0 ratings0% found this document useful (0 votes) 188 views38 pagesUnit 2 (AOSC)
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
—BACK- PROPAGATION NETWORK *- a
2 Tt_tb pre of the most important cleselopments in neural russ
4 The network has awakened the Scien life and _engineenng _
—____Conamunity te the modelling and_ processing. af mumeseus
quanktatuse phenomena _ustng “nensal nebeorks a
\_b Tt is _applied_to multilayer peed= forward networks consistixe
bf — processing elements totth continous clipterentiable ackivaliin
— eeu
2 BPN teasing algorithm
___Date
MDG A CO ODE ELE LO LL LE é
provides a procedure ~forthaning,. =
the vols 1 BPN to Classify the given input _pattesng "
Orr =— =
—Basit_concept por this, update_algorithm_is._simply the
Gradient -descent_methodas_used th case ef simple percepban
metworks with differentiable units, —
‘s—This_ts_a_method. where the error_is propagated back ta the
hidcten unit =
| : Ti_is_dijperent other networks _in_resp cess by
| ——twhich—the—weightsare calculated custng tearing period __
of the jus.
by General cligpiculhy waith nautti layer, perceptrens (6 eakeutatir
the wits ef the hidden layers th _an_es/cien| gay that weld
—nesult tn_a_vi rere _Outbut error. when the hiddur
= —loyers inereased_, the mjuo_trai i Bmore complex»
——To_update weight, the error must be calustated.
BN ie done A Segui
_feed~ forward of the fnput_training pattern __
* _Labeutation. ane back - propegaticn of error,
*Updatiin of votighte
Scanned with CamScannerfia: Avchikecliiee of back. propagolon nfud
Trash Lina ug Algorithm en
Step Ot Trikiatze weights and learning rate (tak.
Ta , 2 a (take some matt
Stept 2 Pextorm steps 2-9 when —Stnpping conditten us false,
—Sep2£ Perform steps 3-8 shor each training ee am
Feed fowsasd. phase ( Phase Z) fs
. ° + i. =
)Step3i—Each_input unit seceives faput Signal 2° and sends tl
= tothe _hideen_unit (f= I ton)
Stepy & Each hidden _unck 27 ¢ f= Ito p) Sums ii eu
a to_Cabcutate net inp
fej t Say vi
Scanned with CamScannerDate
Calculate output ag the_hieleen unit by applying
fgmnoictal_act a
——funetiéns oven Einj. Cbthary or bipolar _
fae ef zing) |
Bang send the output signal — fromthe
PR put of output layer..telles —_—____
~
gs Step 5: For each_owtbut_unit_y,(_K=/ tom), Cabestats the nek i[p
== es | gio ok + o% Ler K.
and apply, the ativan _sjuncliinta_comtpute_output_signal
a
Phase ID) :-
ep& 2 Each output unit Yq (K=| tom) recess a target
ing to the iny Enis on ¢
~ ewes
Scanned with CamScannerperivatise 9 binary esty moet ‘
pooe fr C1- foo]
— Shep TS cneh_netetn_ an
sprom. the output nile
[r= Gini a
» cateulated cle epenching on “ahether
Te derteabios pL
binary _o1_bip' iu_t_used - nthe bast 6 ok
__Cafulated 6F oak the change mn_wls_and bias ¢
Stepan man pt lk Ce K
eg ee
1. (new) = WyKCotd) + Awyn)
wo0K old) +4 AWwok
Scanned with CamScannerperrvatiie of bipolar Sigraatd
yiws 2 ed
‘exporm Steps 2-4 forts each ipput_
)__Step2.s Sekt the _achivation of tnput_unik of 0%
—Step3t Caboulate the net input to hidden uncle % £ iy output
Fos. f= | te p—___ aac s ES
Step4 & Now Conapute the outbut of the eat yen nik
Fo, K = | tm,
[rite —
eg 9? Using back Propagation _nebwork, ind. the new wughts pes.
pet Shown in di ge pemeniee eath apu patetn EO
i and. ek _output is Use a Leaning rate #20:25 and _
= a a funckuin- bias 2) et
O38 piaegrey
SEF ; -OL
Nig = = 0:3
Vane 0:1 _ Na2= O'4
Voy =_9°3 No2 = 0S"
Scanned with CamScanner__Amput- Sample [x1 _ aa]: 2 Le 1] target t24 1. —_
~AColeutate the nek input for hid
aeen_loy ee. —
Fox Zy 2
I Zina = Noy + %1Vir t X2Vau
| =_0-.3+ ox0-4641x-0'l
' = 0:34 06-011 = 08
Fa, Z =
waz = Vort %vi9 + 2 Vor
= O5+ ox-0-3 + J XO-4
= O-5¢OtO £09
a a 1 a = 0. 5498
=f (Zit) ree ET ae
ee = 110
Za = flii= ee ee? “
Scanned with CamScannerig ee oe a
"C4 = iy eID Blqut) a 7
FE tear)
Cyn) —=— 02495
6,2 (1-0-5221) (0.2495) = ONL
‘A Find the changes ti weights between hieteln_ancl_ouspuk
layers
Aw) = ¢ 6%, © 0-25 X0:119) ¥ 0-5498
= 0-016Yy
Aw = «829 = O'R5X ONG ¥ 0-709
= 002 t
Ab = 46, = 0:95 xX ong *
=__0:02978
A Comput the ener portin 6 behoeen input_and_htdldin loyer
(2 Ito 2)
ops Suis’ [Ziep) =
= Ga; = = Cx Wik Here Kz=J only one output
K=I neuton
Cunt = Gy wy, = ONL XO-U = O-pUTEY
— bug 2 By way-= 0-9 X 0-1 = 00119
Scanned with CamScanner——Enor_Gi= Gin (a1) — _t ie —
plas) = g(2air) Cr Peace]
= =_ 0.5498 [l- 0.5498]
=O. 2015 a
"(za L) —
0.04764 X 02475 = 0-018 on
f(Zusa)
+h (eirg)-Cl= 42a)
0+ 1109 [ t= 0-T109J__
0 8055
G2 = Cina (Zin)
=_O0-01195 X 0:2055 = 0.00245
AAous changes tn weights between input and hidden layer’
—Avy = & 6x, = 0-25 x0-0118 XO =O
Ag, = 4 Ey 4 = 0:25 0-0118 XI 0:00295
ANo= x By = _O-25X0-0N8 = 000295
Avin. = 4E.%) = 0:25 X 0-00QU5X0 =O
A N92 2% 6 %= 0.25% 000245 X1= 0-0006125
ANog= 69 = 0:25 %0-00245 = 0-0006125
lompute thefinol_weights of the network? —
“
_Miylnew) = Vy Cold) + Av) = 0-6 + 0 0-6
Mia (new) = Vio (Old) + Avo = - 0-34 0 = -0-3
Jor (mew) = Nai(olel) + Ava, = 7 0+! + 0.00295= -0-0910-
_Vga (new) = V22 (old) + Ao = 0:4 + 0:0006125= 0-4ooe1as
Vo, (new) = Noi(old) + ANoy = ©-3+ 0-00295 = 0:30246
Noa (nay) = Vo2(old) + Avor = 0:54 00006126 = O.Soo gas
Scanned with CamScanner’ WL (neue) = wy, (old) + Aw = 0
Wa mew) = We (old) + Aw2 = 0+] + 0-02/1F
b(nuo)= bj oid) + Ab = -O-R+ 0.02970 =O0:11022.
tad_the ne » weights, ing back - propagates
The_network._is_presented with ‘the Input —pattsn [=I 1
—And target tb Ls Use | ng_rote 120-25 ¢
byereors
Vi20:6 5 Win 2-0-3, Yap = 7 Ol | Vag 0-4, Vol = 0:3, Yogz0-S
Wy =ZO-4, Wy =O) , b= Od pat
Bipolar _sigmoteal function + _
pis 2 -L = b i-e™
ie I+e7*
& Coleulat, nek input spor hidden layer _
For xs =
iin = Vor + 2yNu FX Vay
= _OAtENX 0-6 + 1X (-0-1)
= 0:3-0-6-0-1 = -O-4
Scanned with CamScannerNog + %) Vay + % Vag tt o
Gite sf=t) Xe(2024) fe eX Ot 4
OB +O 3404 = 9.0
=O 2 4-0:1974XO:4 + 0.537 X Ol
— 0:2 +(-0.07996)+ 0-0537
eb ege see == 0-4122.
$bwi) = 0-5[ ln O-J122 J [) + 011224 = 0.4434
Gre Clp 61122) (0.4934)
=| 1122 X 9-4937 = 0.549)
(Find the weights between hidden and
L output layer
Aw, = 06 8% = 0:25 X 0-544 X_ (-0-1914)
= — OOH
Ag = 462232 025 KO. 544 X 0+ 534
= = O07 3)
ey ae en Ee ae
20-1373 -
Scanned with CamScannerce udp. p (Zing) — _( there 1S only, ons outfall
PGi 2s Gaal 7 want = 9:81864
— ase
L = 00549 X0-5(1— 0+ 5371 (l+ 0-537] = 0-0195°
i ; " .
pA Changes ui weights between inpuk and hidden layer, ¢
oas Xoogsxl = 0:0049
O:&SX o.019S = 00049
ki Avy = x6) 21 = _0-25X 0-(os6 X-| = ~0'026Y
r ANay = & 6) 9 = Oras X O-locex| = 0-0264
b 0. as X O-1056 = 00264
b Oae X O-019S K-| = —6-0044
b
Y Vu(nus)2 Vutoid) + AV = 0-6-0264 = O- 6136
YNi2 (mew) ANin_ =O: - 0-304
| a a) =Nqlald) + Aes = = Ol emsnas 2 = 0-0736
yNa2(nem) = Voa(old) + Aveo = o-4 + o-p049= O-4049
ae (re) 2 Sigg Bea, 3 0- — 80211 5.37.24 —- iil
2 Cas et he 2 = OF 007131 2 01737
st “gs,
Scanned with CamScannerYo2(old) + AVo2 = 0:54 0.0049
blotd) + Ab= -0-2 +0-1373= = 00624
ASSOCIATIVE MEMORY NETWORKS
___ly Tt _can_Stpre_a_set_o4 pattems _as muncories.
le _the associative mma is_being presented _useth, O- __
_Key_pattun , it responds by preducing ene of the Stored
____patterns,_with—the—belp of—infermt fin —mremerized which
___tlesely, reser bles—errelates to _ths_Key path Thus, the
recat” is through essociatnn of the Keypatlon ite
Wa aa
| ep of —ernformatecn—mtenae! ae
bs These ty tt » also called as content —
addressable mentersis CAM) th_contrastte that of
Lraditimal addrecs- addressable mentories_ch_ xy) then the hamming, olt’staunce ( HD)
{Gh doped _as the ne. of mismatched _Contpenents of
pss zand x’ vectors ie. 7 7 as
Ne Zo faye Xi] if ti LOU
Lo ip (ayes St ’ cee
pee
_-—____--— a = 2
Ly Tf each of the output verters & .same_a8 the input vectors |”
___ with whith itis _assocfated , then the nel_ts Said. te
by Ip each of he_eulpat veces Ore different yn the
input vectors then the net _& ssaiel to be heleroasocvatise
eusal nek.
are updated until there is no wera ht change
Ly no eughis
Sep O: Set att the initial wlt te zero fe. wy=0
tapas ad
Steph! For cach tring target pat apt ea eyo
Scanned with CamScannerSte 22 Aolivate inp oye unit jp ewrent current ig —
inputs : -
5 meer | C4er- (2 Iten). -€
Stop3 3 Ackbati the output layer units to_eustent target —
Output 7 z ss
Steps Start the wer
wif (new) = wis Cotd) + xy
Thi algo #_usecl for cateulahin of the weight of assoctatise
n le Tk tan be used useth pattans that are being rep ented
As eithes binary or_btpolar vectors
Proolucts Rule t $-
i oo oe
Tnput = $=( si, +-- St, ---Sn).
Pe Outer, product of the two vectors is the _procuck of
matrices S267 ond T=+ i-¢. [nxt] _+[) Xm] matrix
by Matrix Mulbplicatiin fs dene a8 fotlowss $=
: ST =
Scanned with CamScannerDate
ecght- Tiare Us same a8 the vw
—by Hebb rule to store the pattern
For oe a Set_op association S(p)? Lip) pil Pookie
a i ne ssk_p)) wet ie
Et pei lpy by (p)-= ta Ly) peed rece
vip _can be quien. a
Scanned with CamScannerys Arabians
Trang Alger than?
Step! Os Tnitialize : ol sought te #8
wits Le
Step) i For each op the vector shat hes te be Slorad perf
24
pitecture =4A ‘aha —
L_step2. t _Adkivatsenth_ effin sbjuk_ unt att
aps Ac ree each p i i.
| Step Yt Adjust tbs weighs =
: __ wife) = wyj (old) + igs
at 2
Step OF Set the wls obtained or Hebb rule or outer products
oe 2 For each 4 testi )_tnpuk vectors pererm Step 2-Y
-
w=: 2 ep) 4 Cp)
Cafcutate + the oukbuk by appli g—acbivaleon_ower._ net f
= Hy bly) = ha
Scanned with CamScannerZ —— a “
used th speech jrnteig.
sification pet.
Ly Thi +: ype of metwork tan be
8 processing» pattern elas
taTIVE NETWORK $=
___ 4 _trathés input Pal target “output _weetors rs are agers
__ 45 weights are _dleterntineel _th_a_way_4 1 that the net Can __
Store a Set of, pattern __a.sso
Ee by Assotdakion ta pais. a tng -
___paiss_{ fp), 4p)) sith _p=t,- -.,P_» Each vector S(p)__
_____has_n__Components and veetes 1p) has mm. Cor Cont poneuts
bs _peterminaligin of ust clone _etther by lng Hebe th —
delta rule.
saree van appeapeiaBs output car, whith cores pads.
ie vector x, that bey be siete one sf the
- unknown input.
[Step Of Taulialise thes wits from the trains
| SlepL? Peja stp tren inp at pose ‘
{—_--- ics a
Scanned with CamScannerData.
—Step2: Set the ackivatun -for_input layer units equal stoi |
that of the current input vector. guiin x _ 7
3+ Catewtote the net _thput te the output uviils + —
ees
— fj
Step¥ = beterméxe the activations of the output nits over —_<{
the colubated net input
7 -—h pe
SEES pigs
th yur j £0
NOTES Heteraasacitite mtmory_not_an iberatiise memory
netioork. Ty the respones of the net ore binary. thin the
———achivahén funttuin fs be used cs a
Ye 1 yout) 7% O
os f ying £0
__ BIDIRECTIONAL _AS9clATIVE._NETWORK
b Te was developed by Koso is 4he_yeor LIBR. BAM nju
performs forward and backward assoufatuit searches fo
Stored ehimubus respprees.
% Tk l_d_recument__heteroassoctatiitfatfeun -_matchiag, —nekwork
: ole =
5 BAM _newnal nets are capable te _eepend. “te shbuk Pram
eithes. _Cfnpout_§ output layer)
Ly There_ore 2 _4ypes_of 6am t @ Discrete
ee eee OE ae
Scanned with CamScannerE _biserete Bidirectfonal Acsomatuie Memory <—
1» Structuxe of oliserete BAM us ame _as about.
_ Ly when the mene are_being activated by, bg
a @n_imitial vector at the input of 7 Layer, the nelson
evolues_a two-pathean Stable state wlth each pottern_at Output
j—_Lek_the iaput veclor be denoted by sCp) and. ta clOrs_b
ACp)—p=t,- P._ Then the wot - matin th store a set” of
a xeckors , a
| S(P)= (Sip), 22 SUP) yoasa Sal PY =
Scanned with CamScannerttp)= (4p). .-= . tCp)s.e-atm-(P))—
—Can_be_ p Biteiiaid by, Hebb scale train 0. In Case of tiput J
Nectors eg binary , the wt matrix We $.0ij} i guren_by,
£2 setpy=!T a
Op the _aiha_ | aahen 4 the oe me vedi ae prt
maine W=> {wij} an be defi
: a
_ wij = = Sip) ee Cp
mata in both cases is go be in bipolar
5 efHun the [nput Veclors are in bisa
Scanned with CamScannervoit bra fase hueedeetneeta We
L mn ¢ 2 Ot
mi je i ani = Of
eee Hg wt 2 OF
Teshng Algorithm Jor Discrete BAM,£-
v
—F
2 Pesed en the trati Op wes ced
©, i ab culate:
2. acti} & a recogutze the
Diogal _ 2
__step4s Ls Update the ~aitisaliont of unit in. Y tayes Catastati the
net input ayy
2.
ase
Sétnaé
Scanned with CamScanner—obtata
7 yb Cys) =
cast, wo
Updali the activations of units th X layer. Cabealats
the net input,
Apply thi actisaliéns pyen thy net input,
7 fend_this stanal to the lay
Shep 62 Test pos Comvetgence ef the met. The cemueigente occurs
the actusalicn vectors x ancl _y reach equilibstum
Tk _transjovens the infu ethly and. comirously
ha Ons using legisltt cegmiid pundiias as the
Aclwalion puncions gor att leit,
—Logisti: sigmoidal punchin ring be etthus. binary signoidal
——fundien_es bipolar sigmeidel punch
—'_when_a_bipolan sigmoidal funch
———thosen.,then the Continous Bam might ¢
Of —vecllirs_mhich will afmath vestiies of the cube
hin 4hat Slate of the vector appmachus it acti like
Tg the input_vectors ore inary. Le(5), t(p)) p= foe
—weights_are_detenmind using the sposowuba
se lasipl C2ti(p]
—_—— aes
wif
Scanned with CamScannerbe. even _ mee the “inp ae ae ut th -matnia_
b
Ee fo
bipotas. a —— -
1 Actiahon puostin. pol Legis sipcidal junction
a ik l4_bunary logistic. mee »—then_achivatiin tauacbuin fo
|
i+e eg J
i_a_bipalar, loguslie function
apse fe et |
[+ ed i eve |
Scanned with CamScannerJiscreks. tdd_netivark —_—
45 Tt i an ute asoniabie tatereennnted — single
: metusork . Tt is algo a ype nebrically_sctighted nfo.
“9 shen thes Us operated (n_ctéscrati line fashion itu tatled as
: ~Aisercte Hopfield network §
A= archickective as _a_ single slayer
‘- feedback metwork _e/d _yeeurent nyo.
—b__Netwwerk takes bihan L) or _bipolas.|
: yl, P
Nid has Sypancbieot li ttl nto self =cennsttibest yf
. Lope uate twin e0.
—— Key podaly =
Hoon et tril” updates ils _achivatiins at a bint. —
Lo Each unit te eonting sly erosive extern cxnal_signal al _
sills the Signal _it_receives frrm_the_othen unite us the
. met.
le layer restient_in_peyeening depute Luptatig
t_patlesn is just applied te the metusrk anc the
———tashoork's output is _found tobe _initateect accerding ly 2
4 Aftesasarals, ihe inilaliing —patizsn_e_remosel, ane oxttpat yy
— $_ initiated betemes the neo _uptated {input thnssigh feedback
| —Cennestions. ‘The irs updated fp forces the fisst update dt
———dutpuk, whieh in_tusa__acts_as the second —tpdated_ input
———thaough —petclloack connetbitias _ And tres cult
Oa
_b ths Ail be Continues till _systom_systin reaches a
tin_secend mie
Scanned with CamScanner| _Output rem each —proeecsing
: pup ctor process )—elerseusti, but 26
S{p) = CSL) + Salp).
ze [2syp) 1] (2sytp)=!J gor C8)
pal
Loughe matrix We
For pales tinal geet
= Site) Sp) _#f-
ga =
Scanned with CamScanner~—Tesliing —_Atgontthen of | Hapfiela Nusa. —— a.
— Step 0? Enihiatize wou to alia patterns he. uote obtained. fren.
- fratning algo. using Hebb rule. =
When the activations of the mets are ot. Loney
then _pesporm Step 28 a
& Resor Steps BT ae “input vector —_————
(SS = 7
Make the initial aia squat to thee:
faput _veclér Xs 7 os
u p= xe Le= Iton) | _
steps Perform Steps 5- EL spon.eath_unit Ye Ciere unl
= Upolated th random _arcles).
Sep 5 = caleutate the set —linput of the meboork §
i 7 ae di |
Step 6? Apply. —the ackivations owe, the net |
fp ects
5
ut ty
ere
5 yas oF -
a Oe pee :
the threshold and is no)
Slept Now fecotback the obtoried _ pulpit Ye to <
: Thus, the activation vectors are Updated
Finally , test the network , jor_convergenee.
Scanned with CamScanner_ Dates =
QW Train_a heteroassoccabine menaory,. network using Hebb rile
fo __sstore_input row vectors. C$12$2553554).to_outpuk __
pow vector t= (ti, tr) vector pains are _gusm as
apt targets $1
dst
Land _
aan eat
won (asel! Firsk_inpuk woloy
(2, Ay Hy, My) 240 to)
(4, Y= UO
boy (nes) = Wn (old) + %, 4
| We) (new) = wa (old) + aay = O + OXI Oo
| wo31 (new) = wa fold) + wy, = O + Ixl =
_ eu) (new) = wy, Cold) + yy, = 0 + OXL=0
W212 Linus) = We jold) + uy. = 0 + 1KO=0
022 ( new) = Woo (old) + xy, = O + O¥O =0
W032 (new) = Wi fold) try, 2 O + 1x0 =0
wy (new) = Wyr(old) +%,y, = 0 + OXO =0
Case 2: For Secwnd input vector
(2, % % 94) = fb Oo 0 3)
(2 eC ep
wy tne) 2 sy fold) + ays b+ IKE = 2
Wy = © = o+0
log (mew) = Wa, fold + Yay, = Q)+©Xx|
you) (mere) = vou) (Ol) € ayy, 2 QA IRIE
I
Scanned with CamScanner—— é =
THe —Centia) Wiafoid) + ayy = o tly O-
ine) =_Wwaa(sfd) + ry. = ofoxo
tee (mew) = waga(ctd) 4 as¥g._= O+0 x 0
242 (me) = woy2 (od) ayy, 2 Ot! x 0 20
Neck,
—4231_( ew)
WOHL (new)
WI2 (mes) = Wi2 (old) +2
W22 (nus) = War(old) + a y.
wae. (musa) = (udga fold) + 25 Yn
Loy2 (mew) = _Wy2 Cold) xy
Case 43 Fowth input veer —_
(2% 43 %y)_ = (6__0. iki):
{$,—yo) = {0 1) Gee
won (new) = vou fold) + yy
W321 (mew) = wailold) + xy,
W031 (new) = 31 fold) + sy,
— Wai (new) = Wy cole) fF tyy,
Wid. (mas) = Wyo told) + yy.
Woz (ew)
tag (emo)
Wyo (ned) =
Final wl are t=
wy 22, We 22 7 0g) Aly
Scanned with CamScanner“QU check the auloassowabiie metwork fer dsput vectar |
Th | U7. Form. the weight vector sith. no fees |
Conruclion » Tedt whether the net ts abt. to recognize |
usithy one msi —-
Sol? Enput of
qe ees
= fou)
=) =t 08
Testing the mnetwsork silly One naukecng _eritary.
” 2! =I
Scanned with CamScanneree a
— apy activation function we ree ef =u
— uss Construct & test a BAM network to aocate
letters F and F cae ssumple_bipatar _uiput - output _
——veelOrs + The ta tr por Et (1,1) ancl fom
ee oy _matn'x_si 5x3. The é :
ige Gs 5 oe
a * i aia
° oe
*
Scanned with CamScanner_|
iW ait ae a doda
| Sp Og ao 8 Slo bo Hs clodado Nt
v wa
| ul bea)
“ERP OP Taya 4 =
| SPRATT TE EP i a
| fa + a
lal : r
ew
7
fe 7
i a
$ a
1 x 2
ey | ; +
flay |) | | a &
| ry} if a
adalat alt inl lana llasortanatlanslone ili ttc Ld
Scanned with CamScannerpn abplyang neta “penton
—on applying. _acliealien we gel 4 | _hents
Presponse 6 obtained
pt espa F
depp pe
ep
[= fe ia
Fae so Correet
—apigngy atic gL a_i Tae :
___szeaponbe ib _obtaured. a
t
t =f} tJJoo00229-2.-2.0-¢
i : g2200 2 0 O22
fon 2pr-b-2 2222 -E sd 222)
5
wg atbation gundiona., ht get
offi si acl i tty ct att
Sptral
Scanned with CamScanner=H Cerra ee eee a ee
_Thus_B A: M__niekutork is _tonstructed and. tested 1h both the
_clirections ____ =
ecend Components. Of sto ssector.
a? Input vector a=b4 tt 1]
weight matrix ba_gusen by
prey,
i Cry rey
Ee,
M1
w=: 5s’ Cp) tip)
Scanned with CamScannerL Date
Binary, sepoccuentatiine por given input sector 6 [4 110]
Wet Out Asynchronous —upclation of wodights. hare, tet
—__tk_be“Y), Y4, ¥5,¥9 ——
= Test input _vecter _usith 8 matsing entities 2 —
ee
-_Stepl i Tput vector i x= [0 0 4 OJ __
step a y= To 6. SOF. sol
~__Step3 2 Cheese unit ils acktyatens
4
eee Sob = Ys lH
=O+foo 101 fe = pts t
Applying, adientin ais 70 2+ yy sk
—— ee eee
Broadeasliy yy —te_all_otine unite, fie
pat t oS --No_stnseng ka coc gee
© Steps cheese nae Yn pr-updaiig ts acisotions
til = Ry t fe gh.
ees
x Eto £ J
oerit 0 £0}
Scanned with CamScannerChoose unt a va
gine = +B yruopa | —
a
=otfi0 1 oj | 4 =O+2=2.
EE
Yui 2%0 f2 He =| Henee y= [i 4 1 0]
Lieratten, 2. o UT sy
Stepo é ts : Ea aes
— Steels weights ave initials ed IW) : 4 8 =}
_ Shel
—Stepl 2’ ow= Ti 107 a
Stepas = Ell AiG 7 Seer =
a ire a
Scanned with CamScannerStep {cheese unit ¥3_for updating i
——parsatd Yj = 04
yun 20
*
rik yy fon epdatiom
‘Now yes aa
_Stept choose
Bee - eee ce Siege
ees = 2-3
yu Kot erat Thasee—y Sct pao
—Stepsi 4 Lunt Latin
z hoose 4 poe ap al
YuAs = Ant 2 Yr;
—Yyurd Fae
e
EO+ 03 “4 07 La
0
T
ig
Scanned with CamScannerrahén and gunctionad _apmeximahin neusal
—mju2d_ceweloped +
—t__Network wer the mast common nenlineatites such as
Aigmerdal_and gaussian Kemet functions
They are_atso_used_o es networks \
—b___Gauistan Function __clepined as a _\
Teaining Algorithm > = _
tep Os Set the weights te .amall_yandem vals
Step Lt Pea} hin eo en eee
Step 2% Pesfeam Steps 3“]___yex each input - :
fap uni (20 pon att ton a
: ignals_4_tranansitt_shh_the meat_hidclen lanes whit
ee —Andiol basis .punchain
StepB i Select the centers p04 Aachial bas pune
Centers ane selected prom the set of _imput vectors Lt
-—-Should._be__noted that __a__sajfirient_no of Centers.
_.. have to be select ed to ensure set sSanipling
of, Input vector space. aa
Spiral
Scanned with CamScannerwhare ay Center of RBE Fanik par input _veninbies
or’ the _ysiolth op ith RBE unit , xf the sth variable
input pattern.
Step#i- Calculate the outpuk ef the meurel network »
Ke
got = Wr Vila e+ Ld.
i=1
ea MOE of hidden lanyer nodes
= output olut of mth mode 1h _putbut. Lawes er
oii, incoy ottisn
vot bio ita RBF unik an’
at nth oukbub node
—
Wirn — d_mth_output node
wo biasing, ese
Scanned with CamScanner