0% found this document useful (0 votes)
101 views6 pages

Math Formulas and Calculus Rules

This document contains formulas and definitions relating to calculus, including: 1) Rules for derivatives of basic functions such as polynomials, exponentials, logarithms, trigonometric functions, and their compositions. 2) Techniques for finding derivatives including the limit definition and applying the chain rule. 3) Formulas for integrals of basic functions and the substitution rule for integrals. 4) Methods for approximating integrals including Riemann sums and trapezoidal sums.

Uploaded by

j552rbv2dz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
101 views6 pages

Math Formulas and Calculus Rules

This document contains formulas and definitions relating to calculus, including: 1) Rules for derivatives of basic functions such as polynomials, exponentials, logarithms, trigonometric functions, and their compositions. 2) Techniques for finding derivatives including the limit definition and applying the chain rule. 3) Formulas for integrals of basic functions and the substitution rule for integrals. 4) Methods for approximating integrals including Riemann sums and trapezoidal sums.

Uploaded by

j552rbv2dz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

ap aq = ap+q z = a + ib = r(cos ✓ + i sin ✓) = rei✓ ,

ap /aq = ap q r2 = a2 + b2 , tan ✓ = b/a (a 6= 0)


a q = 1/aq
(ap )q = ap·q f (x + h) f (x)
p f 0 (x) = lim
a1/p = pa h!0 h
a p bp = (ab)p
ap /bp = (a/b)p (u + v)0 = u0 + v 0
(c u(x))0 = c u0 (x) c
ln(ab) = ln a + ln b (u · v)0 = u0 v + uv 0
u0 v uv 0
ln(a/b) = ln a ln b (u/v)0 =
v2
ln(ap ) = p · ln a ✓ ◆
df df du
loga (b) = ln(b)/ ln(a) (f (u))0 = f 0 (u) · u0 = ·
dx du dx

u u sin u cos u tan u (xr )0 = rxr 1


0 0 0 p1 0p (ex )0 = ex
⇡/6 30 p1/2 p 3/2 1/ 3 (ax )0 = ax ln a (a > 0)
⇡/4 45 2/2 2/2 1
p p (ln x)0 = 1/x
⇡/3 60 3/2 1/2 3
⇡/2 90 1 0 (loga x)0 = 1/(x ln a)
(sin x)0 = cos x
(cos x)0 = sin x
1 = sin2 u + cos2 u (tan x)0 = 1/ cos2 x = 1 + tan2 x
p
tan u = sin u/ cos u (arcsin x)0 = 1/ 1 x2 ,
p
sin u = sin(u + 2⇡n), n 2 Z (arccos x)0 = 1/ 1 x2 ,
cos u = cos(u + 2⇡n), n 2 Z (arctan x)0 = 1/(1 + x2 )
tan u = tan(u + ⇡n), n 2 Z
x0
sin(u) = sin(⇡ u)
f (x) ⇡ f (x0 ) + f 0 (x0 )(x x0 )
cos(u) = cos( u)
sin(u) = sin( u)
f (xn )
cos2 u = (1 + cos(2u))/2 xn+1 = xn
f 0 (xn )
sin2 u = (1 cos(2u))/2
sin(u + v) = sin u cos v + cos u sin v
cos(u + v) = cos u cos v sin u sin v f (x) g(x)
1 1 x!a
sin(2u) = 2 sin u cos u
f (x) f 0 (x)
cos(2u) = cos2 u sin2 u lim = lim
x!a g(x) x!a g 0 (x)

y y0 = a(x x0 ) f 0 (x) > 0 x 2 (a, b) f


[a, b] f 0 (x) < 0 x 2 (a, b)
(x x0 )2 + (y y0 ) 2 = r 2 f [a, b]
Z b
n
X Z b
f (x) dx ⇡ Tn
f (xi ) xi ! f (x) dx a ⇣ ⌘
a
i=1
Tn = x f (x2 0 ) + f (x1 ) + · · · + f (xn 1) + f (xn )
2
xi ! 0 i
x = (b a)/n xi = a + i x

Z Z b
b
0
F (x) dx = F (b) F (a) f (x) dx ⇡ Sn n =
a
a
Z b Z b Sn = 3x (f (x0 ) + 4f (x1 ) + 2f (x2 ) + 4f (x3 ) +
cf (x) dx = c f (x) dx · · · + 2f (xn 2 ) + 4f (xn 1 ) + f (xn )),
a a x = (b a)/n xi = a + i x
Z b Z b Z b
f (x)
(f + g) dx = f dx + g dx
a a a Rbp
Z b Z b L= 1 + (f 0 (x))2 dx
a
uv 0 dx = [uv]ba u0 v dx x
a a Rb
Z b Z u(b)
Vx = ⇡ a f (x)2 dx
f (u)u0 dx = f (u) du y
Rb
a u(a) Vy = 2⇡ a xf (x) dx

Z
xr+1 Z
xr dx = + C r 6= 1 1 b
r+1 y= y(x) dx
Z b a a
1
dx = ln |x| + C
x
Z
ex dx = ex + C Z Z
Z h(y) · y0 = g(x) h(y) dy = g(x) dx
sin x dx = cos x + C
Z ⇣ ⌘0
cos x dx = sin x + C y 0 + f (x)y = g(x) yeF (x) = g(x)eF (x)
Z ay 00 + by 0 + cy = 0
1 a 2+b +c=0
dx = tan x + C
cos2 x 1x 2x
Z y = Ae + Be ( )
1
p dx = arcsin x + C y = e (A + Bx) ( )x
1 x2
Z ↵x
y = e (A cos( x) + B sin( x))
1
dx = arctan x + C
1 + x2 =↵± i
ay 00 +by 0 +cy = g(x)
Z Z y = y h + yp yh
uv 0 dx = uv u0 v dx yp
Z Z g
0
f (u)u dx = f (u) du A
Z
1 det A 6= 0 A
f (ax + b) dx = F (ax + b) + C
a A~x = ~b
A
2⇥2
>
a b
= ad bc
(ax + b) A c d
ax+b
✓ ◆ 1 ✓ ◆
(ax + b)k a b 1 d b
A1 A2 Ak =
ax+b + (ax+b)2 + · · · + (ax+b)k c d ad bc c a
Ax+B
x2 + b2 x2 +b2
Derivasjonsregler Integrasjonsregler
R R R
! "0
af ðxÞ þ bgðxÞ ¼ af 0 ðxÞ þ bg 0 ðxÞ af ðxÞ þ bgðxÞ d x ¼ a f ðxÞ d x þ b gðxÞ d x
R R
f ðgðxÞÞ 0 ¼ f 0 ðgðxÞÞg 0 ðxÞ f ðgðxÞÞg 0 ðxÞ d x ¼ f ðuÞ d u
! " R R
f ðxÞgðxÞ 0 ¼ f 0 ðxÞgðxÞ þ f ðxÞg 0 ðxÞ f ðxÞg 0 ðxÞ d x ¼ f ðxÞgðxÞ % f 0 ðxÞgðxÞ d x
# $ Zx
f ðxÞ 0 f 0 ðxÞgðxÞ % f ðxÞg 0 ðxÞ d
¼ f ðtÞ d t ¼ f ðxÞ
gðxÞ ðgðxÞÞ2 dx
a

Deriverte av grunnfunksjonene Rb
F 0 ðxÞ d x ¼ FðbÞ % FðaÞ
r 0 r%1 1 a
ðx Þ ¼ rx ðln xÞ 0 ¼
x
ðex Þ 0 ¼ ex ðsin xÞ 0 ¼ cos x

ðcos xÞ 0 ¼ % sin x ðtan xÞ 0 ¼ 1 þ tan 2 x ¼


1 Tabell
Z
over nyttige integraler
cos 2 x 1 rþ1
xr d x ¼ x þ C, r 6¼ %1
x 0 x 0 loga e rþ1
ða Þ ¼ a & ln a ðloga xÞ ¼ Z
x 1
1 1 d x ¼ ln jxj þ C
0
ðarcsin xÞ ¼ pffiffiffiffiffiffiffiffiffiffiffiffi 0
ðarctan xÞ ¼ x
1 % x2 1 þ x2 Z
1
cos ax d x ¼ sin ax þ C
a
Trigonometriske sammenhenger Z
1
sin ax d x ¼ % cos ax þ C
sin 2 x þ cos 2 x ¼ 1 a
Z
sin x ax 1 ax
tan x ¼ e dx ¼ e þ C
cos x a
Z
sin ð%xÞ ¼ % sin x ln x d x ¼ x ln x % x þ C
cos ð%xÞ ¼ cos x Z
&! ' 1 1 x
d x ¼ arctan þ C
sin % x ¼ cos x a2 þ x2 a a
2 Z
&! ' 1 x
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi d x ¼ arcsin þ C
cos % x ¼ sin x a %x 2 2 a
2 Z
1 1 ((x þ a((
sin ð2! þ xÞ ¼ sin x d x ¼ ln( (þC
a2 % x2 2a x % a
cos ð2! þ xÞ ¼ cos x Z x
a
ax d x ¼ þC
sin ð! % xÞ ¼ sin x ln a
Z
x 1
cos ð! % xÞ ¼ % cos x sin 2 x d x ¼ % sin 2x þ C
2 4
Z
tan ð%xÞ ¼ % tan x x 1
cos 2 x d x ¼ þ sin 2x þ C
tan ð! þ xÞ ¼ tan x 2 4
Z
cos ax x sin ax
sin ðx þ yÞ ¼ cos x sin y þ sin x cos y x cos ax d x ¼ þ þC
a2 a
Z
cos ðx þ yÞ ¼ cos x cos y % sin x sin y sin ax x cos ax
x sin ax d x ¼ % þC
cos 2x ¼ cos 2 x % sin 2 x a2 a
Z
2 sin ax 2x cos ax x2 sin ax
cos 2x ¼ 1 % 2 sin 2 x x2 cos ax d x ¼ % þ þ þC
a3 a2 a
cos 2x ¼ 2 cos 2 x % 1 Z
2 cos ax 2x sin ax x2 cos ax
x2 sin ax d x ¼ þ % þC
sin 2x ¼ 2 sin x cos x a3 a2 a
1 þ cos 2x
cos 2 x ¼
2
2 1 % cos 2x
sin x ¼
2
1! "
sin mx cos nx ¼ sin ðm þ nÞx þ sin ðm % nÞx
2
1! "
cos mx cos nx ¼ cos ðm þ nÞx þ cos ðm % nÞx
2
1! "
sin mx sin nx ¼ cos ðm % nÞx % cos ðm þ nÞx
2
Noen rekker Regneregler for Laplace-transformasjonen
X
1 n
x
ex ¼ 1. f 0 ðtÞ sFðsÞ % f ð0Þ
n¼0
n!
2. f 00 ðtÞ s2 FðsÞ % sf ð0Þ % f 0 ð0Þ
X
1
n%1 xn
lnð1 þ xÞ ¼ ð%1Þ , x 2 h%1, 1' sn FðsÞ % sn % 1 f ð0Þ % sn % 2 f 0 ð0Þ % . . .
n¼1
n 3. f ðnÞ ðtÞ
% sf ðn%2Þ ð0Þ % f ðn%1Þ ð0Þ
X
1
x2n n
cos x ¼ ð%1Þ Rt
ð2nÞ! FðsÞ
n¼0 4. f ð"Þ d"
0 s
X
1
x2nþ1
sin x ¼ ð%1Þn 5. eat f ðtÞ Fðs % aÞ
n¼0
ð2n þ 1Þ!
X
m 6. uðt % cÞf ðt % cÞ e%cs FðsÞ
n 1 % xm þ 1
ax ¼ a
n¼0
1%x 1 &s'
7. f ðctÞ F
X
1 c c
a
axn ¼ , x 2 h%1, 1i
1%x ðf ) gÞðtÞ t
n¼0
8. R FðsÞ & GðsÞ
¼ f ð"Þgðt % "Þ d"
0

9. tf ðtÞ %F 0 ðsÞ
Fourier-rekker
For f definert for x 2 ½%!, !' er f ðtÞ R1
P
1 10. Fð#Þ d#
Ff ðxÞ ¼ a0 þ ðan cos nx þ bn sin nxÞ der t s
n¼1
Z!
1
a0 ¼ f ðxÞ d x
2!
%! Basisformler for Laplace-transformasjonen
Z! ! " ! "
1 f ðtÞ ¼ L%1 FðsÞ FðsÞ ¼ L f ðtÞ ,
an ¼ f ðxÞ cos nx d x
! 1
%! 1. 1 , s>0
Z! s
1
bn ¼ f ðxÞ sin nx d x 1
! 2. t , s>0
%! s2
For en periodisk funksjon f med periode T er
1 # $ n!
X 2!nx 2!nx 3. tn , s>0
Ff ðxÞ ¼ a0 þ an cos þ bn sin der sn þ 1
n¼1
T T
!ðp þ 1Þ
cZþ T 4. tp , s>0
1 sp þ 1
a0 ¼ f ðxÞ d x
T 1
c 5. eat , s>a
s%a
cZþ T
2 2!nx
an ¼ f ðxÞ cos dx b
T T 6. sin bt , s>0
c s2 þ b2
cZþ T
2 2!nx s
7. cos bt , s>0
bn ¼ f ðxÞ sin dx s2 þ b2
T T
c
b
For en jevn funksjon g med periode T ¼ 2L er 8. eat sin bt , s>a
ðs % aÞ2 þ b2
X1
!nx
FgðxÞ ¼ a0 þ an cos der s%a
n¼1
L 9. eat cos bt , s>a
ðs % aÞ2 þ b2
ZL ZL
1 2 !nx 1
a0 ¼ f ðxÞ d x an ¼ f ðxÞ cos dx 10. teat , s>a
L L L ðs % aÞ2
0 0
n!
For en odde funksjon h med periode T ¼ 2L er 11. tn eat , s>a
X1 ðs % aÞn þ 1
!nx
FhðxÞ ¼ bn sin der
L e%cs
n¼1 12. uðt % cÞ , s>0
s
ZL
2 !nx 13. $ðtÞ 1, s > 0
bn ¼ f ðxÞ sin dx
L L
%cs
0 14. $ðt % cÞ e , s>0

You might also like