Lecture Notes in Computer Science
Lecture Notes in Artificial Intelligence 14472
Founding Editor
Jörg Siekmann
Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China
The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.
The series publishes state-of-the-art research results at a high level. As with the LNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.
Tongliang Liu · Geoff Webb · Lin Yue ·
Dadong Wang
Editors
AI 2023: Advances in
Artificial Intelligence
36th Australasian Joint Conference on Artificial Intelligence, AI 2023
Brisbane, QLD, Australia, November 28 – December 1, 2023
Proceedings, Part II
Editors
Tongliang Liu Geoff Webb
The University of Sydney Monash University
Darlington, NSW, Australia Clayton, VIC, Australia
Lin Yue Dadong Wang
The University of Newcastle CSIRO Data61
Callaghan, NSW, Australia Sydney, NSW, Australia
ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-981-99-8390-2 ISBN 978-981-99-8391-9 (eBook)
https://doi.org/10.1007/978-981-99-8391-9
LNCS Sublibrary: SL7 – Artificial Intelligence
© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore
Paper in this product is recyclable.
Preface
This volume contains the papers presented at the 36th Australasian Joint Conference
on Artificial Intelligence, AJCAI 2023. The conference was held during November
28 – December 1, 2023, and was hosted by the University of Queensland in Brisbane,
Australia. This annual conference is one of the longest running conferences in artificial
intelligence, with the first conference held in Sydney in 1987. The conference remains the
premier event for artificial intelligence in Australasia, offering a forum for researchers
and practitioners across all subfields of artificial intelligence to meet and discuss recent
advances.
AJCAI 2023 received 213 submissions and each submission was reviewed by at
least two Program Committee (PC) members or external reviewers in a double-blind
process (over 90% of the submissions had three reviews). After a thorough discussion and
rigorous scrutiny by the reviewers, 24 papers were accepted for long oral presentation and
58 papers were accepted for oral presentation at the conference. In total, 82 submissions
were accepted for publication as full papers in these proceedings with an acceptance
rate of 38% (the acceptance rate of the long oral presentations was 11%). AJCAI 2023
had six keynote talks by the following distinguished scientists: Ling Chen from the
University of Technology Sydney, Australia; Manik Varma from Microsoft Research
India, India; Peter Soyer from the University of Queensland, Australia; Maria Garcia De
La Banda from Monash University, Australia; Mengjie Zhang from Victoria University
of Wellington, New Zealand; and Dadong Wang from Data61, Australia.
The following are notable aspects of the AJCAI 2023 conference:
• AJCAI 2023 was jointly held with the Defence Artificial Intelligence 2023 Sym-
posium (November 27, 2023). The Defence Artificial Intelligence Symposium is an
exciting opportunity for Defence and AI researchers to come together and explore
priorities, opportunities, and commonalities.
• AJCAI 2023 included a day with a special industry focus. Panel discussions allowed
industry and academia to share challenges and research directions.
• AJCAI 2023 included four workshops, held on November 28: Foundations for
Robust AI: Self-Supervised Learning, organised by Saimunur Rahman, David
Hall, Stephen Hausler, and Peyman Moghadam; Federated Learning in Australasia:
When FL Meets Foundation Models, organised by Guodong Long, Han Yu, and
Tao Shen; Artificial Intelligence Enabled Trustworthy Recommendations, organised
by Shoujin Wang, Rocky Tong Chen, Hongzhi Yin, Lina Yao, and Fang Chen; and
Machine Learning for Data-Driven Optimization, organised by Xilu Wang, Xiangyu
Wang, Shiqing Liu, and Yaochu Jin.
• AJCAI 2023 included three tutorials, held on November 28: Reinforcement Learning
for Automated Negotiation Supply Chain Management League as an Example, pre-
sented by Yasser Mohammad; Towards Communication-Efficient and Heterogeneity-
Robust Federated Learning, presented by Guodong Long and Yue Tan; and Decoding
vi Preface
the Grammar of DNA Using Natural Language Processing, presented by Tyrone Chen
and Sonika Tyagi.
• AJCAI 2023 included a PhD Forum, held on November 28, to mentor and assist post-
graduate students developing their research, with mentorship provided by research
leaders. Limited travel support was provided.
We especially appreciate the work of the members of the Program Committee and the
external reviewers for their expertise and tireless effort in assessing the papers within a
strict timeline. We are also very grateful to the members of the Organising Committee for
their efforts in the preparation, promotion, and organisation of the conference, especially
the General Chairs, Dacheng Tao, Sally Cripps, and Janet Wiles, for coordinating the
whole event.
Lastly, we thank the National Committee for Artificial Intelligence of the Australian
Computer Society; Springer, for the professional service provided by the Lecture Notes
in Artificial Intelligence editorial and publishing teams; and our conference sponsors:
the Australian Computer Society; the Defence Artificial Intelligence Research Network;
Pioneer Computers; the School of Computer Science at the University of Sydney; the
School of Electrical Engineering and Computer Science at the University of Queensland;
the Human Technology Institute at the University of Technology Sydney; the Adelaide
University; and the UNSW AI Institute.
October 2023 Tongliang Liu
Miao Xu
Geoff Webb
Organization
General Chairs
Dacheng Tao The University of Sydney, Australia
Sally Cripps University of Technology Sydney, Australia
Janet Wiles The University of Queensland, Australia
Program Chairs
Tongliang Liu The University of Sydney, Australia
Miao Xu The University of Queensland, Australia
Geoff Webb Monash University, Australia
Proceedings Chairs
Weitong Chen The University of Adelaide, Australia
Lin Yue The University of Newcastle, Australia
Dadong Wang Data61, Australia
Senior Program Committee
Jing Jiang University of Technology Sydney, Australia
Mingyu Guo The University of Adelaide, Australia
Jonathan Kummerfeld University of Sydney, Australia
Hua Zuo University of Technology Sydney, Australia
Shuo Chen RIKEN, Japan
Zhongyi Han Mohamed Bin Zayed University of Artificial
Intelligence, United Arab Emirates
Runnan Chen The University of Hong Kong, China
Jingfeng Zhang University of Auckland, New Zealand
Feng Liu The University of Melbourne, Australia
Huong Ha RMIT University, Australia
Soyeon Han University of Western Australia, Australia
Zhanna Sarsenbayeva The University of Sydney, Australia
Mingming Gong The University of Melbourne, Australia
Yu Yao Usyd
Yuxuan Du The University of Sydney, Australia
viii Organization
Clément Canonne University of Sydney, Australia
Miaomiao Liu Australian National University, Australia
Dawei Zhou Xidian University, China
Yadan Luo University of Science and Technology of China,
China
Xiaobo Xia The University of Sydney, Australia
Guanfeng Liu Macquarie University, Australia
Zhen Fang University of Technology Sydney, Australia
Hien Nguyen University of Queensland, Australia
Program Committee
Ravneet Singh Arora Block Inc, USA
Adnan Mahmood Macquarie University, Australia
Yue Yuan Shandong University, China
Seyedamin Pouriyeh Kennesaw State University, USA
Yexiong Lin The University of Sydney, Australia
Jiahui Gao The University of Hong Kong, China
Xianzhi Wang University of Technology Sydney, Australia
Zhuo Huang Nanjing University of Science and Technology,
China
Alex Chu Beihang University, China
Ruihong Qiu The University of Queensland, Australia
Qingzheng Xu National University
Qiang Qu The University of Sydney, Australia
Lynn Miller Monash University, Australia
Zhuonan Liang The University of Sydney, Australia
Kun Han The University of Queensland, Australia
Tim Miller The University of Queensland, Australia
Zhuoxiao Chen The University of Queensland, Australia
Kun Wang University of Technology Sydney, Australia
Changqin Huang South China Normal University, China
Peng Yuwei Wuhan University, China
Brendon J. Woodford University of Otago, New Zealand
Weihua Li Auckland University of Technology, New Zealand
Mingzhe Zhang The University of Queensland, Australia
Peter Baumgartner CSIRO, Australia
Manolis Gergatsoulis Ionian University, Greece
Dianhui Wang La Trobe University, Australia
Jianan Fan University of Sydney, Australia
Xueping Peng University of Technology Sydney, Australia
Kairui Guo University of Technology Sydney, Australia
Organization ix
Zehong Cao University of South Australia, Australia
Wenhao Yang Nanjing University, China
Yi Gao Southeast University, China
Yi Mei Victoria University of Wellington, New Zealand
Chenhao Zhang University of Queensland, Australia
Youquan Liu Hochschule Bremerhaven, Germany
Wenhua Zhang Shanghai University, China
Yu Yao MBZUAI, UAE & CMU, USA
Hao Hou Nanjing University of Science and Technology,
China
Yuan Liu The University of Hong Kong, China
Jianlong Zhou University of Technology Sydney, Australia
Ran Wang University of Technology Sydney, Australia
Jun Wang The University of Sydney, Australia
Weijia Zhang The University of Newcastle, Australia
Zhuoyun Ao Defence Science and Technology Organisation
Xinheng Wu University of Technology Sydney, Australia
Abdul Sattar Griffith University, Australia
Daokun Zhang Monash University, Australia
Ge-Peng Ji Wuhan University, China
Dongting Hu The University of Melbourne, Australia
Chengbin Du The University of Sydney, Australia
Ying Bi Victoria University of Wellington, New Zealand
Rafal Rzepka Hokkaido University, Japan
Cong Lei The University of Sydney, Australia
Yue Tan University of Technology Sydney, Australia
Hongwei Sheng The University of Queensland, Australia
M. A. Hakim Newton University of Newcastle, Australia
Shaokun Zhang Penn State University, USA
Pengqian Lu The University of Sydney, Australia
Peng Yan Nanjing University of Post and
Telecommunication, China
Weidong Cai The University of Sydney, Australia
Huan Huo University of Technology Sydney, Australia
Yuhao Wu The University of Sydney, Australia
Rui Dai University of Science and Technology of China,
China
Fangfang Zhang Victoria University of Wellington, New Zealand
Xiaobo Xia The University of Sydney, Australia
Giorgio Gnecco IMT - School for Advanced Studies, Lucca, Italy
Yu Zheng The Chinese University of Hong Kong, China
Ickjai Lee James Cook University, Australia
x Organization
Jiepeng Wang The University of Hong Kong, China
Qizhou Wang Hong Kong Baptist University, China
Chen Liu University of Technology Sydney, Australia
Yuanyuan Wang The University of Melbourne, Australia
Wei Duan The Australian Artificial Intelligence Institute
(AAII), and University of Technology Sydney,
Australia
Aoqi Zuo The University of Melbourne, Australia
Yiming Ren ShanghaiTech University, China
Stephen Chen York University, Canada
Wenjie Wang The University of Melbourne, Australia
Zhiyuan Li University of Sydney, Australia
Tao Shen Microsoft, China
Guangzhi Ma University of Technology Sydney, Australia
Haodong Chen The University of Sydney, Australia
Yu Lu University of Technology Sydney, Australia
Angus Dempster Monash University, Australia
Jing Teng North China Electric Power University, China
Yawen Zhao The University of Queensland, Australia
Harith Al-Sahaf Victoria University of Wellington, New Zealand
Pengxin Zeng Sichuan University, China
Hangyu Li Xidian University, China
Huaxi Huang CSIRO, Australia
Bernhard Pfahringer University of Waikato, New Zealand
Huiqiang Chen University of Technology Sydney, Australia
Xin Yu University of Technology Sydney, Australia
Yanjun Zhang University of Technology Sydney, Australia
Bach Nguyen Victoria University of Wellington, New Zealand
Peng Mi Xiamen University, China
Jiyang Zheng University of Sydney, Australia
Rundong He Shandong University, China
Shikun Li Chinese Academy of Sciences, China
Kevin Wong Murdoch University, Australia
Xiu-Chuan Li Chinese Academy of Science, China
Jianglin Qiao Western Sydney University, Australia
Maurice Pagnucco The University of New South Wales, Australia
Bing Wang The University of New South Wales, Australia
Zhaoqing Wang The University of Sydney, Australia
Mark Reynolds The University of Western Australia, Australia
Xuyun Zhang Macquarie University, Australia
Zige Wang Peking University, China
Chang Wei Tan Monash University, Australia
Organization xi
Muyang Li The University of Sydney, Australia
Guangyan Huang Deakin University, Australia
Liangchen Liu Xidian University, China
Nayyar Zaidi Deakin University, Australia
Erdun Gao The University of Melbourne, Australia
Chuyang Zhou The University of Sydney, Australia
Shaofei Shen The University of Queensland, Australia
Yixuan Qiu The University of Queensland, Australia
Jianhua Yang UWS, Australia
Keqiuyin Li University of Technology Sydney, Australia
Yanjun Shu Harbin Institute of Technology, China
Lingdong Kong National University of Singapore, Singapore
Jingyu Zhang City University of Hong Kong, China
Sung-Bae Cho Yonsei University, South Korea
Shuxiang Xu University of Tasmania, Australia
Wan Su Shandong University, China
Markus Wagner The University of Adelaide, Australia
Xiaoying Gao Victoria University of Wellington, New Zealand
William Bingley The University of Queensland, Australia
Sishuo Chen Peking University, China
Hao Sun Shandong University, China
Ming Zhou Hefei University of Technology, China
Sponsors
xii Organization
Contents – Part II
Knowledge Representation and NLP
Collaborative Qualitative Environment Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Adeline Secolo, Paulo E. Santos, Patrick Doherty, and Zoran Sjanic
Towards Learning Action Models from Narrative Text Through Extraction
and Ordering of Structured Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Ruiqi Li, Patrik Haslum, and Leyang Cui
The Difficulty of Novelty Detection and Adaptation in Physical
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Vimukthini Pinto, Chathura Gamage, Matthew Stephenson,
and Jochen Renz
Lateral AI: Simulating Diversity in Virtual Communities . . . . . . . . . . . . . . . . . . . . 41
Fedja Hadzic and Maya Krayneva
Reports, Observations, and Belief Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Aaron Hunter
A Prompting Framework to Enhance Language Model Output . . . . . . . . . . . . . . . 66
Himath Ratnayake and Can Wang
Epistemic Reasoning in Computational Machine Ethics . . . . . . . . . . . . . . . . . . . . . 82
Raynaldio Limarga, Yang Song, Maurice Pagnucco,
and David Rajaratnam
Using Social Sensing to Validate Flood Risk Modelling in England . . . . . . . . . . . 95
Joshua Joyce, Rudy Arthur, Guangtao Fu, Alina Bialkowski,
and Hywel Williams
Symbolic Data Analysis to Improve Completeness of Model Combination
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Pedro Strecht, João Mendes-Moreira, and Carlos Soares
CySpider: A Neural Semantic Parsing Corpus with Baseline Models
for Property Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Ziyu Zhao, Wei Liu, Tim French, and Michael Stewart
xiv Contents – Part II
S5TR: Simple Single Stage Sequencer for Scene Text Recognition . . . . . . . . . . . 133
Zhijian Wu, Jun Li, and Jianhua Xu
Explainable AI
Coping with Data Distribution Shifts: XAI-Based Adaptive Learning
with SHAP Clustering for Energy Consumption Prediction . . . . . . . . . . . . . . . . . . 147
Tobias Clement, Hung Truong Thanh Nguyen, Nils Kemmerzell,
Mohamed Abdelaal, and Davor Stjelja
Concept-Guided Interpretable Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Jianan Yang and Guodong Long
Systematic Analysis of the Impact of Label Noise Correction on ML
Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Inês Oliveira e Silva, Carlos Soares, Inês Sousa, and Rayid Ghani
Part-Aware Prototype-Aligned Interpretable Image Classification
with Basic Feature Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Liangping Li, Xun Gong, Chenzhong Wang, and Weiji Kong
Hybrid CNN-Interpreter: Interprete Local and Global Contexts
for CNN-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Wenli Yang, Guan Huang, Renjie Li, Jiahao Yu, Yanyu Chen,
and Quan Bai
Impact of Fidelity and Robustness of Machine Learning Explanations
on User Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Bo Wang, Jianlong Zhou, Yiqiao Li, and Fang Chen
Interpretable Drawing Psychoanalysis via House-Tree-Person Test . . . . . . . . . . . 221
Yaowu Xie, Ting Pan, Baodi Liu, Honglong Chen, and Weifeng Liu
A Non-asymptotic Risk Bound for Model Selection in a High-Dimensional
Mixture of Experts via Joint Rank and Variable Selection . . . . . . . . . . . . . . . . . . . 234
TrungTin Nguyen, Dung Ngoc Nguyen, Hien Duy Nguyen,
and Faicel Chamroukhi
Reinforcement Learning
Auction-Based Allocation of Location-Specific Tasks . . . . . . . . . . . . . . . . . . . . . . . 249
Fahimeh Ramezani, Brendan Sims, and Haris Aziz
Contents – Part II xv
Generalized Bargaining Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Yasser Mohammad
SAGE: Generating Symbolic Goals for Myopic Models in Deep
Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Andrew Chester, Michael Dann, Fabio Zambetta, and John Thangarajah
Leaving the NavMesh: An Ablative Analysis of Deep Reinforcement
Learning for Complex Navigation in 3D Virtual Environments . . . . . . . . . . . . . . . 286
Dale Grant, Jaime Garcia, and William Raffe
Transformed Successor Features for Transfer Reinforcement Learning . . . . . . . . 298
Kiyoshige Garces, Junyu Xuan, and Hua Zuo
Cooperative Multi-Agent Reinforcement Learning with Dynamic Target
Localization: A Reward Sharing Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Helani Wickramaarachchi, Michael Kirley, and Nicholas Geard
Competitive Collaboration for Complex Task Learning in Agent Systems . . . . . . 325
Dilini Samarasinghe, Michael Barlow, and Erandi Lakshika
Limiting Inequalities in Repeated House and Task Allocation . . . . . . . . . . . . . . . . 338
Martin Aleksandrov
Non-stationarity Detection in Model-Free Reinforcement Learning
via Value Function Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Maryem Hussein, Marwa Keshk, and Aya Hussein
Toward a Unified Framework for RGB and RGB-D Visual Navigation . . . . . . . . 363
Heming Du, Zi Huang, Scott Chapman, and Xin Yu
Improving CCA Algorithms on SSVEP Classification with Reinforcement
Learning Based Temporal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Liang Ou, Thomas Do, Xuan-The Tran, Daniel Leong,
Yu-Cheng Chang, Yu-Kai Wang, and Chin-Teng Lin
Evolving Epidemic Management Rules Using Deep Neuroevolution:
A Novel Approach to Inspection Scheduling and Outbreak Minimization . . . . . . 387
Victoria Huang, Chen Wang, Samik Datta, Bryce Chen, Gang Chen,
and Hui Ma
xvi Contents – Part II
Genetic Algorithm
A Semantic Genetic Programming Approach to Evolving Heuristics
for Multi-objective Dynamic Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Meng Xu, Yi Mei, Fangfang Zhang, and Mengjie Zhang
XC-NAS: A New Cellular Encoding Approach for Neural Architecture
Search of Multi-path Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 416
Trevor Londt, Xiaoying Gao, Peter Andreae, and Yi Mei
Bloating Reduction in Symbolic Regression Through Function
Frequency-Based Tree Substitution in Genetic Programming . . . . . . . . . . . . . . . . 429
Mohamad Rimas, Qi Chen, and Mengjie Zhang
Generating Collective Motion Behaviour Libraries Using Developmental
Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Md Khan, Kathryn Kasmarik, Michael Barlow, Shadi Abpeikar,
Huanneng Qiu, Essam Debie, and Matt Garratt
A Group Genetic Algorithm for Energy-Efficient Resource Allocation
in Container-Based Clouds with Heterogeneous Physical Machines . . . . . . . . . . . 453
Zhengxin Fang, Hui Ma, Gang Chen, and Sven Hartmann
Genetic Programming with Adaptive Reference Points for Pareto Local
Search in Many-Objective Job Shop Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Atiya Masood, Gang Chen, Yi Mei, Harith Al-Sahaf, and Mengjie Zhang
A Study of Fitness Gains in Evolving Finite State Machines . . . . . . . . . . . . . . . . . 479
Gábor Zoltai, Yue Xie, and Frank Neumann
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Contents – Part I
Computer Vision
Multi-graph Laplacian Feature Mapping Incorporating Tag Information
for Image Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Yan Liu, Qianqian Shao, Rui Cheng, Weifeng Liu, and Baodi Liu
Short-Term Solar Irradiance Forecasting from Future Sky Images
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Hoang Chuong Nguyen and Miaomiao Liu
No Token Left Behind: Efficient Vision Transformer via Dynamic Token
Idling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Xuwei Xu, Changlin Li, Yudong Chen, Xiaojun Chang, Jiajun Liu,
and Sen Wang
Story Sifting Using Object Detection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Wilkins Leong, Julie Porteous, and Jonathan Thangarajah
SimMining-3D: Altitude-Aware 3D Object Detection in Complex Mining
Environments: A Novel Dataset and ROS-Based Automatic Annotation
Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Mehala Balamurali and Ehsan Mihankhah
Oyster Mushroom Growth Stage Identification: An Exploration
of Computer Vision Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Lipin Guo, Wei Emma Zhang, Weitong Chen, Ni Yang, Queen Nguyen,
and Trung Duc Vo
Handling Heavy Occlusion in Dense Crowd Tracking by Focusing
on the Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Yu Zhang, Huaming Chen, Zhongzheng Lai, Zao Zhang, and Dong Yuan
SAR2EO: A High-Resolution Image Translation Framework
with Denoising Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Shenshen Du, Jun Yu, Guochen Xie, Renjie Lu, Pengwei Li,
Zhongpeng Cai, and Keda Lu
A New Perspective of Weakly Supervised 3D Instance Segmentation
via Bounding Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Qingtao Yu, Heming Du, and Xin Yu
xviii Contents – Part I
Large-Kernel Attention Network with Distance Regression and Topological
Self-correction for Airway Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Yan Hu, Erik Meijering, and Yang Song
Deep Learning
WeightRelay: Efficient Heterogeneous Federated Learning on Time Series . . . . . 129
Wensi Tang and Guodong Long
Superpixel Attack: Enhancing Black-Box Adversarial Attack
with Image-Driven Division Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Issa Oe, Keiichiro Yamamura, Hiroki Ishikura, Ryo Hamahira,
and Katsuki Fujisawa
Cross Domain Pulmonary Nodule Detection Without Source Data . . . . . . . . . . . . 153
Rui Xu, Yong Luo, and Yan Xu
3RE-Net: Joint Loss-REcovery and Super-REsolution Neural Network
for REal-Time Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Liming Ge, David Zhaochen Jiang, and Wei Bao
Neural Networks in Forecasting Financial Volatility . . . . . . . . . . . . . . . . . . . . . . . . 178
Wenbo Ge, Pooia Lalbakhsh, Leigh Isai, and Hanna Suominen
CLIP-Based Composed Image Retrieval with Comprehensive Fusion
and Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Haoqiang Lin, Haokun Wen, Xiaolin Chen, and Xuemeng Song
LiDAR Inpainting of UAV Based 3D Point Cloud Using Supervised
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Muhammad Talha, Aya Hussein, and Mohammed Hossny
A Sampling Method for Performance Predictor Based on Contrastive
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Jingrong Xie, Yuqi Feng, and Yanan Sun
AdaptMatch: Adaptive Consistency Regularization for Semi-supervised
Learning with Top-k Pseudo-labeling and Contrastive Learning . . . . . . . . . . . . . . 227
Nan Yang, Fan Huang, and Dong Yuan
Estimation of Unmasked Face Images Based on Voice and 3DMM . . . . . . . . . . . 239
Tetsumaru Akatsuka, Ryohei Orihara, Yuichi Sei, Yasuyuki Tahara,
and Akihiko Ohsuga
Contents – Part I xix
Aging Contrast: A Contrastive Learning Framework for Fish
Re-identification Across Seasons and Years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Weili Shi, Zhongliang Zhou, Benjamin H. Letcher, Nathaniel Hitt,
Yoichiro Kanno, Ryo Futamura, Osamu Kishida, Kentaro Morita,
and Sheng Li
Spatial Bottleneck Transformer for Cellular Traffic Prediction in the Urban
City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Hexuan Weng, Yanbin Liu, and Ling Chen
MIDGET: Music Conditioned 3D Dance Generation . . . . . . . . . . . . . . . . . . . . . . . 277
Jinwu Wang, Wei Mao, and Miaomiao Liu
Machine Learning and Data Mining
Minimum Message Length Inference of the Weibull Distribution
with Complete and Censored Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Enes Makalic and Daniel F. Schmidt
Multiple Teacher Model for Continual Test-Time Domain Adaptation . . . . . . . . . 304
Ran Wang, Hua Zuo, Zhen Fang, and Jie Lu
Causal Disentanglement for Adversarial Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Ji-Young Park, Lin Liu, Jixue Liu, and Jiuyong Li
Gemini: A Dual-Task Co-training Model for Partial Label Learning . . . . . . . . . . . 328
Beibei Li, Senlin Shu, Beihong Jin, Tao Xiang, and Yiyuan Zheng
Detecting Stress from Multivariate Time Series Data Using Topological
Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Hieu Vu Tran, Carolyn McGregor, and Paul J. Kennedy
Mining Label Distribution Drift in Unsupervised Domain Adaptation . . . . . . . . . 354
Peizhao Li, Zhengming Ding, and Hongfu Liu
Automatic Classification of Sensors in Buildings: Learning from Time
Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Mashud Rana, Ashfaqur Rahman, Mahathir Almashor,
John McCulloch, and Subbu Sethuvenkatraman
An Integrated Federated Learning and Meta-Learning Approach
for Mining Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Venkat Munagala, Sankhya Singh, Srikanth Thudumu, Irini Logothetis,
Sushil Bhandari, Amit Bhandari, Kon Mouzakis, and Rajesh Vasa
xx Contents – Part I
An Augmented Learning Approach for Multiple Data Streams Under
Concept Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Kun Wang, Jie Lu, Anjin Liu, and Guangquan Zhang
Sequence Unlearning for Sequential Recommender Systems . . . . . . . . . . . . . . . . . 403
Shanshan Ye and Jie Lu
MPANet: Multi-scale Pyramid Attention Network for Collaborative
Modeling Spatio-Temporal Patterns of Default Mode Network . . . . . . . . . . . . . . . 416
Hang Yuan, Xiang Li, and Benzheng Wei
Optimization
Dynamic Landscape Analysis for Constrained Multiobjective Optimization
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Hanan Alsouly, Michael Kirley, and Mario Andrés Muñoz
Finding Maximum Weakly Stable Matchings for Hospitals/Residents
with Ties Problem via Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Son Thanh Cao, Le Van Thanh, and Hoang Huu Viet
Approximating Solutions to the Knapsack Problem Using the Lagrangian
Dual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Mitchell Keegan and Mahdi Abolghasemi
An Optimised Grid Search Based Framework for Robust Large-Scale
Natural Soundscape Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Thomas Napier, Euijoon Ahn, Slade Allen-Ankins, and Ickjai Lee
Medical AI
Interpretable 3D Multi-modal Residual Convolutional Neural Network
for Mild Traumatic Brain Injury Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Hanem Ellethy, Viktor Vegh, and Shekhar S. Chandra
Comparative Assessment of Machine Learning Strategies
for Electrocardiogram Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Brenda Wang, Chirath Hettiarachchi, Hanna Suominen,
and Elena Daskalaki
COVID-19 Fake News Detection Using Cross-Domain Classification
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Arnav Sharma, Subhanjali Sharma, Utkarsh Bhardwaj, Sajib Mistry,
Novarun Deb, and Aneesh Krishna
Contents – Part I xxi
Context-Based Masking for Spontaneous Venous Pulsations Detection . . . . . . . . 520
Hongwei Sheng, Xin Yu, Xue Li, and Mojtaba Golzan
Beyond Model Accuracy: Identifying Hidden Underlying Issues in Chest
X-ray Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
Richard Wainwright, Danny Wang, Harrison Layton,
and Alina Bialkowski
Enhance Reading Comprehension from EEG-Based Brain-Computer
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Xinping Liu and Zehong Cao
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557