 ) ∗ q′1 ) + q0 = (0 − 2i + 0.1j + 1.6k) + (0 + 0.1i + 1j + 1.6k)

R = 0 − 1.9i + 1.1j + 3.2k


Quaterniones duales
H0 -> To = 0 + 0.1i + 1j + 1.6k y R z0 = 180°
180 180
q0 = C ( ) + ⃗S ∗ S ( ) → ⃗S = 0i + 0j + 1k
2 2
q0 = 0 + 0i + 0j + 1k
To ∗ q0
H0 = q0 + ε
2
(0 + 0.1i + 1j + 1.6k) ∗ (0 + 0i + 0j + 1k)
H0 = (0 + 0i + 0j + 1k) + ε
2
0 −0.1 −1 −1.6 0 −1.6
0.1 0 −1.6 1 ] ∗[ ] = [ 1 ]
0
To ∗ q0 = [
1 1.6 0 −0.1 0 −0.1
1.6 −1 0.1 0 1 0
−0.8
To ∗ q0 0.5 ]
=[
2 −0.05
0

H0 = (0 + 0i + 0j + 1k) + ε(−0.8 + 0.5i − 0.05j + 0k)

H1 -> T1 = 0 + 0i + 0j + 0k y R x0 = −90°
−90 −90
q1 = C ( ) + ⃗S ∗ S ( ) → ⃗S = 1i + 0j + 0k
2 2
√2 √2
q2 = − i + 0j + 0k
2 2
T1 ∗ q1
H1 = q1 + ε
2
√2 √2
√2 √ 2 (0 + 0i + 0j + 0k) ∗ ( − i + 0j + 0k)
H1 = ( − i + 0j + 0k) + ε 2 2
2 2 2
√2 √2
H1 = ( − i + 0j + 0k) + ε(0 + 0i + 0j + 0k)
2 2
∈= (1 + 0i + 0j + 0k) + ε(0 + 2i − 1.6j − 0.1k)

R = H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
H1 ∗ ∗ ̅̅̅̅̅
H0 ∗
̅̅̅̅̅
H0 ∗ = (0 + 0i + 0j + 1k) − ε(−0.8 − 0.5i + 0.05j − 0k)

̅̅̅̅̅ √2 √2
H1 ∗ = ( − i + 0j + 0k) − ε(0 − 0i − 0j − 0k)
2 2

R = ((0 + 0i + 0j + 1k) + ε(−0.8 + 0.5i − 0.05j + 0k))

√2 √2
∗ (( − i + 0j + 0k) + ε(0 + 0i + 0j + 0k)) ∗ ((1 + 0i + 0j + 0k) + ε(0 + 2i
2 2

√2 √2
− 1.6j − 0.1k)) ∗ (( − i + 0j + 0k) − ε(0 − 0i − 0j − 0k))
2 2
∗ ((0 + 0i + 0j + 1k) − ε(−0.8 − 0.5i + 0.05j − 0k))

√2 √2
H0 ∗ H1 = (0 + 0i + 0j + 1k) ∗ ( − i + 0j + 0k) + ε((0 + 0i + 0j + 1k) ∗ (0 + 0i + 0j + 0k)
2 2
√2 √2
+ (−0.8 + 0.5i − 0.05j + 0k) ∗ ( − i + 0j + 0k))
2 2
H0 ∗ H1 = (0 + 0i − 0.71j + 0.71k) + ε(−0.21 + 0.92i − 0.04j − 0.4k)
H0 ∗ H1 ∗ ϵ = (0 + 0i − 0.71j + 0.71k) ∗ (1 + 0i + 0j + 0k) + ε((0 + 0i − 0.71j + 0.71k) ∗ (0 + 2i
− 1.6j − 0.1k) + (−0.21 + 0.92i − 0.04j − 0.4k) ∗ (1 + 0i + 0j + 0k))
H0 ∗ H1 ∗ ϵ = (0 + 0i − 0.71j + 0.71k) + ε(−1.27 + 2.13i + 1.38j + 1.38k)

H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
H1 ∗
√2 √2
= (0 + 0i − 0.71j + 0.71k) ∗ ( − i + 0j + 0k) + ε((0 + 0i − 0.71j + 0.71k)
2 2
√2 √2
∗ (0 + 0i + 0j + 0k) + (−1.27 + 2.13i + 1.38j + 1.38k) ∗ ( − i + 0j + 0k))
2 2

H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
H1 ∗ = (0 + 0i + 0j + 1k) + ε(−2.4 + 0.61i + 1.95j + 0k)

H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
H1 ∗ ∗ ̅̅̅̅̅
H0 ∗
= (0 + 0i + 0j + 1k) ∗ (0 + 0i + 0j + 1k) + ε((0 + 0i + 0j + 1k) ∗ (+0.8 + 0.5i
− 0.05j + 0k) + (−2.4 + 0.61i + 1.95j + 0k) ∗ (0 + 0i + 0j + 1k))

H0 ∗ H1 ∗ ϵ ∗ ̅̅̅̅̅
H1 ∗ ∗ ̅̅̅̅̅
H0 ∗ = (1 + 0i + 0j + 0k) + ε(0 − 1.9i + 1.1j + 3.2k)

R = (1 + 0i + 0j + 0k) + ε(0 − 1.9i + 1.1j + 3.2k)

You might also like