0 ratings0% found this document useful (0 votes) 33 views30 pagesPart4 04a
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
20 ox] Fial the Morten’ ~eyuivr ckt. te the leet
of terminels @ and b,
Selutens
1) Remove the external circuitry aad apply a shoot okt.
2) Solve fer Ty which it the current throwgh ‘rhe short oky
Sinte 2 Sources are present use Super posiHen theorem:
| kill Current source Creplace uith open ckt)
. +
7 Poke; GA vesester fs Shoefed oof
‘ta
$ = Meh
VW tty, a aie
2. Kill voltage source Cheplace with Shorf ekh)
By CPR:
UT, Iv, 2a) ie =-BA.
3, Com bine # <
bin te get Ly Int Ty, ware(-8) 26 6.354
cowbimeed —...ex / con bent eer
3.) kill Sources ant solve for Ry
(replece Current seures wit open ckt )
Ureplate voltese Source with Short ck h)
Rye tenes = CC) _ 2 B42]
Gate
£) Redraw errgien! ck,
Ck. in a
with — Morfon Eguy'
ay 10,
4384) “
~ Becton Fga'. Ck?
Motes In Schematic Ly was shown as being
forced cut ef terwi'nal “a”
Since the computed Ty value wes
negative , the civection of
the
source [$s drawn to feree Ccuyren? out
of termine! ~b”.
Current
56(MAKimum lower _Iransten _ ‘"eerein
A load will rece‘ue macimam power rem a
linear bilateral de network when it totel
resistive Value is exactly equal to the
Thevenin resistance of the network as “teen “
by the lead.
makiinum Pow er transfer 7pnmaor terre
Complex Numbers +
Hirt He eg taitC tO a
Converscon Between Forms.
Ce
58Math Gperutieous uith Com plex Mur bers
Given: C,= A, +78, nel Ey = Ayy gp Ba
Addition C,)+Cy = (A +4) 4 9 (B+)
Subtraction: t,-% = C4,-42) + 7 (B-B,)
and Subtraction are eatvest in
A dkdi' tien
rechangular form,
Malte plication ancl Division are easiest in
Polaw form.
os
c
Ce,
Nites |i really 1IZ0
57- rnesors
A Phesor fs. Complee namber which
can be wed to represent a Sinasatdal
Ac wave form.
Vn Sin (ut +0)
7 \ Te Domain
Value Expression tov
Si nasoid
Vn SinCut+e) 27V, 26
ee Phason
eae Devain
ex| Gives: f2 60H
. ‘
- cae . y= 50 . (37 730°)
i “, MW, 730 sin (2776 40°)
Finl Ci
Sola tions By Kuh ~ewtay +1, 70
Livi th, +My,
Convent fo Poser Porsins
mn, = 50 (02) L 30° = F.35 L490" 30.6/-4 417.68 %
Re tonvets peak to RMS
Wy > 30 (6.707) £60" = BIA LZ b0% = 10.6149 18:37 = Vy
By Vat = (joertt-ar) + p(i759 + 18.37)
= : eer ee eeeare eel
Ej = YUAR + ZICOE = FUT LT? ON be tine A0Om
yu VEC SET) Sen (3778 417°) © 17. sen (377 HHI?
60 ( )Tinpoclunce ancl the Phator fag ram
Resistive Elements
rer purely resistive elewent the current
and voltage are in phee.
Zo where @ is the Tupedance
of a res/stor,
< Ohns Lav for Chasors
A Phaser is oa Is a rotating Vector
with & magnitucfe and phase ousle
sociated weth i7,
7 7
&xf Find the Current A,
+ ; Sketch 4 «md a
FR Ar zpoo sin &
Solutio!
Solution’ 1) First convert MW to Chasor Ferm:
= 100 Sinwt =P Ta 100 20°
QA pfly ohms Laws nowt
> Vv o
Ty. 10 L0 ag f0 ark
R slo .
Z)Cencut pack to Me bomans
al dn 2OSinwt Amps.: ex 435, tsinlintsio%) Find WW, Sketch 4 and a
oo...
Gu ae hk) Conver “a to es or.
- Aa4sin(wt+io?) <7 Ls 420° Anys.
2.) Apaly dhm's Law 7
WaT Ey = (4L30)(2. 20°) = 6.230" volts,
da) Convert Dack to Hime elotmarh :
w= EG sin(utt30") — velts
A Phaser = Diagram is pht th
the compl
plane showing
the magnitude and phese
relationships of creat qaanh ties,
For the above
ceample the Phaser Di'agr am
would pe:
Motes Lo awd Vo are jn
plese since if's
a ores'shye chrewt
62Inductive Reactance
current
induchive element the
For a purely
lags the voltaye by 40°.
of an inchuctor
Mee anh s wl
In rectangular Ferm ;
Ohn's Law fan Inductors i
ef Az 5 sin(wtt30) Find voltage A,
sai
] Sketeh W aad “A,
eng she
1) Convert « and 2, te poser Form:
Ae Soin (ut 30°) = T= 530°
Ziska OM = GZ"
2) Apply obns ler $V TEs (52°) ) (4 Lae!) = 30L"
Hy Cent hack Jo Hime demain? Anz 20 Sin (wt +120"
ae SI
think of
hasord as
rotating
cow /
T lags V
Ting Dowen ey
63 gerh phasor Dioyvam by 40°Capacitive Weaclrance
Fer a pure ly capaci tive
lowes the voltage by 9°
a Z, is the Impedance
a capacitor
aie ie
“we
Clement the current
rectangular for =s> = -o
a ? ull gee we
Ohmi lee for Capactters Es V =
ne La 7 P = : Tee
= 6 Sin (wt~6o°) Find voltage 4
Sketeh An and v
1) Convecl A anol Zz, te phaser fore
Fe GL Fax, Aw’. 05 LZ
:
7 OFLA A
A) Apply Owm's Can i Vat Es (626) (0 5 Zo)
Vz3 Z (~6o +e) = 34-90"
1) eoavct dak te Hae domains An = 3 sin (wrt-l50")
I leads V
by
40°
+ ; : t
ca Vine Doman Gragh Fa feeThe compler puantibies Corresponding fo the
impedance of Ry Ly and C elements Hn
be graphect in the Cemy ley pire.
7
XL 240"
a
ake
For any Con Tourabeon (series, parollel, series-parailel, er.
the angle associated with the tote/ img ecdance
Ts the angle by which the source current
lag ¢ the applied vo|tege.
For incluctive networks Gy wll be fiehive,
For Capacitive networks 6, will be negative.
Series Configuration
For Twmpadances in Series the total
Inpedance iS: > toi
osGE
&x/ herb
—_ Retr
Z0
Sola trons
2.24 ao
a) Apply series B vale:
Praw
the Tnpedance
disgram, Find — Fotel
Impecdame 27
}
L) Convert Impedance te ghee form ;
ZL"
Be Byte teere 6290"
Convert to rectangalar
z,> 4 +87
form
conveet back to Polar form:
Beas
ef
Bea kee
7 Heep
%
2,2 6L0° >
2) Aprly Serv & rales
Zp 2 A1te a £63.43°
te wld:
Dettrmine total Z,
Draw
ee 1) Convert to phuier form! a
By = 1040" > B3F 12.Z-%0
7,2 6S +102 40+ |2L-90
convert fo rect. form be sold:
FG +log ~ng = b-2y
Convert back te pole Lem:
Sy = G38 a Zo Nb 43
G, neg 3 2% capachve
2 Avagran.For the Series AC Cirewt the current
15 the Same threwh each element.
+V¥- Phosor
Ss - Equations:
: {2 Te
E@&) Ei . a
« V, Se tee tee
2 rt 8,43
= ieT2, , Yet By
fy KVL; -E4¥V+%y20
Eavi tv
so ®
v Divider Rules me E(S
By ‘oltage Prvide: “ 2 Zh
The Power Supplied to the Crrearf ssi
Ps EX cos 0,
Where: E is Yoltaye in Ams
Lots current fn Rms
O, fs the phere angle detnesn Fand T
is also the angle of
The Powen Factor Fp ie:
Fp = Cos Oy so PRET FpR-L Circult
sa jan Convent to Phasers :
ee ltt sihwt —y Es lH Zo"
© BX Convert te RMS
Fe 4ie(207) Zoo's loo Lo"
VOlts Ring
Find tel Su pedance »
ees eaeas °
2,7 Egt B= 320 +4L40°
converting te rect forms Bar 3+ Ze a
converting te polar for mz B,5 on L313"
By Omni Lane 7 Tnpedence
qe E . 100° Diagram
z. 5 Zsa? :
: < 6,3 5313
os +
53.137
Ve = 60v. a
2 : °
Ves TE, = (mo Zs9)(4L 90") 80L 3687" han,
Cheek by Keyes i
-E + Vy V2? 4 EF eth = bo Za S3s* +60 LIE!
Converting to rect form: Es 36-g48 + G4 +A 48
Es tee +70 = JooLo" v. kos
€ Pheso-
Dire
63ex) wee Cow tinued
Tote! Powen delivered fo Rb ckty
peste ty tee ot FCI are eftective (KMS) valses
P, x (lev.)(RoA) cos 581° = 2ee0 ws C6) = [Roo Ww
Power dissipated by Resistor +
Pe= I°R = (204) "(3a) = tools) = 1200,
Tote! Power ditsipated by RL ekh:
Pr = Pre Pi = Vd tos Op t+ VT tos &
x (60)(29) cos 0" + (60) (20) cos 70°
= l2oow. + 06 = 200 Ww,
T wote: [Inductor dissipates Bere
power
Power Factor:
Fp = co Oy > Cos 53.18 © 06 Lagging
l, Fe Legging becaue T Tey; E fn oy indubive ch
eo
Since PEI Fp
Ales Pie P called “Real Ponce sn wats
P EL
ET called “VA “or Apparest
Power
Als Fy= KR
2
EE CHa ar mE REE eed
CosO= ET wa” eR 2
G7R~C Cirewt
en/ _ Reta Xba Convert te Phesues:
70
oh
427.07 S10 (mbt 918) >To ta
take
Convert to RMS;
R= 07 shaleet4 5319" :
i : Fe 7076.07) Lud = FA L533"
kas
Find tote limp eefance /
Zit Wet Bex CLo re L 10°
te rect forms BR G-Zh LK
pele forms Bye 10-8 Z~ 53s?
Conver ting
converting to
By Ohui Laws i
E=I2,* (saZsun') (0.0 Zour)
sov. Z.0°
Yt Tep= (sa 254) (604 0’) “
Tae 3ov, £53.13"
% = (sa L508 ia Zo) a eae
Check by KVb:
~E+VatVer0 3 Fe Uty = 30. LEM + 40 Z- 36.87
Convert to rect. form: Ea 18 +724 + 3a -fa4 = 50 4/0
E2 50L0° 4 checks
ie
Tn pecance
Diagram
Ope ~FbNg?
I
Convert to time clomarn:
Bn S0Z0" > Cn YRS Sin wt = 70-7 sin wl
Kes .
(ut +5343) = RHR sin(uct+ 503 )
Vat BoZsrni? a Mya VE 30 bin )
= 36.07 )2 96.56 sin Curb 3697 J
Ves to L060? 9 We = Aa 40 Sin (ut