0% found this document useful (0 votes)
188 views38 pages

Unit 2 (AOSC)

Uploaded by

psaksham202002
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
188 views38 pages

Unit 2 (AOSC)

Uploaded by

psaksham202002
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 38
—BACK- PROPAGATION NETWORK *- a 2 Tt_tb pre of the most important cleselopments in neural russ 4 The network has awakened the Scien life and _engineenng _ —____Conamunity te the modelling and_ processing. af mumeseus quanktatuse phenomena _ustng “nensal nebeorks a \_b Tt is _applied_to multilayer peed= forward networks consistixe bf — processing elements totth continous clipterentiable ackivaliin — eeu 2 BPN teasing algorithm ___Date MDG A CO ODE ELE LO LL LE é provides a procedure ~forthaning,. = the vols 1 BPN to Classify the given input _pattesng " Orr =— = —Basit_concept por this, update_algorithm_is._simply the Gradient -descent_methodas_used th case ef simple percepban metworks with differentiable units, — ‘s—This_ts_a_method. where the error_is propagated back ta the hidcten unit = | : Ti_is_dijperent other networks _in_resp cess by | ——twhich—the—weightsare calculated custng tearing period __ of the jus. by General cligpiculhy waith nautti layer, perceptrens (6 eakeutatir the wits ef the hidden layers th _an_es/cien| gay that weld —nesult tn_a_vi rere _Outbut error. when the hiddur = —loyers inereased_, the mjuo_trai i Bmore complex» ——To_update weight, the error must be calustated. BN ie done A Segui _feed~ forward of the fnput_training pattern __ * _Labeutation. ane back - propegaticn of error, *Updatiin of votighte Scanned with CamScanner fia: Avchikecliiee of back. propagolon nfud Trash Lina ug Algorithm en Step Ot Trikiatze weights and learning rate (tak. Ta , 2 a (take some matt Stept 2 Pextorm steps 2-9 when —Stnpping conditten us false, —Sep2£ Perform steps 3-8 shor each training ee am Feed fowsasd. phase ( Phase Z) fs . ° + i. = )Step3i—Each_input unit seceives faput Signal 2° and sends tl = tothe _hideen_unit (f= I ton) Stepy & Each hidden _unck 27 ¢ f= Ito p) Sums ii eu a to_Cabcutate net inp fej t Say vi Scanned with CamScanner Date Calculate output ag the_hieleen unit by applying fgmnoictal_act a ——funetiéns oven Einj. Cbthary or bipolar _ fae ef zing) | Bang send the output signal — fromthe PR put of output layer..telles —_—____ ~ gs Step 5: For each_owtbut_unit_y,(_K=/ tom), Cabestats the nek i[p == es | gio ok + o% Ler K. and apply, the ativan _sjuncliinta_comtpute_output_signal a Phase ID) :- ep& 2 Each output unit Yq (K=| tom) recess a target ing to the iny Enis on ¢ ~ ewes Scanned with CamScanner perivatise 9 binary esty moet ‘ pooe fr C1- foo] — Shep TS cneh_netetn_ an sprom. the output nile [r= Gini a » cateulated cle epenching on “ahether Te derteabios pL binary _o1_bip' iu_t_used - nthe bast 6 ok __Cafulated 6F oak the change mn_wls_and bias ¢ Stepan man pt lk Ce K eg ee 1. (new) = WyKCotd) + Awyn) wo0K old) +4 AWwok Scanned with CamScanner perrvatiie of bipolar Sigraatd yiws 2 ed ‘exporm Steps 2-4 forts each ipput_ )__Step2.s Sekt the _achivation of tnput_unik of 0% —Step3t Caboulate the net input to hidden uncle % £ iy output Fos. f= | te p—___ aac s ES Step4 & Now Conapute the outbut of the eat yen nik Fo, K = | tm, [rite — eg 9? Using back Propagation _nebwork, ind. the new wughts pes. pet Shown in di ge pemeniee eath apu patetn EO i and. ek _output is Use a Leaning rate #20:25 and _ = a a funckuin- bias 2) et O38 piaegrey SEF ; -OL Nig = = 0:3 Vane 0:1 _ Na2= O'4 Voy =_9°3 No2 = 0S" Scanned with CamScanner __Amput- Sample [x1 _ aa]: 2 Le 1] target t24 1. —_ ~AColeutate the nek input for hid aeen_loy ee. — Fox Zy 2 I Zina = Noy + %1Vir t X2Vau | =_0-.3+ ox0-4641x-0'l ' = 0:34 06-011 = 08 Fa, Z = waz = Vort %vi9 + 2 Vor = O5+ ox-0-3 + J XO-4 = O-5¢OtO £09 a a 1 a = 0. 5498 =f (Zit) ree ET ae ee = 110 Za = flii= ee ee? “ Scanned with CamScanner ig ee oe a "C4 = iy eID Blqut) a 7 FE tear) Cyn) —=— 02495 6,2 (1-0-5221) (0.2495) = ONL ‘A Find the changes ti weights between hieteln_ancl_ouspuk layers Aw) = ¢ 6%, © 0-25 X0:119) ¥ 0-5498 = 0-016Yy Aw = «829 = O'R5X ONG ¥ 0-709 = 002 t Ab = 46, = 0:95 xX ong * =__0:02978 A Comput the ener portin 6 behoeen input_and_htdldin loyer (2 Ito 2) ops Suis’ [Ziep) = = Ga; = = Cx Wik Here Kz=J only one output K=I neuton Cunt = Gy wy, = ONL XO-U = O-pUTEY — bug 2 By way-= 0-9 X 0-1 = 00119 Scanned with CamScanner ——Enor_Gi= Gin (a1) — _t ie — plas) = g(2air) Cr Peace] = =_ 0.5498 [l- 0.5498] =O. 2015 a "(za L) — 0.04764 X 02475 = 0-018 on f(Zusa) +h (eirg)-Cl= 42a) 0+ 1109 [ t= 0-T109J__ 0 8055 G2 = Cina (Zin) =_O0-01195 X 0:2055 = 0.00245 AAous changes tn weights between input and hidden layer’ —Avy = & 6x, = 0-25 x0-0118 XO =O Ag, = 4 Ey 4 = 0:25 0-0118 XI 0:00295 ANo= x By = _O-25X0-0N8 = 000295 Avin. = 4E.%) = 0:25 X 0-00QU5X0 =O A N92 2% 6 %= 0.25% 000245 X1= 0-0006125 ANog= 69 = 0:25 %0-00245 = 0-0006125 lompute thefinol_weights of the network? — “ _Miylnew) = Vy Cold) + Av) = 0-6 + 0 0-6 Mia (new) = Vio (Old) + Avo = - 0-34 0 = -0-3 Jor (mew) = Nai(olel) + Ava, = 7 0+! + 0.00295= -0-0910- _Vga (new) = V22 (old) + Ao = 0:4 + 0:0006125= 0-4ooe1as Vo, (new) = Noi(old) + ANoy = ©-3+ 0-00295 = 0:30246 Noa (nay) = Vo2(old) + Avor = 0:54 00006126 = O.Soo gas Scanned with CamScanner ’ WL (neue) = wy, (old) + Aw = 0 Wa mew) = We (old) + Aw2 = 0+] + 0-02/1F b(nuo)= bj oid) + Ab = -O-R+ 0.02970 =O0:11022. tad_the ne » weights, ing back - propagates The_network._is_presented with ‘the Input —pattsn [=I 1 —And target tb Ls Use | ng_rote 120-25 ¢ byereors Vi20:6 5 Win 2-0-3, Yap = 7 Ol | Vag 0-4, Vol = 0:3, Yogz0-S Wy =ZO-4, Wy =O) , b= Od pat Bipolar _sigmoteal function + _ pis 2 -L = b i-e™ ie I+e7* & Coleulat, nek input spor hidden layer _ For xs = iin = Vor + 2yNu FX Vay = _OAtENX 0-6 + 1X (-0-1) = 0:3-0-6-0-1 = -O-4 Scanned with CamScanner Nog + %) Vay + % Vag tt o Gite sf=t) Xe(2024) fe eX Ot 4 OB +O 3404 = 9.0 =O 2 4-0:1974XO:4 + 0.537 X Ol — 0:2 +(-0.07996)+ 0-0537 eb ege see == 0-4122. $bwi) = 0-5[ ln O-J122 J [) + 011224 = 0.4434 Gre Clp 61122) (0.4934) =| 1122 X 9-4937 = 0.549) (Find the weights between hidden and L output layer Aw, = 06 8% = 0:25 X 0-544 X_ (-0-1914) = — OOH Ag = 462232 025 KO. 544 X 0+ 534 = = O07 3) ey ae en Ee ae 20-1373 - Scanned with CamScanner ce udp. p (Zing) — _( there 1S only, ons outfall PGi 2s Gaal 7 want = 9:81864 — ase L = 00549 X0-5(1— 0+ 5371 (l+ 0-537] = 0-0195° i ; " . pA Changes ui weights between inpuk and hidden layer, ¢ oas Xoogsxl = 0:0049 O:&SX o.019S = 00049 ki Avy = x6) 21 = _0-25X 0-(os6 X-| = ~0'026Y r ANay = & 6) 9 = Oras X O-locex| = 0-0264 b 0. as X O-1056 = 00264 b Oae X O-019S K-| = —6-0044 b Y Vu(nus)2 Vutoid) + AV = 0-6-0264 = O- 6136 YNi2 (mew) ANin_ =O: - 0-304 | a a) =Nqlald) + Aes = = Ol emsnas 2 = 0-0736 yNa2(nem) = Voa(old) + Aveo = o-4 + o-p049= O-4049 ae (re) 2 Sigg Bea, 3 0- — 80211 5.37.24 —- iil 2 Cas et he 2 = OF 007131 2 01737 st “gs, Scanned with CamScanner Yo2(old) + AVo2 = 0:54 0.0049 blotd) + Ab= -0-2 +0-1373= = 00624 ASSOCIATIVE MEMORY NETWORKS ___ly Tt _can_Stpre_a_set_o4 pattems _as muncories. le _the associative mma is_being presented _useth, O- __ _Key_pattun , it responds by preducing ene of the Stored ____patterns,_with—the—belp of—infermt fin —mremerized which ___tlesely, reser bles—errelates to _ths_Key path Thus, the recat” is through essociatnn of the Keypatlon ite Wa aa | ep of —ernformatecn—mtenae! ae bs These ty tt » also called as content — addressable mentersis CAM) th_contrastte that of Lraditimal addrecs- addressable mentories_ch_ xy) then the hamming, olt’staunce ( HD) {Gh doped _as the ne. of mismatched _Contpenents of pss zand x’ vectors ie. 7 7 as Ne Zo faye Xi] if ti LOU Lo ip (ayes St ’ cee pee _-—____--— a = 2 Ly Tf each of the output verters & .same_a8 the input vectors |” ___ with whith itis _assocfated , then the nel_ts Said. te by Ip each of he_eulpat veces Ore different yn the input vectors then the net _& ssaiel to be heleroasocvatise eusal nek. are updated until there is no wera ht change Ly no eughis Sep O: Set att the initial wlt te zero fe. wy=0 tapas ad Steph! For cach tring target pat apt ea eyo Scanned with CamScanner Ste 22 Aolivate inp oye unit jp ewrent current ig — inputs : - 5 meer | C4er- (2 Iten). -€ Stop3 3 Ackbati the output layer units to_eustent target — Output 7 z ss Steps Start the wer wif (new) = wis Cotd) + xy Thi algo #_usecl for cateulahin of the weight of assoctatise n le Tk tan be used useth pattans that are being rep ented As eithes binary or_btpolar vectors Proolucts Rule t $- i oo oe Tnput = $=( si, +-- St, ---Sn). Pe Outer, product of the two vectors is the _procuck of matrices S267 ond T=+ i-¢. [nxt] _+[) Xm] matrix by Matrix Mulbplicatiin fs dene a8 fotlowss $= : ST = Scanned with CamScanner Date ecght- Tiare Us same a8 the vw —by Hebb rule to store the pattern For oe a Set_op association S(p)? Lip) pil Pookie a i ne ssk_p)) wet ie Et pei lpy by (p)-= ta Ly) peed rece vip _can be quien. a Scanned with CamScanner ys Arabians Trang Alger than? Step! Os Tnitialize : ol sought te #8 wits Le Step) i For each op the vector shat hes te be Slorad perf 24 pitecture =4A ‘aha — L_step2. t _Adkivatsenth_ effin sbjuk_ unt att aps Ac ree each p i i. | Step Yt Adjust tbs weighs = : __ wife) = wyj (old) + igs at 2 Step OF Set the wls obtained or Hebb rule or outer products oe 2 For each 4 testi )_tnpuk vectors pererm Step 2-Y - w=: 2 ep) 4 Cp) Cafcutate + the oukbuk by appli g—acbivaleon_ower._ net f = Hy bly) = ha Scanned with CamScanner Z —— a “ used th speech jrnteig. sification pet. Ly Thi +: ype of metwork tan be 8 processing» pattern elas taTIVE NETWORK $= ___ 4 _trathés input Pal target “output _weetors rs are agers __ 45 weights are _dleterntineel _th_a_way_4 1 that the net Can __ Store a Set of, pattern __a.sso Ee by Assotdakion ta pais. a tng - ___paiss_{ fp), 4p)) sith _p=t,- -.,P_» Each vector S(p)__ _____has_n__Components and veetes 1p) has mm. Cor Cont poneuts bs _peterminaligin of ust clone _etther by lng Hebe th — delta rule. saree van appeapeiaBs output car, whith cores pads. ie vector x, that bey be siete one sf the - unknown input. [Step Of Taulialise thes wits from the trains | SlepL? Peja stp tren inp at pose ‘ {—_--- ics a Scanned with CamScanner Data. —Step2: Set the ackivatun -for_input layer units equal stoi | that of the current input vector. guiin x _ 7 3+ Catewtote the net _thput te the output uviils + — ees — fj Step¥ = beterméxe the activations of the output nits over —_<{ the colubated net input 7 -—h pe SEES pigs th yur j £0 NOTES Heteraasacitite mtmory_not_an iberatiise memory netioork. Ty the respones of the net ore binary. thin the ———achivahén funttuin fs be used cs a Ye 1 yout) 7% O os f ying £0 __ BIDIRECTIONAL _AS9clATIVE._NETWORK b Te was developed by Koso is 4he_yeor LIBR. BAM nju performs forward and backward assoufatuit searches fo Stored ehimubus respprees. % Tk l_d_recument__heteroassoctatiitfatfeun -_matchiag, —nekwork : ole = 5 BAM _newnal nets are capable te _eepend. “te shbuk Pram eithes. _Cfnpout_§ output layer) Ly There_ore 2 _4ypes_of 6am t @ Discrete ee eee OE ae Scanned with CamScanner E _biserete Bidirectfonal Acsomatuie Memory <— 1» Structuxe of oliserete BAM us ame _as about. _ Ly when the mene are_being activated by, bg a @n_imitial vector at the input of 7 Layer, the nelson evolues_a two-pathean Stable state wlth each pottern_at Output j—_Lek_the iaput veclor be denoted by sCp) and. ta clOrs_b ACp)—p=t,- P._ Then the wot - matin th store a set” of a xeckors , a | S(P)= (Sip), 22 SUP) yoasa Sal PY = Scanned with CamScanner ttp)= (4p). .-= . tCp)s.e-atm-(P))— —Can_be_ p Biteiiaid by, Hebb scale train 0. In Case of tiput J Nectors eg binary , the wt matrix We $.0ij} i guren_by, £2 setpy=!T a Op the _aiha_ | aahen 4 the oe me vedi ae prt maine W=> {wij} an be defi : a _ wij = = Sip) ee Cp mata in both cases is go be in bipolar 5 efHun the [nput Veclors are in bisa Scanned with CamScanner voit bra fase hueedeetneeta We L mn ¢ 2 Ot mi je i ani = Of eee Hg wt 2 OF Teshng Algorithm Jor Discrete BAM,£- v —F 2 Pesed en the trati Op wes ced ©, i ab culate: 2. acti} & a recogutze the Diogal _ 2 __step4s Ls Update the ~aitisaliont of unit in. Y tayes Catastati the net input ayy 2. ase Sétnaé Scanned with CamScanner —obtata 7 yb Cys) = cast, wo Updali the activations of units th X layer. Cabealats the net input, Apply thi actisaliéns pyen thy net input, 7 fend_this stanal to the lay Shep 62 Test pos Comvetgence ef the met. The cemueigente occurs the actusalicn vectors x ancl _y reach equilibstum Tk _transjovens the infu ethly and. comirously ha Ons using legisltt cegmiid pundiias as the Aclwalion puncions gor att leit, —Logisti: sigmoidal punchin ring be etthus. binary signoidal ——fundien_es bipolar sigmeidel punch —'_when_a_bipolan sigmoidal funch ———thosen.,then the Continous Bam might ¢ Of —vecllirs_mhich will afmath vestiies of the cube hin 4hat Slate of the vector appmachus it acti like Tg the input_vectors ore inary. Le(5), t(p)) p= foe —weights_are_detenmind using the sposowuba se lasipl C2ti(p] —_—— aes wif Scanned with CamScanner be. even _ mee the “inp ae ae ut th -matnia_ b Ee fo bipotas. a —— - 1 Actiahon puostin. pol Legis sipcidal junction a ik l4_bunary logistic. mee »—then_achivatiin tauacbuin fo | i+e eg J i_a_bipalar, loguslie function apse fe et | [+ ed i eve | Scanned with CamScanner Jiscreks. tdd_netivark —_— 45 Tt i an ute asoniabie tatereennnted — single : metusork . Tt is algo a ype nebrically_sctighted nfo. “9 shen thes Us operated (n_ctéscrati line fashion itu tatled as : ~Aisercte Hopfield network § A= archickective as _a_ single slayer ‘- feedback metwork _e/d _yeeurent nyo. —b__Netwwerk takes bihan L) or _bipolas.| : yl, P Nid has Sypancbieot li ttl nto self =cennsttibest yf . Lope uate twin e0. —— Key podaly = Hoon et tril” updates ils _achivatiins at a bint. — Lo Each unit te eonting sly erosive extern cxnal_signal al _ sills the Signal _it_receives frrm_the_othen unite us the . met. le layer restient_in_peyeening depute Luptatig t_patlesn is just applied te the metusrk anc the ———tashoork's output is _found tobe _initateect accerding ly 2 4 Aftesasarals, ihe inilaliing —patizsn_e_remosel, ane oxttpat yy — $_ initiated betemes the neo _uptated {input thnssigh feedback | —Cennestions. ‘The irs updated fp forces the fisst update dt ———dutpuk, whieh in_tusa__acts_as the second —tpdated_ input ———thaough —petclloack connetbitias _ And tres cult Oa _b ths Ail be Continues till _systom_systin reaches a tin_secend mie Scanned with CamScanner | _Output rem each —proeecsing : pup ctor process )—elerseusti, but 26 S{p) = CSL) + Salp). ze [2syp) 1] (2sytp)=!J gor C8) pal Loughe matrix We For pales tinal geet = Site) Sp) _#f- ga = Scanned with CamScanner ~—Tesliing —_Atgontthen of | Hapfiela Nusa. —— a. — Step 0? Enihiatize wou to alia patterns he. uote obtained. fren. - fratning algo. using Hebb rule. = When the activations of the mets are ot. Loney then _pesporm Step 28 a & Resor Steps BT ae “input vector —_———— (SS = 7 Make the initial aia squat to thee: faput _veclér Xs 7 os u p= xe Le= Iton) | _ steps Perform Steps 5- EL spon.eath_unit Ye Ciere unl = Upolated th random _arcles). Sep 5 = caleutate the set —linput of the meboork § i 7 ae di | Step 6? Apply. —the ackivations owe, the net | fp ects 5 ut ty ere 5 yas oF - a Oe pee : the threshold and is no) Slept Now fecotback the obtoried _ pulpit Ye to < : Thus, the activation vectors are Updated Finally , test the network , jor_convergenee. Scanned with CamScanner _ Dates = QW Train_a heteroassoccabine menaory,. network using Hebb rile fo __sstore_input row vectors. C$12$2553554).to_outpuk __ pow vector t= (ti, tr) vector pains are _gusm as apt targets $1 dst Land _ aan eat won (asel! Firsk_inpuk woloy (2, Ay Hy, My) 240 to) (4, Y= UO boy (nes) = Wn (old) + %, 4 | We) (new) = wa (old) + aay = O + OXI Oo | wo31 (new) = wa fold) + wy, = O + Ixl = _ eu) (new) = wy, Cold) + yy, = 0 + OXL=0 W212 Linus) = We jold) + uy. = 0 + 1KO=0 022 ( new) = Woo (old) + xy, = O + O¥O =0 W032 (new) = Wi fold) try, 2 O + 1x0 =0 wy (new) = Wyr(old) +%,y, = 0 + OXO =0 Case 2: For Secwnd input vector (2, % % 94) = fb Oo 0 3) (2 eC ep wy tne) 2 sy fold) + ays b+ IKE = 2 Wy = © = o+0 log (mew) = Wa, fold + Yay, = Q)+©Xx| you) (mere) = vou) (Ol) € ayy, 2 QA IRIE I Scanned with CamScanner —— é = THe —Centia) Wiafoid) + ayy = o tly O- ine) =_Wwaa(sfd) + ry. = ofoxo tee (mew) = waga(ctd) 4 as¥g._= O+0 x 0 242 (me) = woy2 (od) ayy, 2 Ot! x 0 20 Neck, —4231_( ew) WOHL (new) WI2 (mes) = Wi2 (old) +2 W22 (nus) = War(old) + a y. wae. (musa) = (udga fold) + 25 Yn Loy2 (mew) = _Wy2 Cold) xy Case 43 Fowth input veer —_ (2% 43 %y)_ = (6__0. iki): {$,—yo) = {0 1) Gee won (new) = vou fold) + yy W321 (mew) = wailold) + xy, W031 (new) = 31 fold) + sy, — Wai (new) = Wy cole) fF tyy, Wid. (mas) = Wyo told) + yy. Woz (ew) tag (emo) Wyo (ned) = Final wl are t= wy 22, We 22 7 0g) Aly Scanned with CamScanner “QU check the auloassowabiie metwork fer dsput vectar | Th | U7. Form. the weight vector sith. no fees | Conruclion » Tedt whether the net ts abt. to recognize | usithy one msi —- Sol? Enput of qe ees = fou) =) =t 08 Testing the mnetwsork silly One naukecng _eritary. ” 2! =I Scanned with CamScanner ee a — apy activation function we ree ef =u — uss Construct & test a BAM network to aocate letters F and F cae ssumple_bipatar _uiput - output _ ——veelOrs + The ta tr por Et (1,1) ancl fom ee oy _matn'x_si 5x3. The é : ige Gs 5 oe a * i aia ° oe * Scanned with CamScanner _| iW ait ae a doda | Sp Og ao 8 Slo bo Hs clodado Nt v wa | ul bea) “ERP OP Taya 4 = | SPRATT TE EP i a | fa + a lal : r ew 7 fe 7 i a $ a 1 x 2 ey | ; + flay |) | | a & | ry} if a adalat alt inl lana llasortanatlanslone ili ttc Ld Scanned with CamScanner pn abplyang neta “penton —on applying. _acliealien we gel 4 | _hents Presponse 6 obtained pt espa F depp pe ep [= fe ia Fae so Correet —apigngy atic gL a_i Tae : ___szeaponbe ib _obtaured. a t t =f} tJJoo00229-2.-2.0-¢ i : g2200 2 0 O22 fon 2pr-b-2 2222 -E sd 222) 5 wg atbation gundiona., ht get offi si acl i tty ct att Sptral Scanned with CamScanner =H Cerra ee eee a ee _Thus_B A: M__niekutork is _tonstructed and. tested 1h both the _clirections ____ = ecend Components. Of sto ssector. a? Input vector a=b4 tt 1] weight matrix ba_gusen by prey, i Cry rey Ee, M1 w=: 5s’ Cp) tip) Scanned with CamScanner L Date Binary, sepoccuentatiine por given input sector 6 [4 110] Wet Out Asynchronous —upclation of wodights. hare, tet —__tk_be“Y), Y4, ¥5,¥9 —— = Test input _vecter _usith 8 matsing entities 2 — ee -_Stepl i Tput vector i x= [0 0 4 OJ __ step a y= To 6. SOF. sol ~__Step3 2 Cheese unit ils acktyatens 4 eee Sob = Ys lH =O+foo 101 fe = pts t Applying, adientin ais 70 2+ yy sk —— ee eee Broadeasliy yy —te_all_otine unite, fie pat t oS --No_stnseng ka coc gee © Steps cheese nae Yn pr-updaiig ts acisotions til = Ry t fe gh. ees x Eto £ J oerit 0 £0} Scanned with CamScanner Choose unt a va gine = +B yruopa | — a =otfi0 1 oj | 4 =O+2=2. EE Yui 2%0 f2 He =| Henee y= [i 4 1 0] Lieratten, 2. o UT sy Stepo é ts : Ea aes — Steels weights ave initials ed IW) : 4 8 =} _ Shel —Stepl 2’ ow= Ti 107 a Stepas = Ell AiG 7 Seer = a ire a Scanned with CamScanner Step {cheese unit ¥3_for updating i ——parsatd Yj = 04 yun 20 * rik yy fon epdatiom ‘Now yes aa _Stept choose Bee - eee ce Siege ees = 2-3 yu Kot erat Thasee—y Sct pao —Stepsi 4 Lunt Latin z hoose 4 poe ap al YuAs = Ant 2 Yr; —Yyurd Fae e EO+ 03 “4 07 La 0 T ig Scanned with CamScanner rahén and gunctionad _apmeximahin neusal —mju2d_ceweloped + —t__Network wer the mast common nenlineatites such as Aigmerdal_and gaussian Kemet functions They are_atso_used_o es networks \ —b___Gauistan Function __clepined as a _\ Teaining Algorithm > = _ tep Os Set the weights te .amall_yandem vals Step Lt Pea} hin eo en eee Step 2% Pesfeam Steps 3“]___yex each input - : fap uni (20 pon att ton a : ignals_4_tranansitt_shh_the meat_hidclen lanes whit ee —Andiol basis .punchain StepB i Select the centers p04 Aachial bas pune Centers ane selected prom the set of _imput vectors Lt -—-Should._be__noted that __a__sajfirient_no of Centers. _.. have to be select ed to ensure set sSanipling of, Input vector space. aa Spiral Scanned with CamScanner whare ay Center of RBE Fanik par input _veninbies or’ the _ysiolth op ith RBE unit , xf the sth variable input pattern. Step#i- Calculate the outpuk ef the meurel network » Ke got = Wr Vila e+ Ld. i=1 ea MOE of hidden lanyer nodes = output olut of mth mode 1h _putbut. Lawes er oii, incoy ottisn vot bio ita RBF unik an’ at nth oukbub node — Wirn — d_mth_output node wo biasing, ese Scanned with CamScanner

You might also like