Lecture 2-Mass
Lecture 2-Mass
Education and
Scientific Research
By
Prof. Dr. Ahmed Daham Wiheeb
2020 - 2021
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
Where:
𝒄𝒎𝟐
𝑫𝑨𝑩 in ( )
𝒔
𝒑 in (𝒂𝒕𝒎)
𝑻 in (𝐊)
The dimensionless constants (a and b) for nonpolar gas pairs excluding helium and hydrogen
are:
𝒂 = 𝟐. 𝟕𝟒𝟓 × 𝟏𝟎−𝟒
𝒃 = 𝟏. 𝟖𝟐𝟑
While the dimensionless constants (a and b) for pairs consisting of H2O and a nonpolar gas
are:
𝒂 = 𝟑. 𝟔𝟒𝟎𝟓 × 𝟏𝟎−𝟒
𝒃 = 𝟐. 𝟑𝟑𝟒
At high pressures, and in the liquid state, the behavior of 𝑫𝑨𝑩 is more complicated. A
corresponding-states plot of the self-diffusivity 𝑫𝑨𝑨∗ for nonpolar substances is given in Fig.
17.2-1. The ordinate is (𝒄 𝑫𝑨𝑨∗ ) at pressure p and temperature T, divided by (𝒄 𝑫𝑨𝑨∗ )𝒄 at the
critical point. This quantity is plotted as a function of the reduced pressure (pr = p/pc), and the
reduced temperature (Tr = T/Tc). Because of the similarity of species A and the labeled
species A* ,the critical properties are all taken as those of species A.
From Fig. 17.2-1 we see that (𝒄 𝑫𝑨𝑨∗ ) increases strongly with temperature, especially for
liquids. At each temperature (𝒄 𝑫𝑨𝑨∗ ) decreases toward zero with increasing pressure. With
decreasing pressure (𝒄 𝑫𝑨𝑨∗ ) increases toward a low-pressure limit.
2
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
The quantity (𝒄 𝑫𝑨𝑨∗ )𝒄 may be estimated by one of the following three methods:
i. Given (𝒄 𝑫𝑨𝑨∗ ) at a known temperature and pressure, one can read the reduced self-
diffusivity (𝒄 𝑫𝑨𝑨∗ )𝒓 from the chart and get:
(𝒄 𝑫𝑨𝑨∗ )
(𝒄 𝑫𝑨𝑨∗ )𝒄 =
(𝒄 𝑫𝑨𝑨∗ )𝒓
ii. One can predict a value of (𝒄 𝑫𝑨𝑨∗ ) in the low-density region by the methods
given in section 17.3 and then proceed as in (i).
iii. One can use the empirical formula (see Problem 17A.9):
This equation, like Eq. 17.2-1, should not be used for helium or hydrogen isotopes.
3
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
Where:
We turn now to the binary diffusion of chemically dissimilar species. In the absence of other
information it is suggested that Fig. 17.2-1 may be used for crude estimation of (𝒄 𝑫𝑨𝑩 ) with
𝒑𝒄𝑨 and 𝑻𝒄𝑨 replaced everywhere by √𝒑𝒄𝑨 𝒑𝒄𝑩 and √𝑻𝒄𝑨 𝑻𝒄𝑩 respectively (see Problem
17A.9 for the basis for this empiricism). The ordinate of the plot is then interpreted as:
(𝒄 𝑫𝑨𝑩 )
(𝒄 𝑫𝑨𝑩 )𝒓 =
(𝒄 𝑫𝑨𝑩 )𝒄
Solution:
4
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
Solution:
5
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
Solution:
6
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
Where:
𝒄𝒎𝟐
𝑫𝑨𝑩 : is the mass diffusivity in ( )
𝒔
𝟏
𝝈𝑨𝑩 ∶ is the average collision diamete in (Å) → 𝝈𝑨𝑩 = (𝝈𝑨 + 𝝈𝑩 )
𝟐
𝐊𝑻
and is a function of the dimensionless temperature ( )
𝜺𝑨𝑩
𝐊𝑻
* We can find 𝞨𝑫,𝑨𝑩 from Table E.2 (p. 866) as a function of (𝜺 )
𝑨𝑩
𝜺𝑨𝑩 = √𝜺𝑨 𝜺𝑩
7
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
Solution:
Mass concentration (𝝆𝜶 ) ∶ is the mass of species 𝛂 per unit volume of solution.
Molar concentration (𝑪𝜶 ) ∶ is the number of moles of species 𝛂 per unit volume of solution.
𝝆𝜶
𝑪𝜶 =
𝑴𝜶
Mass fraction (𝒘𝜶 ) ∶ is the mass of species 𝛂 per total mass of all species per unit
volume of solution .
𝝆𝜶
𝒘𝜶 =
𝝆
𝑁
𝝆 = ∑ 𝝆𝜶
𝜶=1
8
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
Mole fraction (𝒙𝜶 ) ∶ is the mole of species 𝛂 per total moles of all species per unit
volume of solution .
𝑪𝜶
𝒙𝜶 =
𝑪
𝑁
𝑪 = ∑ 𝑪𝜶
𝜶=1
𝐕𝜶 = Velocity of species 𝜶
∶ is the average of all the velocities of molecules of species 𝜶
within a small volume.
Then, for a mixture of N species, the local mass average velocity V is defined as:
Where:
𝝆 𝐯 = is the local rate at which mass passes through a unit cross section placed
perpendicular to the velocity 𝐯.
Where:
𝒄 𝐯 ∗ = is the local rate at which moles pass through a unit cross section placed
perpendicular to the molar velocity 𝐯 ∗
9
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
See Table 17.7-2 (p. 535) Notation for Velocities in Multicomponent Systems.
Molecular mass flux of species 𝜶 : is the flow of mass of 𝜶 a through a unit area per unit
time (kg/m2 . s).
𝒋𝜶 = 𝝆𝜶 (𝑽𝜶 − 𝑉)
That is, we include only the velocity of species 𝜶 relative to the mass average velocity v.
Molecular molar flux of species 𝜶 : is the number of moles of species 𝜶 flowing through
a unit area per unit time (kmol/m2 . s).
𝑱∗𝑨 = 𝒄𝑨 (𝐯𝑨 − 𝐯 ∗ )
That is, we include only the velocity of species 𝜶 relative to the molar average velocity 𝐯 ∗ .
Fick's (first) law of diffusion describes how the mass of species A in a binary mixture is
transported by means of molecular motions. This law can also be expressed in molar units.
Hence we have the pair of relations for binary systems:
10
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
(𝐯𝑨 − 𝐯 ∗ )
𝒘𝑨 = Mass fraction of 𝐴
𝒘𝑩 = Mass fraction of 𝐵
𝒙𝑨 = Mole fraction of 𝐴
𝒙𝑩 = Mole fraction of 𝐵
𝑴𝑨 = Molecular weight of 𝐴
𝑴𝑩 = Molecular weight of 𝐵
𝝆
𝑴 = Average molecular weight =
𝑪
𝒙𝑨 𝑴𝑨 𝒙𝑨 𝑴𝑨
𝒘𝑨 = =
𝒙𝑨 𝑴𝑨 + 𝒙𝑩 𝑴𝑩 𝑴
𝒋𝑨 = Mass flux of A , (𝑘𝑔⁄𝑚2 . 𝑠), with respect to the mass average velocity 𝐯
𝒋𝑨 = 𝝆𝑨 (𝑽𝑨 − 𝑉) = −𝝆 𝑫𝑨𝑩 𝞩 𝒘𝑨
𝑱∗𝑨 = Molar flux of A , (𝑚𝑜𝑙𝑒⁄𝑚2 . 𝑠), with respect to the molar average velocity 𝐯 ∗
(𝑽𝑨 − 𝑉): Diffusion velocity of species A with respect to mass average velocity 𝐯
11
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝝆𝑨
𝒄𝑨 =
𝑴𝑨
𝝆𝑨 𝒄𝑨
𝒘𝑨 = , 𝒙𝑨 =
𝝆 𝒄
𝑁
𝝆 = ∑ 𝝆𝜶
𝜶=1
𝑁
𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩
𝐯 = ∑ 𝒘𝜶 𝐯𝜶 , 𝐯=
𝝆
𝜶=1
𝑁
∗
𝐯 = ∑ 𝒙𝜶 𝐯𝜶
𝜶=1
𝐯 − 𝐯 = ∑ 𝒘𝜶 (𝐯𝜶 − 𝐯 ∗ )
∗
𝜶=1
= 𝒘𝑨 (𝐯𝑨 − 𝐯 ∗ ) + 𝒘𝑩 (𝐯𝑩 − 𝐯 ∗ )
𝑁
∗
𝐕 − 𝑉 = ∑ 𝒙𝜶 (𝑽𝜶 − 𝑉)
𝜶=1
= 𝒙𝑨 (𝐕𝑨 − 𝑉) + 𝒙𝑩 (𝐕𝑩 − 𝑉)
𝝆𝑨 = 𝒘𝑨 𝝆 & 𝒄𝑨 = 𝒙𝑨 𝒄
𝝆𝑩 = 𝒘𝑩 𝝆 & 𝒄𝑩 = 𝒙𝑩 𝒄
12
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
• We add together the molecular mass flux vector and the convective mass flux vector to
get the combined mass flux vector, and similarly for the combined molar flux vector:
𝐧𝑨 = 𝒋𝑨 + 𝝆𝑨 𝐯
𝐍𝑨 = 𝑱𝑨 + 𝒄𝑨 𝐯 ∗
𝐧𝑨 = 𝑴𝑨 𝐍𝑨
1
𝑴𝑨 𝑴𝑩 𝞩 𝒘𝑨
𝞩 𝒙𝑨 =
𝒘 𝒘 2
(𝑴𝑨 + 𝑴𝑩 )
𝑨 𝑩
𝑴𝑨 𝑴𝑩 𝞩 𝒙𝑨
𝞩 𝒘𝑨 =
(𝒙𝑨 𝑴𝑨 + 𝒙𝑩 𝑴𝑩 )2
Example: Gas mixture of O2 and N2 with ( 20% of O2 & 80% of N2). Given that;
Solution:
𝑥𝐴 𝑀𝐴 𝑥𝐴 𝑀𝐴
𝑤𝐴 = =
𝑥𝐴 𝑀𝐴 + 𝑥𝐵 𝑀𝐵 𝑀
13
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
0.2 ∗ 32
𝑤𝐴 = = 0.222
28.8
𝑤𝐵 = 1 − 𝑤𝐴 = 1 − 0.222 = 0.778
𝑥𝐵 𝑀𝐵 0.8 ∗ 28
𝑜𝑟, 𝑤𝐵 = = = 0.778
𝑀 28.8
𝜌𝐴 𝑉𝐴 + 𝜌𝐵 𝑉𝐵
𝑉= = 𝑤𝐴 𝑉𝐴 + 𝑤𝐵 𝑉𝐵 = 0.222 ∗ 1 + 0.778 ∗ 2 = 1.778 𝑚⁄𝑠
𝜌
𝑐𝐴 v𝐴 + 𝑐𝐵 v𝐵
𝐯∗ = = 𝑥𝐴 v𝐴 + 𝑥𝐵 v𝐵 = 0.2 ∗ 1 + 0.8 ∗ 2 = 1.8 𝑚⁄𝑠
𝑐
= 𝑉𝐵 – 𝑉
= 2 − 1.778 = + 0.222 𝑚⁄𝑠
= v𝐴 – v ∗
= 1 − 1.8 = − 0.8 𝑚⁄𝑠
𝑝𝑀 10.1.3 ∗ 28.8
𝜌= = = 1.17 𝑘𝑔⁄𝑚3
𝑅𝑇 8.314 ∗ 300
𝜌 1.17
𝑐= = = 0.0406 𝑘𝑚𝑜𝑙 ⁄𝑚3
𝑀 28.8
14
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝑘𝑔
= 0.26 ∗ 1 = 0.26
𝑚2 . 𝑠
𝑘𝑔
= 0.91 ∗ 2 = 1.82
𝑚2 . 𝑠
𝑘𝑔
= 0.26 ∗ (1 − 1.778) = −0.20228
𝑚2 . 𝑠
𝑘𝑔
= 0.91 ∗ (2 − 1.778) = 0.202
𝑚2 . 𝑠
15
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝑘𝑚𝑜𝑙
= 0.00812 ∗ 1 = 0.00812
𝑚2 . 𝑠
𝐧𝑨 0.26 𝑘𝑚𝑜𝑙
𝑜𝑟, 𝐍𝑨 = = = 0.00812
𝑴𝑨 32 𝑚2 . 𝑠
𝑘𝑚𝑜𝑙
= 0.03248 ∗ 2 = 0.06496
𝑚2 . 𝑠
𝐧𝑩 1.82 𝑘𝑚𝑜𝑙
𝑜𝑟, 𝐍𝑩 = = = 0.0065
𝑴𝑩 28 𝑚2 . 𝑠
𝑘𝑚𝑜𝑙
= 0.00182 ∗ (1 − 1.778) = −0.006317
𝑚2 . 𝑠
𝒋𝑨 −0.20228 𝑘𝑚𝑜𝑙
𝑜𝑟, 𝑱𝑨 = = = −0.006317
𝑴𝑨 32 𝑚2 . 𝑠
𝑘𝑚𝑜𝑙
= 0.03248 ∗ (2 − 1.778) = 0.00721
𝑚2 . 𝑠
𝒋𝑩 0.202 𝑘𝑚𝑜𝑙
𝑜𝑟, 𝑱𝑩 = = = 0.00721
𝑴𝑩 28 𝑚2 . 𝑠
𝝆𝑨 𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 𝝆𝑩 𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩
𝐯 − 𝐯∗ = (𝐯𝑨 − )+ (𝐯𝑩 − )
𝝆 𝒄 𝝆 𝒄
𝝆𝑨 𝐯𝑨 𝝆𝑨 𝒄𝑨 𝐯𝑨 𝝆𝑨 𝒄𝑩 𝐯𝑩 𝝆𝑩 𝐯𝑩 𝝆𝑩 𝒄𝑨 𝐯𝑨 𝝆𝑩 𝒄𝑩 𝐯𝑩
= − − + − −
𝝆 𝝆𝒄 𝝆𝒄 𝝆 𝝆𝒄 𝝆𝒄
𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩 𝝆𝑨 𝒄𝑨 𝐯𝑨 + 𝝆𝑨 𝒄𝑩 𝐯𝑩 + 𝝆𝑩 𝒄𝑨 𝐯𝑨 + 𝝆𝑩 𝒄𝑩 𝐯𝑩
= −
𝝆 𝝆𝒄
𝝆𝑨 (𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 ) + 𝝆𝑩 (𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 )
=𝐯−
𝝆𝒄
(𝝆𝑨 + 𝝆𝑩 ) (𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 ) 𝝆 (𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 )
=𝐯− =𝐯−
𝝆𝒄 𝝆𝒄
(𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 ) ∑ 𝒄𝒊 𝐯𝒊
=𝐯− =𝐯−
𝒄 𝒄
= 𝐯 − 𝐯∗
𝒄𝑨 𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩 𝒄𝑩 𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩
𝐯∗ − 𝐯 = (𝐯𝑨 − )+ (𝐯𝑩 − )
𝒄 𝝆 𝒄 𝝆
𝒄𝑨 𝐯𝑨 𝒄𝑨 𝝆𝑨 𝐯𝑨 𝒄𝑨 𝝆𝑩 𝐯𝑩 𝒄𝑩 𝐯𝑩 𝒄𝑩 𝝆𝑨 𝐯𝑨 𝒄𝑩 𝝆𝑩 𝐯𝑩
= − − + − −
𝒄 𝝆𝒄 𝝆𝒄 𝒄 𝝆𝒄 𝝆𝒄
𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 𝒄𝑨 𝝆𝑨 𝐯𝑨 + 𝒄𝑨 𝝆𝑩 𝐯𝑩 + 𝒄𝑩 𝝆𝑨 𝐯𝑨 + 𝒄𝑩 𝝆𝑩 𝐯𝑩
= −
𝒄 𝝆𝒄
𝒄𝑨 (𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩 ) + 𝒄𝑩 (𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩 )
= 𝐯∗ −
𝝆𝒄
(𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩 )
= 𝐯∗ −
𝝆
∑ 𝝆𝒊 𝐯𝒊
= 𝐯∗ − = 𝐯∗ − 𝐯
𝝆
𝟒. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕; 𝒋𝑨 + 𝒋𝑩 = 𝟎
𝒋𝑨 + 𝒋𝑩 = 𝝆𝑨 (𝐯𝑨 − 𝐯) + 𝝆𝑩 (𝐯𝑩 − 𝐯)
= 𝝆𝑨 𝐯𝑨 − 𝝆𝑨 𝐯 + 𝝆𝑩 𝐯𝑩 − 𝝆𝑩 𝐯
= 𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩 − 𝝆𝑨 𝐯 − 𝝆𝑩 𝐯
𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩
𝒘𝒉𝒆𝒓𝒆: 𝐯= → 𝝆 𝐯 = 𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩
𝝆
→ 𝒋𝑨 + 𝒋𝑩 = 𝝆 𝐯 − 𝝆𝑨 𝐯 − 𝝆𝑩 𝐯 = 𝝆 𝐯 − 𝐯 (𝝆𝑨 + 𝝆𝑩 ) = 𝝆 𝐯 − 𝝆 𝐯 = 0
𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩
𝒘𝒉𝒆𝒓𝒆: 𝐯∗ = → 𝝆 𝐯 ∗ = 𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩
𝒄
→ 𝑱∗𝑨 + 𝑱∗𝑩 = 𝒄 𝐯 ∗ − 𝒄 𝐯 ∗ = 0
18
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝒙𝑨 + 𝒙𝑩 = 𝟏 → 𝒙𝑨 = 𝟏 − 𝒙𝑩 → 𝒅𝒙𝑨 = −𝒅𝒙𝑩
→ 𝞩 𝒙𝑨 = −𝞩 𝒙𝑩 … … … … … . . (5)
𝑴𝑩
𝟕. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕; 𝑱𝑨 = 𝑱∗𝑨
𝑴
𝑱∗𝑨 𝑴 𝑱∗𝑨 𝒄𝑨 (𝐯𝑨 − 𝐯 ∗ ) 𝐯𝑨 − 𝐯 ∗
= → = =
𝑱𝑨 𝑴𝑩 𝑱𝑨 𝒄𝑨 (𝐯𝑨 − 𝐯) 𝐯𝑨 − 𝐯
𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩
𝒘𝒉𝒆𝒓𝒆: 𝐯∗ = & 𝐯=
𝒄 𝝆
𝒄 𝐯 +𝒄 𝐯 𝐯𝑨 𝒄 − 𝒄𝑨 𝐯𝑨 − 𝒄𝑩 𝐯𝑩
𝑱∗𝑨 𝐯𝑨 − 𝑨 𝑨 𝒄 𝑩 𝑩
= = 𝐯 𝝆 − 𝝆 𝒄𝐯 − 𝝆 𝐯
𝑱𝑨 𝐯 − 𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩 𝑨 𝑨 𝑨 𝑩 𝑩
𝑨 𝝆 𝝆
𝒘𝒉𝒆𝒓𝒆: 𝒄 = 𝒄𝑨 + 𝒄𝑩 & 𝜌 = 𝝆𝑨 + 𝝆𝑩
𝑱∗𝑨 𝐯𝑨 (𝒄𝑨 + 𝒄𝑩 ) − 𝒄𝑨 𝐯𝑨 − 𝒄𝑩 𝐯𝑩 𝝆 𝒄𝑩 𝐯𝑨 − 𝒄𝑩 𝐯𝑩
= = 𝑴
𝑱𝑨 𝐯𝑨 (𝝆𝑨 + 𝝆𝑩 ) − 𝝆𝑨 𝐯𝑨 − 𝝆𝑩 𝐯𝑩 𝒄 𝝆𝑩 𝐯𝑨 − 𝝆𝑩 𝐯𝑩
𝒄𝑩 (𝐯𝑨 − 𝐯𝑩 ) 𝒄𝑩 𝑴 𝑴
= 𝑴= 𝑴= 𝝆 =
𝝆𝑩 (𝐯𝑨 − 𝐯𝑩 ) 𝝆𝑩 𝑩 𝑴𝑩
𝒄𝑩
𝑱∗𝑨 𝑴
∴ =
𝑱𝑨 𝑴𝑩
𝑴
𝑱∗𝑨 = 𝑱
𝑴𝑩 𝑨
𝒋𝑨
𝒘𝒉𝒆𝒓𝒆: 𝑱𝑨 =
𝑴𝑨
𝑴
→ 𝑱∗𝑨 = 𝒋 … … … … … … … … . . (1)
𝑴𝑩 𝑴𝑨 𝑨
19
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝒅𝒘𝑨 𝒅𝒘𝑨 𝑴2
𝒅𝒙𝑨 = = = 𝒅𝒘𝑨
𝒘 𝒘 2 𝟏 2 𝑴𝑨 𝑴𝑩
𝑴𝑨 𝑴𝑩 (𝑴𝑨 + 𝑴𝑩 ) 𝑴𝑨 𝑴𝑩 (𝑴)
𝑨 𝑩
𝑴2
𝒅𝒙𝑨 = 𝒅𝒘𝑨 … … … … … … … … … (3)
𝑴𝑨 𝑴𝑩
𝑴2 𝑴
−𝒄 𝑫𝑨𝑩 𝞩𝒘𝑨 = 𝒋
𝑴𝑨 𝑴𝑩 𝑴𝑩 𝑴𝑨 𝑨
𝒅𝒘𝑨
𝟗. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕; 𝒅𝒙𝑨 =
𝒘 𝒘 2
𝑴𝑨 𝑴𝑩 (𝑴𝑨 + 𝑴𝑩 )
𝑨 𝑩
𝒘𝑨 𝒘 𝒘 𝒅𝒘 𝒘 𝒅𝒘 𝒅𝒘
(𝑴𝑨 + 𝑴𝑩 ) 𝑴 𝑨 − 𝑴𝑨 ( 𝑴 𝑨 + 𝑴 𝑩 )
𝑴𝑨 𝑨 𝑩 𝑨 𝑨 𝑨 𝑩
𝒙𝑨 = 𝒘 𝒘𝑩 → 𝒅𝒙𝑨 = 𝟐
𝑨 𝒘 𝒘
𝑴𝑨 + 𝑴𝑩 (𝑴𝑨 + 𝑴𝑩 )
𝑨 𝑩
𝒘𝑩 𝒅𝒘𝑨 𝒘𝑨 𝒅𝒘𝑩
𝑴𝑩 𝑴𝑨 − 𝑴𝑨 𝑴𝑩
𝒅𝒙𝑨 = … … … … … … … … … . (1)
𝒘 𝒘 𝟐
(𝑴𝑨 + 𝑴𝑩 )
𝑨 𝑩
𝒃𝒖𝒕: 𝒘𝑨 + 𝒘𝑩 = 𝟏
𝒅𝒘𝑨
→ 𝒅𝒙𝑨 =
𝒘 𝒘 2
𝑴𝑨 𝑴𝑩 (𝑴𝑨 + 𝑴𝑩 )
𝑨 𝑩
20
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝑴𝑩
𝟏𝟎. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕; 𝑱𝑨 = 𝑵𝑨 + 𝒘𝑨 (𝑵𝑨 + 𝑵 )
𝑴𝑨 𝑩
𝑴𝑩
𝑱𝑨 = 𝑵𝑨 + 𝒘𝑨 (𝑵𝑨 + 𝑵 )
𝑴𝑨 𝑩
1
𝝆𝑨 𝑴𝑩 𝑴𝑨
= 𝒄𝑨 𝐯𝑨 + (𝒄𝑨 𝐯𝑨 + 𝒄 𝐯 ) ×
𝝆 𝑴𝑨 𝑩 𝑩 1
𝑴𝑨
𝑴
𝝆𝑨 𝒄𝑨 𝐯𝑨 + 𝑴𝑩 𝒄𝑩 𝐯𝑩
𝑨
= 𝒄𝑨 𝐯𝑨 + ( )
𝝆 𝑴𝑨 1
𝑴𝑨
𝑴
𝑴𝑨 (𝒄𝑨 𝐯𝑨 + 𝑴𝑩 𝒄𝑩 𝐯𝑩 )
𝑨
= 𝒄𝑨 𝐯𝑨 + 𝒄𝑨 ( )
𝝆
𝑴𝑨 𝒄𝑨 𝐯𝑨 + 𝑴𝑩 𝒄𝑩 𝐯𝑩 𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩
= 𝒄𝑨 𝐯𝑨 + 𝒄𝑨 ( ) = 𝒄𝑨 𝐯𝑨 + 𝒄𝑨 ( )
𝝆 𝝆
= 𝒄𝑨 𝐯𝑨 + 𝒄𝑨 𝐯 = 𝒄𝑨 (𝐯𝑨 + 𝐯)
𝑱𝑨 = 𝒄𝑨 (𝐯𝑨 + 𝐯)
𝑴𝟐
𝞩 𝒙𝑨 = 𝞩 𝒘𝑨 … … … … … … . (3)
𝑴𝑨 𝑴𝑩
𝑴 𝑴𝟐
𝒋𝑨 = −𝒄 𝑫𝑨𝑩 𝞩 𝒘𝑨
𝑴𝑨 𝑴𝑩 𝑴𝑨 𝑴𝑩
𝒋𝑨 = −𝒄 𝑴 𝑫𝑨𝑩 𝞩 𝒘𝑨
𝒋𝑨 = −𝝆 𝑫𝑨𝑩 𝞩 𝒘𝑨 … … … … … … . (4)
𝒘𝒉𝒆𝒓𝒆: 𝒋𝑨 = 𝝆𝑨 (𝐯𝑨 − 𝐯)
→ 𝒋𝑨 = 𝝆𝑨 𝐯𝑨 − 𝝆𝑨 𝐯
𝒘𝒉𝒆𝒓𝒆: 𝐧𝑨 = 𝝆𝑨 𝐯𝑨
→ 𝒋𝑨 = 𝐧𝑨 − 𝝆𝑨 𝐯
21
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩
𝒘𝒉𝒆𝒓𝒆: 𝐯=
𝝆
𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩
→ 𝒋𝑨 = 𝐧𝑨 − 𝝆𝑨 ( )
𝝆
𝝆𝑨
→ 𝒋𝑨 = 𝐧 𝑨 − (𝝆𝑨 𝐯𝑨 + 𝝆𝑩 𝐯𝑩 )
𝝆
𝝆𝑨
→ 𝒋𝑨 = 𝐧 𝑨 − (𝐧𝑨 + 𝐧𝑩 )
𝝆
→ 𝒋𝑨 = 𝐧𝑨 − 𝒘𝑨 (𝐧𝑨 + 𝐧𝑩 ) … … … … … … … . (5)
𝐧𝑨 − 𝒘𝑨 (𝐧𝑨 + 𝐧𝑩 ) = −𝝆 𝑫𝑨𝑩 𝞩 𝒘𝑨
𝑱∗𝑨 = 𝒄𝑨 (𝐯𝑨 − 𝐯 ∗ ) = 𝒄𝑨 𝐯𝑨 − 𝒄𝑨 𝐯 ∗
𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩
𝑱∗𝑨 = 𝒄𝑨 𝐯𝑨 − 𝒄𝑨 ( )
𝒄
𝒄𝑨
𝑱∗𝑨 = 𝑵𝑨 − (𝒄 𝐯 + 𝒄𝑩 𝐯𝑩 )
𝒄 𝑨 𝑨
𝑱∗𝑨 = 𝑵𝑨 − 𝒙𝑨 (𝑵𝑨 + 𝑵𝑩 ) … … … … … . (2)
𝑵𝑨 − 𝒙𝑨 (𝑵𝑨 + 𝑵𝑩 ) = −𝒄 𝑫𝑨𝑩 𝞩 𝒙𝑨
𝒄𝟐
𝟏𝟑. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕; 𝒋𝑨 = − 𝑴𝑨 𝑴𝑩 𝑫𝑨𝑩 𝞩 𝒙𝑨
𝝆
𝑱∗𝑨 = −𝒄 𝑫𝑨𝑩 𝞩 𝒙𝑨 … … … … … . (1)
𝑴
𝑱∗𝑨 = 𝒋 … … … … … . . (2)
𝑴𝑨 𝑴𝑩 𝑨
𝑴 𝒄
𝒋 = −𝒄 𝑫𝑨𝑩 𝞩 𝒙𝑨 → 𝒋𝑨 = − 𝑴 𝑴 𝑫 𝞩 𝒙𝑨
𝑴𝑨 𝑴𝑩 𝑨 𝑴 𝑨 𝑩 𝑨𝑩
𝒄 𝒄𝟐
→ 𝒋𝑨 = − 𝑴 𝑴 𝑫 𝞩 𝒙𝑨 = − 𝑴𝑨 𝑴𝑩 𝑫𝑨𝑩 𝞩 𝒙𝑨
(𝝆⁄𝒄) 𝑨 𝑩 𝑨𝑩 𝝆
22
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝝆𝟐
𝟏𝟒. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕; 𝑱∗𝑨 = −( ) 𝑫𝑨𝑩 𝞩 𝒘𝑨
𝒄 𝑴𝑨 𝑴𝑩
𝑴𝟐
𝞩 𝒙𝑨 = 𝞩 𝒘𝑨 … … … … … . (2)
𝑴𝑨 𝑴𝑩
𝑴𝟐 (𝝆⁄𝒄)𝟐
𝑱∗𝑨 = −𝒄 𝑫𝑨𝑩 𝞩 𝒘𝑨 = −𝒄 𝑫𝑨𝑩 𝞩 𝒘𝑨
𝑴𝑨 𝑴𝑩 𝑴𝑨 𝑴𝑩
𝝆𝟐
𝑱∗𝑨 = − ( ) 𝑫𝑨𝑩 𝞩 𝒘𝑨
𝒄 𝑴𝑨 𝑴𝑩
𝒄 𝑫𝑨𝑩
𝟏𝟓. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕; 𝒄 (𝐯𝑨 − 𝐯𝑩 ) = − 𝞩 𝒙𝑨
𝒙𝑨 𝒙𝑩
𝑱∗𝑨 = −𝒄 𝑫𝑨𝑩 𝞩 𝒙𝑨 … … … … … . (1)
𝑱∗𝑨 = 𝒄𝑨 (𝐯𝑨 − 𝐯 ∗ )
𝒙𝑨 𝒄 (𝐯𝑨 − 𝐯 ∗ ) = −𝒄 𝑫𝑨𝑩 𝞩 𝒙𝑨
𝑫𝑨𝑩
𝐯𝑨 − 𝐯 ∗ = − 𝞩 𝒙𝑨 … … … … … … (3)
𝒙𝑨
𝑱∗𝑨 = 𝒙𝑩 𝒄 (𝐯 ∗ − 𝐯𝑩 ) … … … … … . . . (6)
𝒙𝑩 𝒄 (𝐯 ∗ − 𝐯𝑩 ) = −𝒄 𝑫𝑨𝑩 𝞩 𝒙𝑨
𝑫𝑨𝑩
𝐯𝑩 − 𝐯 ∗ = − 𝞩 𝒙𝑨 … … … … … … (7)
𝒙𝑩
23
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝑫𝑨𝑩 𝑫𝑨𝑩
(𝐯𝑨 − 𝐯 ∗ ) + (𝐯𝑩 − 𝐯 ∗ ) = (− 𝞩 𝒙𝑨 ) + (− 𝞩 𝒙𝑨 )
𝒙𝑨 𝒙𝑩
− 𝑫𝑨𝑩 𝑫𝑨𝑩
𝐯𝑨 − 𝐯𝑩 = 𝞩 𝒙𝑨 − 𝞩 𝒙𝑨
𝒙𝑨 𝒙𝑩
1 1
𝐯𝑨 − 𝐯𝑩 = − 𝑫𝑨𝑩 𝞩 𝒙𝑨 ( + )
𝒙𝑨 𝒙𝑩
𝒙𝑨 + 𝒙𝑩
= − 𝑫𝑨𝑩 𝞩 𝒙𝑨 ( ) 𝐰𝐡𝐞𝐫𝐞: 𝒙𝑨 + 𝒙𝑩 = 𝟏
𝒙𝑨 𝒙𝑩
𝟏
= − 𝑫𝑨𝑩 𝞩 𝒙𝑨 ( )
𝒙𝑨 𝒙𝑩
− 𝑫𝑨𝑩
𝐯𝑨 − 𝐯𝑩 = 𝞩 𝒙𝑨 … … … … … … … (8)
𝒙𝑨 𝒙𝑩
−𝒄 𝑫𝑨𝑩
𝒄(𝐯𝑨 − 𝐯𝑩 ) = 𝞩 𝒙𝑨 … … … … … … … (8)
𝒙𝑨 𝒙𝑩
For multicomponent diffusion in gases at low density it has been shown that to a very
good approximation:
𝑁 𝑁
𝒙𝑨 𝒙𝑩 𝒄𝑨 𝒄𝑩
𝟏. 𝞩 𝒙𝑨 = − ∑ (𝐯𝑨 − 𝐯𝑩 ) = − ∑ 𝟐 (𝐯 − 𝐯𝑩 ) (17.9 − 1)
𝑫𝑨𝑩 𝒄 𝑫𝑨𝑩 𝑨
𝐵=1 𝐵=1
𝑁
𝟏
𝟐. 𝞩 𝒙𝑨 = − ∑ (𝒙 𝑵 − 𝒙𝑨 𝑵𝑩 ) (17.9 − 1)
𝒄 𝑫𝑨𝑩 𝑩 𝑨
𝐵=1
Where:
𝑨 = 1 ,2 ,3 ,……,𝑁
𝑫𝑨𝑩 = are the binary diffusivities calculated from Eq. 17.3-11 or Eq. 17.3-12
Equations 17.9-1 are referred to as the Maxwell-Stefan equations, since Maxwell suggested
them for binary mixtures on the basis of kinetic theory, and Stefan generalized them to describe
the diffusion in a gas mixture with N species.
24
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝒄𝑨 𝒄𝑩 𝒄𝟐 𝑫𝑨𝑩
𝞩 𝒙𝑨 = − 𝟐 (𝐯 − 𝐯𝑩 ) → (𝐯𝑨 − 𝐯𝑩 ) = − 𝞩 𝒙𝑨
𝒄 𝑫𝑨𝑩 𝑨 𝒄𝑨 𝒄𝑩
𝒅𝒙𝑨
𝒘𝒉𝒆𝒓𝒆: 𝞩 𝒙𝑨 =
𝒅𝒛
𝒅𝒙𝑨 𝒅𝒙𝑨
𝒄𝑨 𝒄𝑩 (𝐯𝑨 − 𝐯𝑩 ) = − 𝒄𝟐 𝑫𝑨𝑩 → 𝒄𝑨 𝒄𝑩 𝐯𝑨 − 𝒄𝑨 𝒄𝑩 𝐯𝑩 = − 𝒄𝟐 𝑫𝑨𝑩 ÷𝒄
𝒅𝒛 𝒅𝒛
𝒅𝒙𝑨
𝒄𝑨 𝒙𝑩 𝐯𝑨 − 𝒙𝑨 𝒄𝑩 𝐯𝑩 = − 𝒄 𝑫𝑨𝑩
𝒅𝒛
𝒅𝒙𝑨
𝒄𝑨 (𝟏 − 𝒙𝑨 ) 𝐯𝑨 − 𝒙𝑨 𝒄𝑩 𝐯𝑩 = − 𝒄 𝑫𝑨𝑩
𝒅𝒛
𝒅𝒙𝑨
𝒄𝑨 𝐯𝑨 − 𝒄𝑨 𝐯𝑨 𝒙𝑨 − 𝒙𝑨 𝒄𝑩 𝐯𝑩 = − 𝒄 𝑫𝑨𝑩
𝒅𝒛
𝒅𝒙𝑨
𝒄𝑨 𝐯𝑨 − 𝒙𝑨 (𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 ) = − 𝒄 𝑫𝑨𝑩
𝒅𝒛
𝒄𝑨 𝒅𝒙𝑨
𝒄𝑨 𝐯𝑨 − (𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 ) = − 𝒄 𝑫𝑨𝑩
𝒄 𝒅𝒛
𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 𝒅𝒙𝑨
𝒄𝑨 𝐯𝑨 − 𝒄𝑨 ( ) = − 𝒄 𝑫𝑨𝑩
𝒄 𝒅𝒛
𝒅𝒙𝑨 𝒅𝒙𝑨
𝒄𝑨 𝐯𝑨 − 𝒄𝑨 𝐯 ∗ = − 𝒄 𝑫𝑨𝑩 → 𝑱∗𝑨 = − 𝒄 𝑫𝑨𝑩
𝒅𝒛 𝒅𝒛
𝒅𝒙𝑨 𝑱∗𝑨
→ =−
𝒅𝒛 𝒄 𝑫𝑨𝑩
𝑴 𝑴𝟐
𝒘𝒉𝒆𝒓𝒆: 𝑱∗𝑨 = 𝒋 𝒂𝒏𝒅 𝞩 𝒙𝑨 = 𝞩 𝒘𝑨
𝑴𝑨 𝑴𝑩 𝑨 𝑴𝑨 𝑴𝑩
25
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝑴𝟐 𝑴 𝒋𝑨
→ 𝞩 𝒘𝑨 = −
𝑴𝑨 𝑴𝑩 𝑴𝑨 𝑴𝑩 𝒄 𝑫𝑨𝑩
𝒋𝑨
→ 𝑴 𝞩 𝒘𝑨 = −
𝒄 𝑫𝑨𝑩
𝒅𝒘𝑨 𝒅𝒘𝑨
→ 𝒋𝑨 = − 𝒄 𝑴 𝑫𝑨𝑩 → 𝒋𝑨 = − 𝝆 𝑫𝑨𝑩
𝒅𝒛 𝒅𝒛
𝑵
𝟏
𝜵 𝒙𝑨 = − ∑ (𝒙 𝑵 − 𝒙𝑨 𝑵𝑩 )
𝒄 𝑫𝑨𝑩 𝑩 𝑨
𝑩=𝟏
𝟏
𝜵 𝒙𝑨 = − (𝒙 𝑵 − 𝒙𝑨 𝑵𝑩 )
𝒄 𝑫𝑨𝑩 𝑩 𝑨
𝒅𝒙𝑨
𝒙𝑩 𝑵𝑨 − 𝒙𝑨 𝑵𝑩 + 𝒙𝑨 𝑵𝑨 − 𝒙𝑨 𝑵𝑨 = −𝒄 𝑫𝑨𝑩
𝒅𝒛
𝒅𝒙𝑨
(𝒙𝑩 + 𝒙𝑨 ) 𝑵𝑨 − (𝑵𝑨 + 𝑵𝑩 ) 𝒙𝑨 = −𝒄 𝑫𝑨𝑩 , 𝒘𝒉𝒆𝒓𝒆: 𝒙𝑩 + 𝒙𝑨 = 𝟏
𝒅𝒛
𝒅𝒙𝑨
𝑵𝑨 − 𝒙𝑨 (𝑵𝑨 + 𝑵𝑩 ) = −𝒄 𝑫𝑨𝑩
𝒅𝒛
𝒄𝑨 𝒅𝒙𝑨
𝒄𝑨 𝐯𝑨 − (𝒄𝑨 𝐯𝑨 + 𝒄𝑩 𝐯𝑩 ) = −𝒄 𝑫𝑨𝑩
𝒄 𝒅𝒛
𝒅𝒙𝑨 𝒅𝒙𝑨
𝒄𝑨 𝐯𝑨 − 𝒄𝑨 𝐯 ∗ = −𝒄 𝑫𝑨𝑩 → 𝒄𝑨 ( 𝐯𝑨 − 𝐯 ∗ ) = −𝒄 𝑫𝑨𝑩
𝒅𝒛 𝒅𝒛
𝒅𝒙𝑨 𝒅𝒙𝑨
𝒄𝑨 ( 𝐯𝑨 − 𝐯 ∗ ) = −𝒄 𝑫𝑨𝑩 → 𝑱∗𝑨 = −𝒄 𝑫𝑨𝑩
𝒅𝒛 𝒅𝒛
𝒅𝒙𝑨 𝑱∗𝑨
→ =−
𝒅𝒛 𝒄 𝑫𝑨𝑩
𝑴 𝑴𝟐
𝒘𝒉𝒆𝒓𝒆: 𝑱∗𝑨 = 𝒋 𝒂𝒏𝒅 𝞩 𝒙𝑨 = 𝞩 𝒘𝑨
𝑴𝑨 𝑴𝑩 𝑨 𝑴𝑨 𝑴𝑩
26
Advanced Mass Transfer Master Course Prof. Dr. Ahmed Daham
𝑴𝟐 𝑴 𝒋𝑨
→ 𝞩 𝒘𝑨 = −
𝑴𝑨 𝑴𝑩 𝑴𝑨 𝑴𝑩 𝒄 𝑫𝑨𝑩
𝒋𝑨
→ 𝑴 𝞩 𝒘𝑨 = −
𝒄 𝑫𝑨𝑩
𝒅𝒘𝑨 𝒅𝒘𝑨
→ 𝒋𝑨 = − 𝒄 𝑴 𝑫𝑨𝑩 → 𝒋𝑨 = − 𝝆 𝑫𝑨𝑩
𝒅𝒛 𝒅𝒛
27